Alginate-bentonite beads for efficient adsorption of methylene blue dye

Abstract

In this study, alginate/bentonite adsorbent beads (Alg/Ben) were prepared by encapsulating natural bentonite (Ben) in calcium alginate (Alg). Different Alg/Ben ratios were applied during bead preparation, yielding beads denoted Alg-Ben1 (1/1 w/w), Alg-Ben2 (1/2 w/w), and Alg-Ben3 (1/3 w/w), respectively. These adsorbents were characterized by Fourier-transform infrared spectroscopy and X-ray diffraction. The adsorption of methylene blue (MB) from aqueous solution on the Alg/Ben beads was investigated as a function of several parameters, including initial MB concentration and contact time. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium adsorption isotherms, and they were found to be well described by the Langmuir model. Encapsulating Ben in Alg led to a substantial increase in maximum amount of methylene blue adsorbed by Ben, from 345 to 1237 mg g−1. The results showed that, among the three types of Alg/Ben beads, Alg-Ben1 presented the greatest MB adsorption capacity. A kinetic study indicated that the adsorption was governed by second-order kinetics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adeyemo AA, Adeoye IO, Bello OS (2017) Adsorption of dyes using different types of clay: a review. Appl Water Sci 7(2):543–568. https://doi.org/10.1007/s13201-015-0322-y

    Article  Google Scholar 

  2. Aichour A, Zaghouane-Boudiaf H, Iborra CV, Polo MS (2018) Bioadsorbent beads prepared from activated biomass/alginate for enhanced removal of cationic dye from water medium: kinetics, equilibrium and thermodynamic studies. J Mol Liq 256:533–540. https://doi.org/10.1016/j.molliq.2018.02.073

    Article  Google Scholar 

  3. Almeida CAP, Debacher NA, Downs AJ, Cottet L, Mello CAD (2009) Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J Colloid Interface Sci 332:46–53. https://doi.org/10.1016/j.jcis.2008.12.012

    Article  Google Scholar 

  4. Anirudhan TS, Ramachandran M (2015) Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): kinetic and competitive adsorption isotherm. Process Saf Environ Prot 95:215–225. https://doi.org/10.1016/j.psep.2015.03.003

    Article  Google Scholar 

  5. Belhouchat N, Zaghouane-Boudiaf H, Viseras C (2017) Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Appl Clay Sci 135:9–15. https://doi.org/10.1016/j.clay.2016.08.031

    Article  Google Scholar 

  6. Benhouria A, Azharul Islam M, Zaghouane-Boudiaf H, Boutahala M, Hameed BH (2015) Calcium alginate–bentonite–activated carbon composite beads as highly effective adsorbent for methylene blue. Chem Eng J 270:621–630. https://doi.org/10.1016/j.cej.2015.02.030

    Article  Google Scholar 

  7. Besq A, Malfoy C, Pantet A, Monnet P, Righi D (2003) Physicochemical characterisation and flow properties of some bentonite muds. Appl Clay Sci 23:275–286. https://doi.org/10.1016/S0169-1317(03)00127-3

    Article  Google Scholar 

  8. Boukerroui A, Ouali MS (2000) Activation d'une bentonite par un sel d'ammonium: évolution de la capacité d'échange et de la surface spécifique. Ann Chim Sci Mat 25:583–590

    Article  Google Scholar 

  9. Caglar B, Topcu C, Coldur F, Sarp G, Caglar S, Tabak A, Sahin E (2016) Structural, thermal, morphological and surface charge properties of dodecyltrimethyl ammonium—smectite composites. J Macromol Struct 1105:70–79. https://doi.org/10.1016/j.molstruc.2015.10.017

    Article  Google Scholar 

  10. Didi MA, Makhoukhi B, Azzouz A, Villemin D (2009) Colza oil bleaching through optimized acid activation of bentonite. A comparative study. Appl Clay Sci 42:336–344

    Article  Google Scholar 

  11. Djebri N, Boutahala M, Chelalia N, Boukhalfa N, Zeroual L (2016) Enhanced removal of cationic dye by calcium alginate/organo-bentonite beads: modeling, kinetics, equilibriums, thermodynamic and reusability studies. Int J Biol Macromol 92:1277–1287. https://doi.org/10.1016/j.ijbiomac.2016.08.013

    Article  Google Scholar 

  12. El-Sayed GO (2011) Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber. Desalination 272:225–232. https://doi.org/10.1016/j.desal.2011.01.025

    Article  Google Scholar 

  13. Fabryanty R, Valencia C, Soetaredjo FE, Putro JN, Santoso SP, Kurniawan A, Jub YH, Ismadji S (2017) Removal of crystal violet dye by adsorption using bentonite–alginate composite. J Environ Chem Eng 5:5677–5687. https://doi.org/10.1016/j.jece.2017.10.057

    Article  Google Scholar 

  14. Hassan AF, Abdel-Mohsen AM, Fouda MMG (2014) Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption. Carbohydr Polym 102:192–198. https://doi.org/10.1016/j.carbpol.2013.10.104

    Article  Google Scholar 

  15. He Y, Wu Z, Tu L, Han Y, Zhang G, Li C (2015) Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate. Appl Clay Sci 109–110:68–75. https://doi.org/10.1016/j.clay.2015.02.001

    Article  Google Scholar 

  16. Kausar A, Iqbal M, Javed A, Aftab K, Nazli ZH, Bhatti HN, Nouren S (2018) Dyes adsorption using clay and modified clay: a review. J Mol Liq 256:395–407. https://doi.org/10.1016/j.molliq.2018.02.034

    Article  Google Scholar 

  17. Kıransan M, Soltani RDC, Hassani A, Karaca S, Khataee A (2014) Preparation of cetyltrimethylammonium bromide modified montmorillonite nanomaterial for adsorption of a textile dye. J Taiwan Inst Chem Eng 45:2565–2577. https://doi.org/10.1016/j.jtice.2014.06.007

    Article  Google Scholar 

  18. Lie Y, Du Q, Liu T, Sun J, Wang Y, Wu S, Wang Z, Xia Y, Xia L (2013) Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydr Polym 95:501–507. https://doi.org/10.1016/j.carbpol.2013.01.094

    Article  Google Scholar 

  19. Liu L, Wan Y, Xie Y, Zhai R, Zhang B, Liu J (2012) The removal of dye from aqueous solution using alginate-halloysite nanotube beads. Chem Eng J 187:210–216. https://doi.org/10.1016/j.cej.2012.01.136

    Article  Google Scholar 

  20. Li Q, Li Y, Ma X, Du Q, Sui K, Wang D, Wang C, Li H, Xia Y (2017) Filtration and adsorption properties of porous calcium alginate membrane for methylene blue removal from water. Chem Eng J 316:623–630. https://doi.org/10.1016/j.cej.2017.01.098

    Article  Google Scholar 

  21. Marrakchi F, Bouaziz M, Hameed BH (2017) Adsorption of acid blue 29 and methylene blue on mesoporous K2CO3-activated olive pomace boiler ash. Colloids Surf A Physicochem Eng Asp 535:157–165. https://doi.org/10.1016/j.colsurfa.2017.09.014

    Article  Google Scholar 

  22. Meziti C, Boukerroui A (2011) Regeneration of a solid waste from an edible oil refinery. Ceram Int 37(2011):1953–1957. https://doi.org/10.1016/j.ceramint.2011.02.016

    Article  Google Scholar 

  23. Mohammadi A, Daemi H, Barikani M (2014) Fast removal of malachite green dye using novel super paramagnetic sodium alginate-coated Fe3O4 nanoparticles. Int J Biol Macromol 69:447–455. https://doi.org/10.1016/j.ijbiomac.2014.05.042

    Article  Google Scholar 

  24. Nandi BK, Goswami A, Purkait MK (2009) Adsorption characteristics of brilliant green dye on kaolin. J Hazard Mater 161:387–395. https://doi.org/10.1016/j.jhazmat.2008.03.110

    Article  Google Scholar 

  25. Nasrullah A, Bhat AH, Naeem A, Isa MH, Danish M (2018) High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue. Int J Biol Macromol 107:1792–1799. https://doi.org/10.1016/j.ijbiomac.2017.10.045

    Article  Google Scholar 

  26. Oladipo AA, Gazi M (2014) Enhanced removal of crystal violet by low cost alginate/acid activated bentonite composite beads: optimization and modelling using non-linear regression technique. J Water Process Eng 2:43–52. https://doi.org/10.1016/j.jwpe.2014.04.007

  27. Oussalah A (2020) Caractérisation et modification d’une argile de Maghnia: applications. Doctorate thesis. University of Bejaia, Bejaia.

  28. Pandey S (2017) A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. J Mol Liq 241:1091–1113. https://doi.org/10.1016/j.molliq.2017.06.115

    Article  Google Scholar 

  29. Pandey RLM (2019) Enhanced adsorption capacity of designed bentonite and alginate beads for the effective removal of methylene blue. Appl Clay Sci 169:102–111. https://doi.org/10.1016/j.clay.2018.12.019

    Article  Google Scholar 

  30. Pawar RR, Lalhmunsiama GP, Sawant SY, Shahmoradi B, Lee SM (2018) Porous synthetic hectorite clay alginate composite beads for effective adsorption of methylene blue dye from aqueous solution. Int J Biol Macromol 114:1315–1324. https://doi.org/10.1016/j.ijbiomac.2018.04.008

    Article  Google Scholar 

  31. Rafatullaha M, Sulaimana O, Hashima R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047

    Article  Google Scholar 

  32. Uyar G, Kaygusuz H, Erim FB (2016) Methylene blue removal by alginate–clay quasi-cryogel beads. React Funct Polym 106:1–7. https://doi.org/10.1016/j.reactfunctpolym.2016.07.001

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdelhamid Boukerroui.

Additional information

Communicated by Mohamed Ksibi, co-Editor in Chief.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oussalah, A., Boukerroui, A. Alginate-bentonite beads for efficient adsorption of methylene blue dye. Euro-Mediterr J Environ Integr 5, 31 (2020). https://doi.org/10.1007/s41207-020-00165-z

Download citation

Keywords

  • Adsorption
  • Dye adsorption
  • Methylene blue
  • Bentonite
  • Calcium alginate