Skip to main content
Log in

Sequence-based manipulation of robotic arm control in brain machine interface

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

In brain machine interfaces (BMI), the brain activities are recorded by invasive or noninvasive approaches and translated into command signals to control external prosthetic devices such as a computer cursor, a wheelchair, or a robotic arm. Although many studies confirmed the capability of BMI systems in controlling multi degrees-of-freedom (DOF) prosthetic devices using invasive approaches, BMI research using noninvasive paradigms is still in its infancy. In this paper, a new robotic BMI platform has been developed using electroencephalography (EEG) technology to control a 6-DOF robotic arm. EEG signals were collected from the scalp using a wireless headset exploiting a new fast-training paradigm named as “imagined body kinematics”. A regression model was employed to decode the kinematic parameters from the EEG signals. The subjects were instructed to voluntarily control a virtual cursor in multiple trials to hit different pre-programmed targets on a screen in an optimized sequence. The command signals generated from hitting the targets during trials were applied to control sequential movements of the robotic arm in a discrete manner to manipulate an object in a two-dimensional workspace. This approach is derived from a basic shared control strategy where the robotic arm is responsible for carrying out complex maneuvers based on the user’s intention. Our proposed BMI platform yielded a high success rate of 70% in a sequence-based manipulation task after only a short time of training (10 min). The developed platform serves as a proof-of-concept for EEG-based neuro-prosthetic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abiri, R., et al.: EEG-based control of a unidimensional computer cursor using imagined body kinematics. In: Biomedical Engineering Society Annual Meeting (BMES 2015). 2015a

  • Abiri, R., et al.: A real-time brainwave based neuro-feedback system for cognitive enhancement. In: ASME 2015 Dynamic Systems and Control Conference (Columbus, OH). 2015b

  • Abiri, R., et al.: Planar control of a quadcopter using a zero-training brain machine interface platform. In: Biomedical Engineering Society Annual Meeting (BMES 2016). 2016

  • Abiri, R., et al.: Brain computer interface for gesture control of a social robot: an offline study. In: 2017 Iranian Conference on Electrical Engineering (ICEE). IEEE, New York, 2017

  • Agashe, H., Contreras-Vidal, J.L.: Observation-based training for neuroprosthetic control of grasping by amputees. In: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE. IEEE, New York, 2014

  • Agashe, H.A., et al.: Global cortical activity predicts shape of hand during grasping. Front. Neurosci. 9, 121 (2015)

    Article  Google Scholar 

  • Aiqin, S., Binghui, F., Chaochuan, J.: Motor imagery EEG-based online control system for upper artificial limb. In: International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), 2011. 2011

  • Antelis, J.M., et al.: On the usage of linear regression models to reconstruct limb kinematics from low frequency EEG signals. PLoS ONE 8(4), e61976 (2013)

    Article  Google Scholar 

  • Bacher, D., et al.: Neural point-and-click communication by a person with incomplete locked-in syndrome. Neurorehabilit Neural Repair 29(5), 462–471 (2015)

    Article  Google Scholar 

  • Baxter, B.S., Decker, A., He, B.: Noninvasive control of a robotic arm in multiple dimensions using scalp electroencephalogram. In: 2013 6th International IEEE/EMBS Conference on Neural Engineering, (NER) 2013. IEEE, New York (2013)

  • Bhattacharyya, S., Konar, A., Tibarewala, D.: Motor imagery, P300 and error-related EEG-based robot arm movement control for rehabilitation purpose. Med. Biol. Eng. Comput. 52(12), 1007–1017 (2014)

    Article  Google Scholar 

  • Bhattacharyya, S., Shimoda, S., Hayashibe, M.: A synergetic brain-machine interfacing paradigm for multi-DOF robot control. IEEE Trans. Syst. Man Cybern. Syst. 46(7), 957–968 (2016)

    Article  Google Scholar 

  • Bhuiyan, M., Choudhury, I., Dahari, M.: Development of a control system for artificially rehabilitated limbs: a review. Biol. Cybern. 109(2), 141–162 (2015)

    Article  Google Scholar 

  • Bradberry, T.J., Gentili, R.J., Contreras-Vidal, J.L.: Decoding three-dimensional hand kinematics from electroencephalographic signals. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 5010–5013 (2009)

    Google Scholar 

  • Bradberry, T.J., Gentili, R.J., Contreras-Vidal, J.L.: Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals. J. Neurosci. 30(9), 3432–3437 (2010)

    Article  Google Scholar 

  • Bradberry, T.J., Gentili, R.J., Contreras-Vidal, J.L.: Fast attainment of computer cursor control with noninvasively acquired brain signals. J. Neural Eng. 8(3), 036010 (2011)

    Article  Google Scholar 

  • Carmena, J.M., et al.: Learning to control a brain–machine interface for reaching and grasping by primates. PLoS Biol. 1(2), e42 (2003)

    Article  Google Scholar 

  • Chen, C.W., Lin, C.C.K., Ju, M.S.: Hand orthosis controlled using brain–computer interface. J. Med. Biol. Eng. 29(5), 234–241 (2009)

    Google Scholar 

  • Collinger, J.L., et al.: High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866), 557–564 (2013)

    Article  Google Scholar 

  • DFRobot

  • Doud, A.J., et al.: Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface. PLoS ONE 6(10), e26322 (2011)

    Article  Google Scholar 

  • Emotiv. http://emotiv.com/

  • Fifer, M.S., et al.: Simultaneous neural control of simple reaching and grasping with the modular prosthetic limb using intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 22(3), 695–705 (2014)

    Article  Google Scholar 

  • Gilja, V., et al.: A high-performance neural prosthesis enabled by control algorithm design. Nat. Neurosci. 15(12), 1752–1757 (2012)

    Article  Google Scholar 

  • Guger, C., et al.: Prosthetic control by an EEG-based brain-computer interface (BCI). In: Proceedings of AAATE 5th European conference for the advancement of assistive technology, 1999

  • Hazrati, M.K., Hofmann, U.G.: Avatar navigation in Second Life using brain signals. In: IEEE 8th International Symposium on Intelligent Signal Processing (WISP), 2013. IEEE, New York, 2013

  • Hazrati, M.K., et al.: Controlling a simple hand prosthesis using brain signals. Biomed. Eng./Biomed. Tech. 59, 1152–1155 (2014)

    Google Scholar 

  • He, B., et al.: Noninvasive brain-computer interfaces based on sensorimotor rhythms. Proc. IEEE 103(6), 907–925 (2015)

    Google Scholar 

  • Hochberg, L.R., et al.: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398), 372–375 (2012)

    Article  Google Scholar 

  • Horki, P., et al.: Combined motor imagery and SSVEP based BCI control of a 2 DoF artificial upper limb. Med. Biol. Eng. Comput. 49(5), 567–577 (2011)

    Article  Google Scholar 

  • Hortal, E., et al.: SVM-based brain–machine interface for controlling a robot arm through four mental tasks. Neurocomputing 151, 116–121 (2015)

    Article  Google Scholar 

  • Iturrate, I., et al.: Teaching brain-machine interfaces as an alternative paradigm to neuroprosthetics control. Sci. Rep. 5, 13893 (2015)

    Article  Google Scholar 

  • Kim, S.P., et al.: Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia. J. Neural Eng. 5(4), 455 (2008)

    Article  MathSciNet  Google Scholar 

  • Kim, Y.J., et al.: A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals. Biomed. Eng. Online 14(1), 1 (2015)

    Article  Google Scholar 

  • Kreilinger, A., Neuper, C., Müller-Putz, G.R.: Error potential detection during continuous movement of an artificial arm controlled by brain–computer interface. Med. Biol. Eng. Comput. 50(3), 223–230 (2012)

    Article  Google Scholar 

  • LaFleur, K., et al.: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J. Neural Eng. 10(4), 046003 (2013)

    Article  Google Scholar 

  • Li, T., et al.: Brain–machine interface control of a manipulator using small-world neural network and shared control strategy. J. Neurosci. Methods 224, 26–38 (2014)

    Article  Google Scholar 

  • Luth, T., et al.: Low level control in a semi-autonomous rehabilitation robotic system via a brain-computer interface. In: IEEE 10th International Conference on Rehabilitation Robotics, 2007. ICORR 2007. IEEE, New York, 2007

  • MathWorks. http://www.mathworks.com/

  • McFarland, D.J., Sarnacki, W.A., Wolpaw, J.R.: Electroencephalographic (EEG) control of three-dimensional movement. J. Neural Eng. 7(3), 036007 (2010)

    Article  Google Scholar 

  • Meng, J., et al.: Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks. Sci. Rep. 6, 38565 (2016)

    Article  Google Scholar 

  • Millán, J.D.R.: Brain-machine interfaces: the perception-action closed loop: a two-learner system. IEEE Syst. Man Cybern. Mag. 1(1), 6–8 (2015)

    Article  Google Scholar 

  • Miranda, R.A., et al.: DARPA-funded efforts in the development of novel brain–computer interface technologies. J. Neurosci. Methods 244, 52–67 (2015)

    Article  Google Scholar 

  • Muller-Putz, G.R., Pfurtscheller, G.: Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans. Biomed. Eng. 55(1), 361–364 (2008)

    Article  Google Scholar 

  • Murguialday, A.R., et al.: Brain–computer interface for a prosthetic hand using local machine control and haptic feedback. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007, 2007

  • Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors 12(2), 1211–1279 (2012)

    Article  Google Scholar 

  • Nirenberg, L.M., Hanley, J., Stear, E.B.: A new approach to prosthetic control: eeg motor signal tracking with an adaptively designed phase-locked loop. IEEE Trans. Biomed. Eng. 18(6), 389–398 (1971)

    Article  Google Scholar 

  • Ofner, P., Muller-Putz, G.R.: Decoding of velocities and positions of 3D arm movement from EEG. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 6406–6409 (2012)

    Google Scholar 

  • Pfurtscheller, G., et al.: Self-paced operation of an SSVEP-based orthosis with and without an imagery-based “brain switch:” a feasibility study towards a hybrid BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 18(4), 409–414 (2010)

    Article  Google Scholar 

  • Royer, A.S., et al.: EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies. IEEE Trans. Neural Syst. Rehabil. Eng. 18(6), 581–589 (2010)

    Article  Google Scholar 

  • Schalk, G., et al.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  • Schalk, G., et al.: Two-dimensional movement control using electrocorticographic signals in humans. J. Neural Eng. 5(1), 75 (2008)

    Article  Google Scholar 

  • Schultz, A.E., Kuiken, T.A.: Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities. PM&R 3(1), 55–67 (2011)

    Article  Google Scholar 

  • Sequeira, S., Diogo, C., Ferreira, F.J.T.E.: EEG-signals based control strategy for prosthetic drive systems. In: 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG), 2013

  • Slutzky, M.W., Flint, R.D.: Physiological properties of brain-machine interface input signals. J. Neurophysiol. 118(2), 1329–1343 (2017)

    Article  Google Scholar 

  • Taylor, D.M., Tillery, S.I.H., Schwartz, A.B.: Direct cortical control of 3D neuroprosthetic devices. Science 296(5574), 1829–1832 (2002)

    Article  Google Scholar 

  • Ubeda, A., et al.: Linear decoding of 2D hand movements for target selection tasks using a non-invasive BCI system. In: Systems Conference (SysCon), 2013 IEEE International. 2013

  • Velliste, M., et al.: Cortical control of a prosthetic arm for self-feeding. Nature 453(7198), 1098–1101 (2008)

    Article  Google Scholar 

  • Vidaurre, C., Blankertz, B.: Towards a cure for BCI illiteracy. Brain Topogr. 23(2), 194–198 (2010)

    Article  Google Scholar 

  • Vidaurre, C., et al.: EEG-based BCI for the linear control of an upper-limb neuroprosthesis. Med. Eng. Phys. 38(11), 1195–1204 (2016)

    Article  Google Scholar 

  • Vogel, J., et al.: An assistive decision-and-control architecture for force-sensitive hand–arm systems driven by human–machine interfaces. Int. J. Robot. Res. 34(6), 763–780 (2015)

    Article  Google Scholar 

  • Wolpaw, J.R., McFarland, D.J.: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. USA 101(51), 17849–17854 (2004)

    Article  Google Scholar 

  • Wolpaw, J.R., et al.: An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78(3), 252–259 (1991)

    Article  Google Scholar 

  • Wright, J., et al.: A Review of control strategies in closed-loop neuroprosthetic systems. Front. Neurosci. 10, 312 (2016)

    Article  Google Scholar 

  • Xia, B., et al.: A combination strategy based brain–computer interface for two-dimensional movement control. J. Neural Eng. 12(4), 046021 (2015)

    Article  Google Scholar 

  • Yuan, H., He, B.: Brain–computer interfaces using sensorimotor rhythms: current state and future perspectives. IEEE Trans. Biomed. Eng. 61(5), 1425–1435 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was in part supported by a NeuroNET seed grant to XZ; and in part by the NIH under grants NIH P30 AG028383 to the UK Sanders-Brown Center on Aging, NIH AG00986 to YJ, and NIH NCRR UL1TR000117 to the UK Center for Clinical and Translational Science. JK’s work was partially supported through a summer internship from the Office of Undergraduate Research at The University of Tennessee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 24822 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilmarx, J., Abiri, R., Borhani, S. et al. Sequence-based manipulation of robotic arm control in brain machine interface. Int J Intell Robot Appl 2, 149–160 (2018). https://doi.org/10.1007/s41315-018-0049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-018-0049-7

Keywords

Navigation