Automatic concrete sleeper crack detection using a one-stage detector

Abstract

Crack is the most common defect in the railway sleeper inspection work. However, it is still lack of effective algorithms to automatically detect. Two deep learning based methods were popularly used to detect cracks: two-stage methods and one-stage methods. However, they both have their corresponding shortcomings: for the two-stage methods, they are too slow; for the one-stage methods, their accuracy is a problem. In this paper, we propose using a divide-and-conquer strategy of labels to improve the accuracy of the one-stage methods. A one-stage crack detector called CF-NET is proposed by us including two main innovations: a new detection pipeline (CF module) and modified loss function smooth-flat. Finally, the proposed model CF-NET achieves 98.1% accuracy with 17 FPS real-time speed. The accuracy of CF-NET is matched with the two-stage method Faster R-CNN, but faster at least 3\(\times \). The meaning of our work is that we provide a real-time and high-accuracy crack detector to better meet the actual demands of the railway sleeper crack detection task.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abdel-Qader, I., Abudayyeh, O., Kelly, M.E.: Analysis of edge-detection techniques for crack identification in bridges. J. Comput. Civ. Eng. 17(4), 255–263 (2003). https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)

    Article  Google Scholar 

  2. Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S., Buyukozturk, O.: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput. Aided Civ. Infrastruct. Eng. 33(9), 731–747 (2018). https://doi.org/10.1111/mice.12334

    Article  Google Scholar 

  3. Cho, H., Yoon, H., Jung, J.: Image-based crack detection using crack width transform (cwt) algorithm. IEEE Access 6, 60100–60114 (2018). https://doi.org/10.1109/ACCESS.2018.2875889

    Article  Google Scholar 

  4. Du, Y., Pan, N., Xu, Z., Deng, F., Shen, Y., Kang, H.: Pavement distress detection and classification based on yolo network. Int. J. Pavement Eng. (2020). https://doi.org/10.1080/10298436.2020.1714047

    Article  Google Scholar 

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

  6. Gopalakrishnan, K., Khaitan, S.K., Choudhary, A., Agrawal, A.: Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 157, 322–330 (2017). https://doi.org/10.1016/j.conbuildmat2017.09.110

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

  8. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    MathSciNet  Article  Google Scholar 

  9. Jo, J., Jadidi, Z.: A high precision crack classification system using multi-layered image processing and deep belief learning. Struct. Infrastruct. Eng. 16(2), 297–305 (2020). https://doi.org/10.1080/15732479.2019.1655068

    Article  Google Scholar 

  10. Kim, I.H., Jeon, H., Baek, S.C., Hong, W.H., Jung, H.J.: Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle. Sensors (2018). https://doi.org/10.3390/s18061881

    Article  Google Scholar 

  11. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: 16th IEEE International Conference on Computer Vision (ICCV), pp. 2999–3007. IEEE, Venice, ITALY (2017). https://doi.org/10.1109/ICCV.2017.324

  12. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision–ECCV 2016, pp. 21–37. Springer International Publishing, Cham (2016)

    Google Scholar 

  13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

  14. Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T., Omata, H.: Road damage detection and classification using deep neural networks with smartphone images. Comput. Aided Civ. Infrastruct. Eng. 33(12), 1127–1141 (2018). https://doi.org/10.1111/mice.12387

    Article  Google Scholar 

  15. Nhat-Duc, H., Nguyen, Q.L., Tran, V.D.: Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network. Autom. Constr. 94, 203–213 (2018). https://doi.org/10.1016/j.autcon.2018.07.008

    Article  Google Scholar 

  16. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

  17. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 91–99. Curran Associates Inc, New York (2015)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  20. Singh, B., Davis, L.S.: An analysis of scale invariance in object detection—snip. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE Conference on Computer Vision and Pattern Recognition, pp. 3578–3587. IEEE, Salt Lake City (2018)

  21. Suong, L.K., Jangwoo, K.: Detection of potholes using a deep convolutional neural network. J-JUCS 24(9), 1244–1257 (2018)

    Google Scholar 

  22. Wang, B., Zhao, W., Gao, P., Zhang, Y., Wang, Z.: Crack damage detection method via multiple visual features and efficient multi-task learning model. Sensors (2018). https://doi.org/10.3390/s18061796

    Article  Google Scholar 

  23. Wang, L., Zhuang, L., Zhang, Z.: Automatic detection of rail surface cracks with a superpixel-based data-driven framework. J. Comput. Civ. Eng. 33(1), 04018053 (2019). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000799

    Article  Google Scholar 

  24. Wu, S., Fang, J., Zheng, X.: Sample and structure-guided network for road crack detection. IEEE Access 7, 130032–130043 (2019). https://doi.org/10.1109/ACCESS.2019.2940767

    Article  Google Scholar 

  25. Xue, Y., Li, Y.: A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects. Comput. Aided Civ. Infrastruct. Eng. 33(8), 638–654 (2018). https://doi.org/10.1111/mice.12367

    Article  Google Scholar 

  26. Yamaguchi, T., Nakamura, S., Hashimoto, S.: An efficient crack detection method using percolation-based image processing. In: 2008 3rd IEEE Conference on Industrial Electronics and Applications, pp. 1875–1880. IEEE (2008)

  27. Yamaguchi, T., Nakamura, S., Saegusa, R., Hashimoto, S.: Image-based crack detection for real concrete surfaces. IEE J Trans. Electr. Electron. Eng. 3(1), 128–135 (2008). https://doi.org/10.1002/tee.20244

    Article  Google Scholar 

  28. Yang, X., Li, H., Yu, Y., Luo, X., Huang, T., Yang, X.: Automatic pixel-level crack detection and measurement using fully convolutional network. Comput. Aided Civ. Infrastruct. Eng. 33(12), 1090–1109 (2018). https://doi.org/10.1111/mice.12412

    Article  Google Scholar 

  29. Zou, Q., Cao, Y., Li, Q., Mao, Q., Wang, S.: CrackTree: automatic crack detection from pavement images. Pattern Recogn. Lett. 33(3), 227–238 (2012). https://doi.org/10.1016/j.patrec.2011.11.004

    Article  Google Scholar 

  30. Zou, Q., Zhang, Z., Li, Q., Qi, X., Wang, Q., Wang, S.: Deepcrack: learning hierarchical convolutional features for crack detection. IEEE Trans. Image Process. 28, 1498–1512 (2018)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by China Scholarship Council (Grant no. 201906895026).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yunfang Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xia, B., Cao, J., Zhang, X. et al. Automatic concrete sleeper crack detection using a one-stage detector. Int J Intell Robot Appl (2020). https://doi.org/10.1007/s41315-020-00141-4

Download citation

Keywords

  • Automatic railway inspection
  • Concreate sleeper maintenance
  • Convolutional neural network (CNN)
  • Crack detection
  • Deep learning