Skip to main content
Log in

Phytosynthesized nanoparticle-directed catalytic reduction of synthetic dyes: beast to beauty

  • Mini-Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Nature the best gift mankind could ever get. But as it is well said, “You never know how valuable something is until you almost lose it.” Similarly humans were busy spoiling the nature until they realised it is just reverting back on them negatively. Colors, a beauty of nature turned to a monster by humans. People have continuously used synthetic colors to brighten themselves and pollute the nature. Unceasing use and simultaneous discharge of untreated waste into the water bodies have polluted them to a great extent. And this called on for the requirement of a solution to fight this pollution. Since the past few decades researchers have been finding ways to reduce and remove these toxic pollutants from the natural resources. One of the process that gave hope and scope for improvement is the use of nanocatalysts to reduce these dyes. These nanocatalysts are of different varieties and are being synthesized by various methods. The recent scheme of synthesis gaining importance is the green synthesis, to even more cut down the use of toxic substances in the way of achieving the desired goal. In order to highlight the efforts being made to protect the environment, the present review emphasizes on the versatile type of phytosynthesized nanocatalysts that have verified themselves to be effective in degrading the harmful dyes proving that the savior of the nature can be taken from nature itself. Additionally, the harmfulness of various dyes that made it necessary for researchers to find ways to reduce them is also discussed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in the published article.

Abbreviations

2, 4-DNPH:

2,4-Dinitrophenylhydrazine

2-NP:

2-Nitrophenol

3-NP:

3-Nitrophenol

4-NP:

4-Nitrophenol

CBB:

Coomassie brilliant blue

CR:

Congo red

EY:

Eosin Y

MB:

Methylene blue

MG:

Malachite green

MO:

Methyl orange

MR:

Methyl red

RhB:

Rhodamine B

References

  1. Amin M, Alazba A, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. In: Advances in materials science and engineering 2014

  2. Hu H, Xin JH, Hu H, Wang X, Miao D, Liu Y (2015) Synthesis and stabilization of metal nanocatalysts for reduction reactions—a review. J Mater Chem A 3(21):11157–11182

    Article  Google Scholar 

  3. Rana S, Surani V COD and color reduction by catalytic treatment of disperse dye waste waterfrom textile industry. 10381140

  4. Bafana A, Devi SS, Chakrabarti T (2011) Azo dyes: past, present and the future. Environ Rev 19(NA):350–371

    Article  Google Scholar 

  5. Manu B, Chaudhari S (2002) Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Biores Technol 82(3):225–231

    Article  Google Scholar 

  6. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3:275–290

    Article  Google Scholar 

  7. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Coll Interface Sci 209:172–184

    Article  Google Scholar 

  8. Gupta V (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manage 90(8):2313–2342

    Article  Google Scholar 

  9. Carliell C, Barclay S, Shaw C, Wheatley A, Buckley C (1998) The effect of salts used in textile dyeing on microbial decolourisation of a reactive azo dye. Environ Technol 19(11):1133–1137

    Article  Google Scholar 

  10. Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30(7):953–971. https://doi.org/10.1016/j.envint.2004.02.001

    Article  Google Scholar 

  11. Shanker U, Rani M, Jassal V (2017) Degradation of hazardous organic dyes in water by nanomaterials. Environ Chem Lett 15(4):623–642

    Article  Google Scholar 

  12. Meyer U Biodegradation of synthetic organic colorants. In: FEMS Symposium 12, 1981. Academic Press, pp 371–385

  13. Ali H (2010) Biodegradation of synthetic dyes—a review. Water Air Soil Pollut 213(1–4):251–273

    Article  Google Scholar 

  14. Muhd Julkapli N, Bagheri S, Bee Abd Hamid S (2014) Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci World J 2014:692307. https://doi.org/10.1155/2014/692307

    Article  Google Scholar 

  15. Natarajan S, Bajaj HC, Tayade RJ (2018) Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J Environ Sci (China) 65:201–222. https://doi.org/10.1016/j.jes.2017.03.011

    Article  Google Scholar 

  16. Ghosh BK, Ghosh NN (2018) Applications of metal nanoparticles as catalysts in cleaning dyes containing industrial effluents: a review. J Nanosci Nanotechnol 18(6):3735–3758

    Article  Google Scholar 

  17. Reddy CV, Reddy IN, Ravindranadh K, Reddy KR, Kim D, Shim J (2020) Ni-dopant concentration effect of ZrO2 photocatalyst on photoelectrochemical water splitting and efficient removal of toxic organic pollutants. Sep Purif Technol 252:117352

    Article  Google Scholar 

  18. Karthik K, Reddy CV, Reddy KR, Ravishankar R, Sanjeev G, Kulkarni RV, Shetti NP, Raghu A (2019) Barium titanate nanostructures for photocatalytic hydrogen generation and photodegradation of chemical pollutants. J Mater Sci: Mater Electron 30(23):20646–20653

    Google Scholar 

  19. Srinivas M, Venkata RC, Kakarla RR, Shetti NP, Reddy M, Anjanapura VR (2019) Novel Co and Ni metal nanostructures as efficient photocatalysts for photodegradation of organic dyes. Mater Res Express 6(12):125502

    Article  Google Scholar 

  20. Reddy CV, Reddy IN, Koutavarapu R, Reddy KR, Kim D, Shim J (2020) Novel BiVO4 nanostructures for environmental remediation, enhanced photoelectrocatalytic water oxidation and electrochemical energy storage performance. Sol Energy 207:441–449

    Article  Google Scholar 

  21. Vijayaraghavan K, Ashokkumar T (2017) Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng 5(5):4866–4883

    Article  Google Scholar 

  22. Vaseghi Z, Nematollahzadeh A, Tavakoli O (2018) Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: a review. Rev Chem Eng 34(4):529–559

    Article  Google Scholar 

  23. Chatterjee S, Lee MW, Woo SH (2010) Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Biores Technol 101(6):1800–1806

    Article  Google Scholar 

  24. Yakupova EI, Bobyleva LG, Vikhlyantsev IM (2019) Congo red and amyloids: history and relationship. Biosci Rep. https://doi.org/10.1042/bsr20181415

    Article  Google Scholar 

  25. Jagusiak A, Rybarska J, Konieczny L, Piekarska B, Stopa B, Chlopas K, Zemanem G, Roterman I (2019) Amyloids, Congo red and the apple-green effect. Acta Biochim Pol 66(1):39–46. https://doi.org/10.18388/abp.2018_2667

    Article  Google Scholar 

  26. Barran-Berdon AL, Ocampo S, Haider M, Morales-Aparicio J, Ottenberg G, Kendall A, Yarmola E, Mishra S, Long JR, Hagen SJ, Stubbs G, Brady LJ (2020) Enhanced purification coupled with biophysical analyses shows cross-beta structure as a core building block for Streptococcus mutans functional amyloids. Sci Rep 10(1):5138. https://doi.org/10.1038/s41598-020-62115-7

    Article  Google Scholar 

  27. Ma L, Zhao Y, Meng L, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lu X (2020) Isolation of thermostable lignocellulosic bacteria from chicken manure compost and a m42 family endocellulase cloning from Geobacillus thermodenitrificans Y7. Front Microbiol 11:281. https://doi.org/10.3389/fmicb.2020.00281

    Article  Google Scholar 

  28. Deng Y, Huang L, Zhang C, Xie P, Cheng J, Wang X, Liu L (2020) Novel polysaccharide from Chaenomeles speciosa seeds: structural characterization, alpha-amylase and alpha-glucosidase inhibitory activity evaluation. Int J Biol Macromol 153:755–766. https://doi.org/10.1016/j.ijbiomac.2020.03.057

    Article  Google Scholar 

  29. Yuan Q, Zhang J, Xiao C, Harqin C, Ma M, Long T, Li Z, Yang Y, Liu J, Zhao L (2020) Structural characterization of a low-molecular-weight polysaccharide from Angelica pubescens Maxim f biserrata Shan et Yuan root and evaluation of its antioxidant activity. Carbohydr Polym 236:116047. https://doi.org/10.1016/j.carbpol.2020.116047

    Article  Google Scholar 

  30. Kolya H, Maiti P, Pandey A, Tripathy T (2015) Green synthesis of silver nanoparticles with antimicrobial and azo dye (Congo red) degradation properties using Amaranthus gangeticus Linn leaf extract. J Anal Sci Technol 6(1):33

    Article  Google Scholar 

  31. Afkhami A, Moosavi R (2010) Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. J Hazard Mater 174(1–3):398–403

    Article  Google Scholar 

  32. Hernandez-Zamora M, Martinez-Jeronimo F (2019) Congo red dye diversely affects organisms of different trophic levels: a comparative study with microalgae, cladocerans, and zebrafish embryos. Environ Sci Pollut Res Int 26(12):11743–11755. https://doi.org/10.1007/s11356-019-04589-1

    Article  Google Scholar 

  33. Hernandez-Zamora M, Martinez-Jeronimo F, Cristiani-Urbina E, Canizares-Villanueva RO (2016) Congo red dye affects survival and reproduction in the cladoceran Ceriodaphnia dubia. Effects of direct and dietary exposure. Ecotoxicology 25(10):1832–1840. https://doi.org/10.1007/s10646-016-1731-x

    Article  Google Scholar 

  34. Hernandez-Zamora M, Perales-Vela HV, Flores-Ortiz CM, Canizares-Villanueva RO (2014) Physiological and biochemical responses of Chlorella vulgaris to Congo red. Ecotoxicol Environ Saf 108:72–77. https://doi.org/10.1016/j.ecoenv.2014.05.030

    Article  Google Scholar 

  35. Raval NP, Shah PU, Shah NK (2016) Adsorptive amputation of hazardous azo dye Congo red from wastewater: a critical review. Environ Sci Pollut Res 23(15):14810–14853

    Article  Google Scholar 

  36. Tavangar T, Karimi M, Rezakazemi M, Reddy KR, Aminabhavi TM (2020) Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes. Chem Eng J 385:123787

    Article  Google Scholar 

  37. Dharupaneedi SP, Nataraj SK, Nadagouda M, Reddy KR, Shukla SS, Aminabhavi TM (2019) Membrane-based separation of potential emerging pollutants. Sep Purif Technol 210:850–866

    Article  Google Scholar 

  38. Gupta S, Tejavath KK (2019) Catalytic reduction of organic dyes with green synthesized silver nanoparticles using aloe vera leaf extract. J Nanosci Nanoeng Appl 9(2):9–21

    Google Scholar 

  39. Indana MK, Gangapuram BR, Dadigala R, Bandi R, Guttena V (2016) A novel green synthesis and characterization of silver nanoparticles using gum tragacanth and evaluation of their potential catalytic reduction activities with methylene blue and Congo red dyes. J Anal Sci Technol 7(1):19

    Article  Google Scholar 

  40. Rostami-Vartooni A, Nasrollahzadeh M, Alizadeh M (2016) Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes. J Colloid Interface Sci 470:268–275

    Article  Google Scholar 

  41. Fowsiya J, Madhumitha G, Al-Dhabi NA, Arasu MV (2016) Photocatalytic degradation of Congo red using Carissa edulis extract capped zinc oxide nanoparticles. J Photochem Photobiol, B 162:395–401

    Article  Google Scholar 

  42. Bordbar M, Mortazavimanesh N (2018) Biosynthesis of waste pistachio shell supported silver nanoparticles for the catalytic reduction processes. IET Nanobiotechnol 12(7):939–945

    Article  Google Scholar 

  43. Umamaheswari C, Lakshmanan A, Nagarajan NS (2018) Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange. J Photochem Photobiol B 178:33–39. https://doi.org/10.1016/j.jphotobiol.2017.10.017

    Article  Google Scholar 

  44. Bordbar M, Mortazavimanesh N (2017) Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L. leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time. Environ Sci Pollut Res Int 24(4):4093–4104. https://doi.org/10.1007/s11356-016-8183-y

    Article  Google Scholar 

  45. Guo M, Li W, Yang F, Liu H (2015) Controllable biosynthesis of gold nanoparticles from a Eucommia ulmoides bark aqueous extract. Spectrochim Acta Part A Mol Biomol Spectrosc 142:73–79

    Article  Google Scholar 

  46. Nasrollahzadeh M, Atarod M, Jaleh B, Gandomirouzbahani M (2016) In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue. Ceram Int 42(7):8587–8596

    Article  Google Scholar 

  47. Atarod M, Nasrollahzadeh M, Mohammad Sajadi S (2016) Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water. J Colloid Interface Sci 462:272–279. https://doi.org/10.1016/j.jcis.2015.09.073

    Article  Google Scholar 

  48. Momeni SS, Nasrollahzadeh M, Rustaiyan A (2016) Green synthesis of the Cu/ZnO nanoparticles mediated by Euphorbia prolifera leaf extract and investigation of their catalytic activity. J Colloid Interface Sci 472:173–179

    Article  Google Scholar 

  49. Bello BA, Khan SA, Khan JA, Syed FQ, Anwar Y, Khan SB (2017) Antiproliferation and antibacterial effect of biosynthesized AgNps from leaves extract of Guiera senegalensis and its catalytic reduction on some persistent organic pollutants. J Photochem Photobiol B 175:99–108. https://doi.org/10.1016/j.jphotobiol.2017.07.031

    Article  Google Scholar 

  50. Rostami-Vartooni A, Nasrollahzadeh M, Alizadeh M (2016) Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and Congo red. J Alloy Compd 680:309–314

    Article  Google Scholar 

  51. Moon SA, Salunke BK, Alkotaini B, Sathiyamoorthi E, Kim BS (2015) Biological synthesis of manganese dioxide nanoparticles by Kalopanax pictus plant extract. IET Nanobiotechnol 9(4):220–225

    Article  Google Scholar 

  52. Maham M, Nasrollahzadeh M, Sajadi SM, Nekoei M (2017) Biosynthesis of Ag/reduced graphene oxide/Fe3O4 using Lotus garcinii leaf extract and its application as a recyclable nanocatalyst for the reduction of 4-nitrophenol and organic dyes. J Colloid Interface Sci 497:33–42

    Article  Google Scholar 

  53. Nasrollahzadeh M, Atarod M, Sajadi SM (2016) Green synthesis of the Cu/Fe3O4 nanoparticles using Morinda morindoides leaf aqueous extract: a highly efficient magnetically separable catalyst for the reduction of organic dyes in aqueous medium at room temperature. Appl Surf Sci 364:636–644

    Article  Google Scholar 

  54. Mata R, Bhaskaran A, Sadras SR (2016) Green-synthesized gold nanoparticles from Plumeria alba flower extract to augment catalytic degradation of organic dyes and inhibit bacterial growth. Particuology 24:78–86

    Article  Google Scholar 

  55. Arya G, Kumari RM, Sharma N, Gupta N, Kumar A, Chatterjee S, Nimesh S (2019) Catalytic, antibacterial and antibiofilm efficacy of biosynthesised silver nanoparticles using Prosopis juliflora leaf extract along with their wound healing potential. J Photochem Photobiol B 190:50–58. https://doi.org/10.1016/j.jphotobiol.2018.11.005

    Article  Google Scholar 

  56. Rostami-Vartooni A (2016) Green synthesis of CuO nanoparticles loaded on the seashell surface using Rumex crispus seeds extract and its catalytic applications for reduction of dyes. IET Nanobiotechnol 11(4):349–359

    Article  Google Scholar 

  57. Ganapuram BR, Alle M, Dadigala R, Dasari A, Maragoni V, Guttena V (2015) Catalytic reduction of methylene blue and congo red dyes using green synthesized gold nanoparticles capped by salmalia malabarica gum. Int Nano Lett 5(4):215–222

    Article  Google Scholar 

  58. Khodadadi B, Bordbar M, Nasrollahzadeh M (2017) Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: catalytic activity for reduction of organic dyes. J Colloid Interface Sci 490:1–10. https://doi.org/10.1016/j.jcis.2016.11.032

    Article  Google Scholar 

  59. Vijayan R, Joseph S, Mathew B (2018) Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities. IET Nanobiotechnol 12(6):850–856. https://doi.org/10.1049/iet-nbt.2017.0311

    Article  Google Scholar 

  60. Ismail M, Gul S, Khan M, Khan MA, Asiri AM, Khan SB (2019) Medicago polymorpha-mediated antibacterial silver nanoparticles in the reduction of methyl orange. Green Process Synth 8(1):118–127

    Article  Google Scholar 

  61. Labidi A, Salaberria AM, Fernandes S, Labidi J, Abderrabba M (2019) Functional chitosan derivative and chitin as decolorization materials for methylene blue and methyl orange from aqueous solution. Materials 12(3):361

    Article  Google Scholar 

  62. Prasad C, Yuvaraja G, Venkateswarlu P (2017) Biogenic synthesis of Fe3O4 magnetic nanoparticles using Pisum sativum peels extract and its effect on magnetic and Methyl orange dye degradation studies. J Magn Magn Mater 424:376–381

    Article  Google Scholar 

  63. Zhang B, Wu Y, Cha L (2020) Removal of methyl orange dye using activated biochar derived from pomelo peel wastes: performance, isotherm, and kinetic studies. J Dispersion Sci Technol 41(1):125–136

    Article  Google Scholar 

  64. Peng X, Yan Z, Cheng X, Li Y, Wang A, Chen L (2019) Quaternary ammonium-functionalized rice straw hydrochar as efficient adsorbents for methyl orange removal from aqueous solution. Clean Technol Environ Policy 21(6):1–11

  65. Ismail M, Gul S, Khan M, Khan MA, Asiri AM, Khan SB (2019) Green synthesis of zerovalent copper nanoparticles for efficient reduction of toxic azo dyes congo red and methyl orange. Green Process Synth 8(1):135–143

    Article  Google Scholar 

  66. Chung K-T, Fulk GE, Andrews A (1978) The mutagenicity of methyl orange and metabolites produced by intestinal anaerobes. Mutat Res/Genet Toxicol 58(2–3):375–379

    Article  Google Scholar 

  67. Chung KT (1983) The significance of azo-reduction in the mutagenesis and carcinogenesis of azo dyes. Mutat Res 114(3):269–281. https://doi.org/10.1016/0165-1110(83)90035-0

    Article  Google Scholar 

  68. Purnomo A, Mauliddawati V, Khoirudin M, Yonda A, Nawfa R, Putra S (2019) Bio-decolorization and novel bio-transformation of methyl orange by brown-rot fungi. Int J Environ Sci Technol 16(11):7555–7564

    Article  Google Scholar 

  69. Bazrafshan E, Zarei AA, Nadi H, Zazouli MA (2014) Adsorptive removal of methyl orange and reactive red 198 dyes by Moringa peregrina ash

  70. Shah MP, Patel KA, Darji A (2013) Microbial degradation and decolorization of methyl orange dye by an application of Pseudomonas spp. ETL-1982. Int J Environ Bioremediation Biodegrad 1(1):26–36

    Google Scholar 

  71. Cionti C, Della Pina C, Meroni D, Falletta E, Ardizzone S (2020) Photocatalytic and oxidative synthetic pathways for highly efficient PANI-TiO2 nanocomposites as organic and inorganic pollutant sorbents. Nanomaterials (Basel, Switzerland). https://doi.org/10.3390/nano10030441

    Article  Google Scholar 

  72. Chandrasekaran P, Arul V, Sethuraman MG (2020) Ecofriendly synthesis of fluorescent nitrogen-doped carbon dots from coccinia grandis and its efficient catalytic application in the reduction of methyl orange. J Fluoresc 30(1):103–112. https://doi.org/10.1007/s10895-019-02474-1

    Article  Google Scholar 

  73. Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M (2020) Tragacanth-mediate synthesis of NiO nanosheets for cytotoxicity and photocatalytic degradation of organic dyes. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-020-02315-7

    Article  Google Scholar 

  74. Wu JW, Wu CR, Zhou CS, Dong LL, Liu BF, Xing DF, Yang SS, Fan JN, Feng LP, Cao GL, You SJ (2020) Fate and removal of antibiotic resistance genes in heavy metals and dye co-contaminated wastewater treatment system amended with beta-cyclodextrin functionalized biochar. Sci Total Environ 723:137991. https://doi.org/10.1016/j.scitotenv.2020.137991

    Article  Google Scholar 

  75. Reddy CV, Reddy IN, Akkinepally B, Harish V, Reddy KR, Jaesool S (2019) Mn-doped ZrO2 nanoparticles prepared by a template-free method for electrochemical energy storage and abatement of dye degradation. Ceram Int 45(12):15298–15306

    Article  Google Scholar 

  76. Reddy CV, Reddy IN, Ravindranadh K, Reddy KR, Shetti NP, Kim D, Shim J, Aminabhavi TM (2020) Copper-doped ZrO(2) nanoparticles as high-performance catalysts for efficient removal of toxic organic pollutants and stable solar water oxidation. J Environ Manage 260:110088. https://doi.org/10.1016/j.jenvman.2020.110088

    Article  Google Scholar 

  77. Reddy KR, Gomes VG, Hassan M (2014) Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Mater Res Express 1(1):015012

    Article  Google Scholar 

  78. Reddy KR, Nakata K, Ochiai T, Murakami T, Tryk DA, Fujishima A (2011) Facile fabrication and photocatalytic application of Ag nanoparticles-TiO2 nanofiber composites. J Nanosci Nanotechnol 11(4):3692–3695

    Article  Google Scholar 

  79. Edison TNJI, Atchudan R, Sethuraman MG, Lee YR (2016) Reductive-degradation of carcinogenic azo dyes using Anacardium occidentale testa derived silver nanoparticles. J Photochem Photobiol B 162:604–610

    Article  Google Scholar 

  80. Kora AJ, Rastogi L (2015) Green synthesis of palladium nanoparticles using gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst. Arab J Chem 11:1097–1106

    Article  Google Scholar 

  81. Joseph S, Mathew B (2014) Microwave assisted biosynthesis of silver nanoparticles using the rhizome extract of Alpinia galanga and evaluation of their catalytic and antimicrobial activities. J Nanoparticles 2014:967802

  82. Joseph S, Mathew B (2015) Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. J Mol Liq 204:184–191

    Article  Google Scholar 

  83. Rostami-Vartooni A, Nasrollahzadeh M, Salavati-Niasari M, Atarod M (2016) Photocatalytic degradation of azo dyes by titanium dioxide supported silver nanoparticles prepared by a green method using Carpobrotus acinaciformis extract. J Alloy Compd 689:15–20

    Article  Google Scholar 

  84. Muthu K, Priya S (2017) Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction. Spectrochim Acta Part A Mol Biomol Spectrosc 179:66–72. https://doi.org/10.1016/j.saa.2017.02.024

    Article  Google Scholar 

  85. Devi HS, Singh TD (2014) Synthesis of copper oxide nanoparticles by a novel method and its application in the degradation of methyl orange. Adv Electron Electr Eng 4(1):83–88

    Google Scholar 

  86. Naik GK, Mishra PM, Parida K (2013) Green synthesis of Au/TiO2 for effective dye degradation in aqueous system. Chem Eng J 229:492–497

    Article  Google Scholar 

  87. Cyril N, George JB, Joseph L, Sylas V (2019) Catalytic degradation of methyl orange and selective sensing of mercury ion in aqueous solutions using green synthesized silver nanoparticles from the seeds of Derris trifoliata. J Cluster Sci 30(2):459–468

    Article  Google Scholar 

  88. Weng X, Guo M, Luo F, Chen Z (2017) One-step green synthesis of bimetallic Fe/Ni nanoparticles by eucalyptus leaf extract: biomolecules identification, characterization and catalytic activity. Chem Eng J 308:904–911

    Article  Google Scholar 

  89. Siripireddy B, Mandal BK (2017) Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Adv Powder Technol 28(3):785–797

    Article  Google Scholar 

  90. Santhosh A, Sandeep S, Swamy NK (2019) Green synthesis of nano silver from euphorbia geniculata leaf extract: Investigations on catalytic degradation of methyl orange dye and optical sensing of Hg2+. Surf Interfaces 14:50–54

    Article  Google Scholar 

  91. Shahwan T, Sirriah SA, Nairat M, Boyacı E, Eroğlu AE, Scott TB, Hallam KR (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172(1):258–266

    Article  Google Scholar 

  92. Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M, Kumar ST, Rao M (2015) Catalytic degradation of organic dyes using synthesized silver nanoparticles: a green approach. J Bioremediation Biodegrad 6(5):1

    Google Scholar 

  93. Choudhary BC, Paul D, Gupta T, Tetgure SR, Garole VJ, Borse AU, Garole DJ (2017) Photocatalytic reduction of organic pollutant under visible light by green route synthesized gold nanoparticles. J Environ Sci 55:236–246

    Article  Google Scholar 

  94. Varadavenkatesan T, Selvaraj R, Vinayagam R (2016) Phyto-synthesis of silver nanoparticles from Mussaenda erythrophylla leaf extract and their application in catalytic degradation of methyl orange dye. J Mol Liq 221:1063–1070

    Article  Google Scholar 

  95. Karnan T, Selvakumar SAS (2016) Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceumL.) peel extract and their photocatalytic activity on methyl orange dye. J Mol Struct 1125:358–365

    Article  Google Scholar 

  96. Kumari MM, Jacob J, Philip D (2015) Green synthesis and applications of Au–Ag bimetallic nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 137:185–192

    Article  Google Scholar 

  97. Roy K, Sarkar C, Ghosh C (2015) Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion. Spectrochim Acta Part A Mol Biomol Spectrosc 146:286–291

    Article  Google Scholar 

  98. Bogireddy NKR, Anand KKH, Mandal BK (2015) Gold nanoparticles—synthesis by Sterculia acuminata extract and its catalytic efficiency in alleviating different organic dyes. J Mol Liq 211:868–875

    Article  Google Scholar 

  99. Bogireddy NKR, Kumar HAK, Mandal BK (2016) Biofabricated silver nanoparticles as green catalyst in the degradation of different textile dyes. J Environ Chem Eng 4(1):56–64

    Article  Google Scholar 

  100. Vidhu VK, Philip D (2014) Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron (Oxford, England: 1993) 56:54–62. https://doi.org/10.1016/j.micron.2013.10.006

    Article  Google Scholar 

  101. Kumar P, Govindaraju M, Senthamilselvi S, Premkumar K (2013) Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Colloids Surf B 103:658–661

    Article  Google Scholar 

  102. Rocha M, Fernandes C, Pereira C, Rebelo SL, Pereira MF, Freire C (2015) Gold-supported magnetically recyclable nanocatalysts: a sustainable solution for the reduction of 4-nitrophenol in water. RSC Adv 5(7):5131–5141

    Article  Google Scholar 

  103. Grzegorzewska AK, Hrabia A, Kowalik K, Katarzynska-Banasik D, Kozubek A, Sechman A (2020) In vitro effects of PNP and PNMC on apoptosis and proliferation in the hen ovarian stroma and prehierarchal follicles. Acta Histochem 122(1):151463. https://doi.org/10.1016/j.acthis.2019.151463

    Article  Google Scholar 

  104. Martimiano do Prado T, Lindo Silva F, Grosseli G, Sergio Fadini P, Fatibello-Filho O, Cruz de Moraes F (2020) Using BiVO4/CuO-based photoelectrocatalyzer for 4-nitrophenol degradation. Materials (Basel).https://doi.org/10.3390/ma13061322

  105. Zhang Y, Cao Y, Wang F, Song M, Rui X, Li Y, Li C (2016) 4-Nitrophenol induces activation of Nrf2 antioxidant pathway and apoptosis of the germ cells in rat testes. Environ Sci Pollut Res Int 23(13):13035–13046. https://doi.org/10.1007/s11356-016-6470-2

    Article  Google Scholar 

  106. Wi-Afedzi T, Kwon E, Tuan DD, Lin KA, Ghanbari F (2020) Copper hexacyanoferrate nanocrystal as a highly efficient non-noble metal catalyst for reduction of 4-nitrophenol in water. Sci Total Environ 703:134781. https://doi.org/10.1016/j.scitotenv.2019.134781

    Article  Google Scholar 

  107. Hou C, Zhao D, Chen W, Li H, Zhang S, Liang C (2020) Covalent organic framework-functionalized magnetic CuFe2O4/Ag nanoparticles for the reduction of 4-nitrophenol. Nanomaterials (Basel, Switzerland). https://doi.org/10.3390/nano10030426

    Article  Google Scholar 

  108. Li R, Song M, Li Z, Li Y, Watanabe G, Nagaoka K, Taya K, Li C (2017) 4-Nitrophenol exposure alters the AhR signaling pathway and related gene expression in the rat liver. J Appl Toxicol 37(2):150–158. https://doi.org/10.1002/jat.3332

    Article  Google Scholar 

  109. Feng Y, Yin J, Liu S, Wang Y, Li B, Jiao T (2020) Facile synthesis of Ag/Pd nanoparticle-loaded poly(ethylene imine) composite hydrogels with highly efficient catalytic reduction of 4-nitrophenol. ACS Omega 5(7):3725–3733. https://doi.org/10.1021/acsomega.9b04408

    Article  Google Scholar 

  110. Li Y, Wen QL, Liu AY, Long Y, Liu P, Ling J, Ding ZT, Cao QE (2020) One-pot synthesis of green-emitting gold nanoclusters as a fluorescent probe for determination of 4-nitrophenol. Mikrochim Acta 187(2):106. https://doi.org/10.1007/s00604-019-4090-5

    Article  Google Scholar 

  111. Achamo T, Yadav OP (2016) Removal of 4-nitrophenol from water using Ag-N-P-tridoped TiO2 by photocatalytic oxidation technique. Anal Chem Insights 11:29–34. https://doi.org/10.4137/ACI.S31508

    Article  Google Scholar 

  112. Yadav V, Verma P, Sharma H, Tripathy S, Saini VK (2020) Photodegradation of 4-nitrophenol over B-doped TiO2 nanostructure: effect of dopant concentration, kinetics, and mechanism. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-019-06674-x

    Article  Google Scholar 

  113. Gholamnia R, Abtahi M, Saeedi R, Khaloo SS (2019) Synthesis and characterization of a new magnetic adsorbent for removal of 4-nitrophenol: application of response surface methodology. Water Sci Technol 80(8):1430–1442. https://doi.org/10.2166/wst.2019.390

    Article  Google Scholar 

  114. Khaloo SS, Zolfaghari H, Gholamnia R (2015) Response surface methodology for optimization of 4-nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-zero-valent iron. Desalination Water Treatm 56(8):2206–2213

    Article  Google Scholar 

  115. Majumdar R, Bag BG, Maity N (2013) Acacia nilotica (Babool) leaf extract mediated size-controlled rapid synthesis of gold nanoparticles and study of its catalytic activity. Int Nano Lett 3(1):53

    Article  Google Scholar 

  116. Joseph S, Mathew B (2015) Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata. Spectrochim Acta Part A Mol Biomol Spectrosc 136:1371–1379

    Article  Google Scholar 

  117. Sheny DS, Philip D, Mathew J (2013) Synthesis of platinum nanoparticles using dried Anacardium occidentale leaf and its catalytic and thermal applications. Spectrochim Acta Part A Mol Biomol Spectrosc 114:267–271. https://doi.org/10.1016/j.saa.2013.05.028

    Article  Google Scholar 

  118. Kou J, Varma RS (2012) Beet juice utilization: Expeditious green synthesis of noble metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves. RSC Adv 2(27):10283–10290

    Article  Google Scholar 

  119. Gangula A, Podila R, Karanam L, Janardhana C, Rao AM (2011) Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 27(24):15268–15274

    Article  Google Scholar 

  120. Lebaschi S, Hekmati M, Veisi H (2017) Green synthesis of palladium nanoparticles mediated by black tea leaves (Camellia sinensis) extract: catalytic activity in the reduction of 4-nitrophenol and Suzuki-Miyaura coupling reaction under ligand-free conditions. J Colloid Interface Sci 485:223–231. https://doi.org/10.1016/j.jcis.2016.09.027

    Article  Google Scholar 

  121. Yu J, Xu D, Guan HN, Wang C, Huang LK (2016) Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater Lett 166:110–112

    Article  Google Scholar 

  122. Maity S, Sen IK, Islam SS (2012) Green synthesis of gold nanoparticles using gum polysaccharide of Cochlospermum religiosum (katira gum) and study of catalytic activity. Physica E 45:130–134

    Article  Google Scholar 

  123. Naraginti S, Sivakumar A (2014) Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol. Spectrochim Acta Part A Mol Biomol Spectrosc 128:357–362

    Article  Google Scholar 

  124. Muniyappan N, Nagarajan N (2014) Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process Biochem 49(6):1054–1061

    Article  Google Scholar 

  125. Nasrollahzadeh M, Sajadi SM, Khalaj M (2014) Green synthesis of copper nanoparticles using aqueous extract of the leaves of Euphorbia esula L and their catalytic activity for ligand-free Ullmann-coupling reaction and reduction of 4-nitrophenol. RSC Adv 4(88):47313–47318

    Article  Google Scholar 

  126. Atarod M, Nasrollahzadeh M, Sajadi SM (2015) Green synthesis of a Cu/reduced graphene oxide/Fe3O4 nanocomposite using Euphorbia wallichii leaf extract and its application as a recyclable and heterogeneous catalyst for the reduction of 4-nitrophenol and rhodamine B. RSC Adv 5(111):91532–91543

    Article  Google Scholar 

  127. Ghosh S, Patil S, Ahire M, Kitture R, Gurav DD, Jabgunde AM, Kale S, Pardesi K, Shinde V, Bellare J (2012) Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. J Nanobiotechnol 10(1):17

    Article  Google Scholar 

  128. Wang Z, Xu C, Li X, Liu Z (2015) In situ green synthesis of Ag nanoparticles on tea polyphenols-modified graphene and their catalytic reduction activity of 4-nitrophenol. Colloids Surf A 485:102–110

    Article  Google Scholar 

  129. Nasrollahzadeh M, Maham M, Sajadi SM (2015) Green synthesis of CuO nanoparticles by aqueous extract of Gundelia tournefortii and evaluation of their catalytic activity for the synthesis of N-monosubstituted ureas and reduction of 4-nitrophenol. J Colloid Interface Sci 455:245–253. https://doi.org/10.1016/j.jcis.2015.05.045

    Article  Google Scholar 

  130. Anand K, Gengan R, Phulukdaree A, Chuturgoon A (2015) Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J Ind Eng Chem 21:1105–1111

    Article  Google Scholar 

  131. Zayed MF, Eisa WH (2014) Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity. Spectrochim Acta Part A Mol Biomol Spectrosc 121:238–244. https://doi.org/10.1016/j.saa.2013.10.092

    Article  Google Scholar 

  132. Dauthal P, Mukhopadhyay M (2012) Prunus domestica fruit extract-mediated synthesis of gold nanoparticles and its catalytic activity for 4-nitrophenol reduction. Ind Eng Chem Res 51(40):13014–13020

    Article  Google Scholar 

  133. Edison TJI, Sethuraman M (2013) Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol. Spectrochim Acta Part A Mol Biomol Spectrosc 104:262–264

    Article  Google Scholar 

  134. Adyani SH, Soleimani E (2019) Green synthesis of Ag/Fe3O4/RGO nanocomposites by Punica Granatum peel extract: catalytic activity for reduction of organic pollutants. Int J Hydrogen Energy 44(5):2711–2730

    Article  Google Scholar 

  135. Bordbar M, Sharifi-Zarchi Z, Khodadadi B (2017) Green synthesis of copper oxide nanoparticles/clinoptilolite using Rheum palmatum L. root extract: high catalytic activity for reduction of 4-nitro phenol, rhodamine B, and methylene blue. J Sol-Gel Sci Technol 81(3):724–733

    Article  Google Scholar 

  136. Seralathan J, Stevenson P, Subramaniam S, Raghavan R, Pemaiah B, Sivasubramanian A, Veerappan A (2014) Spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract. Spectrochim Acta Part A Mol Biomol Spectrosc 118:349–355

    Article  Google Scholar 

  137. Kumar I, Mondal M, Meyappan V, Sakthivel N (2019) Green one-pot synthesis of gold nanoparticles using Sansevieria roxburghiana leaf extract for the catalytic degradation of toxic organic pollutants. Mater Res Bull 117:18–27

    Article  Google Scholar 

  138. Dash SS, Majumdar R, Sikder AK, Bag BG, Patra BK (2014) Saraca indica bark extract mediated green synthesis of polyshaped gold nanoparticles and its application in catalytic reduction. Appl Nanosci 4(4):485–490

    Article  Google Scholar 

  139. Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Bagherzadeh M (2015) Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free Heck coupling reaction under aerobic conditions. J Colloid Interface Sci 448:106–113. https://doi.org/10.1016/j.jcis.2015.02.009

    Article  Google Scholar 

  140. Aromal SA, Philip D (2012) Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta Part A Mol Biomol Spectrosc 97:1–5

    Article  Google Scholar 

  141. Atarod M, Nasrollahzadeh M, Sajadi SM (2016) Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol. J Colloid Interface Sci 465:249–258

    Article  Google Scholar 

  142. Georgin J, Franco DSP, Netto MS, Allasia D, Oliveira MLS, Dotto GL (2020) Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora). Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-020-08496-8

    Article  Google Scholar 

  143. Bucaria V, Elia R, Maruccia M, Vestita M, Boccuzzi A, Giudice G (2018) Methylene blue: a color test for a quality de-epithelialization. Aesthetic Plast Surg 42(5):1434–1435. https://doi.org/10.1007/s00266-018-1126-x

    Article  Google Scholar 

  144. Lu G, Nagbanshi M, Goldau N, Mendes Jorge M, Meissner P, Jahn A, Mockenhaupt FP, Muller O (2018) Efficacy and safety of methylene blue in the treatment of malaria: a systematic review. BMC Med 16(1):59. https://doi.org/10.1186/s12916-018-1045-3

    Article  Google Scholar 

  145. Tosato MG, Schilardi P, Lorenzo de Mele MF, Thomas AH, Lorente C, Minan A (2020) Synergistic effect of carboxypterin and methylene blue applied to antimicrobial photodynamic therapy against mature biofilm of Klebsiella pneumoniae. Heliyon 6(3):e03522. https://doi.org/10.1016/j.heliyon.2020.e03522

    Article  Google Scholar 

  146. Shefali, Sethi A, Tandon A, Shetty DC, Juneja S (2020) Staining efficacy assessment of a differential routine and special stains for pathological stromal calcifications in maxillofacial lesions. J Histotechnol.https://doi.org/10.1080/01478885.2020.1739192

  147. Ucuncu M, Mills B, Duncan S, Staderini M, Dhaliwal K, Bradley M (2020) Polymyxin-based photosensitizer for the potent and selective killing of Gram-negative bacteria. Chem Commun (Camb) 56(26):3757–3760. https://doi.org/10.1039/d0cc00155d

    Article  Google Scholar 

  148. Gulias O, McKenzie G, Bayo M, Agut M, Nonell S (2020) Effective photodynamic inactivation of 26 Escherichia coli strains with different antibiotic susceptibility profiles: a planktonic and biofilm study. Antibiotics (Basel). https://doi.org/10.3390/antibiotics9030098

    Article  Google Scholar 

  149. Alberdi E, Gomez C (2020) Successful treatment of Pityriasis Versicolor by photodynamic therapy mediated by methylene blue. Photodermatol Photoimmunol Photomed. https://doi.org/10.1111/phpp.12555

    Article  Google Scholar 

  150. Muller O, Lu G, Jahn A, Mockenhaupt FP (2019) How worthwhile is methylene blue as a treatment of malaria? Expert Rev Anti Infect Ther 17(7):471–473. https://doi.org/10.1080/14787210.2019.1634545

    Article  Google Scholar 

  151. David SR, Sawal NS, Hamzah MNSB, Rajabalaya R (2018) The blood blues: a review on methemoglobinemia. J Pharmacol Pharmacother 9(1):1

    Google Scholar 

  152. Vutskits L, Briner A, Klauser P, Gascon E, Dayer AG, Kiss JZ, Muller D, Licker MJ, Morel DR (2008) Adverse effects of methylene blue on the central nervous system. Anesthesiol J Am Soc Anesthesiol 108(4):684–692

    Google Scholar 

  153. Ginimuge PR, Jyothi SD (2010) Methylene blue: revisited. J Anaesthesiol Clin Pharmacol 26(4):517–520

    Article  Google Scholar 

  154. Vanhinsbergh L, Uthaya S, Bain BJ (2018) Methylene blue-induced Heinz body hemolytic anemia in a premature neonate. Am J Hematol 93(5):716–717. https://doi.org/10.1002/ajh.25028

    Article  Google Scholar 

  155. Costa SR, Monteiro Mda C, da Silva Junior FM, Sandrini JZ (2016) Methylene blue toxicity in zebrafish cell line is dependent on light exposure. Cell Biol Int 40(8):895–905. https://doi.org/10.1002/cbin.10629

    Article  Google Scholar 

  156. Basavarajappa PS, Seethya BNH, Ganganagappa N, Eshwaraswamy KB, Kakarla RR (2018) Enhanced photocatalytic activity and biosensing of gadolinium substituted BiFeO3 nanoparticles. ChemistrySelect 3(31):9025–9033

    Article  Google Scholar 

  157. Mehta A, Mishra A, Basu S, Shetti NP, Reddy KR, Saleh TA, Aminabhavi TM (2019) Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production—a review. J Environ Manage 250:109486

    Article  Google Scholar 

  158. Haque E, Kim J, Malgras V, Reddy KR, Ward AC, You J, Bando Y, Hossain MSA, Yamauchi Y (2018) Recent advances in graphene quantum dots: synthesis, properties, and applications. Small Methods 2(10):1800050

    Article  Google Scholar 

  159. Kannan K, Radhika D, Sadasivuni KK, Reddy KR, Raghu AV (2020) Nanostructured metal oxides and its hybrids for biomedical applications. Adv Colloid Interface Sci 281:102178

    Article  Google Scholar 

  160. Khodadadi B, Bordbar M, Nasrollahzadeh M (2017) Achillea millefolium L. extract mediated green synthesis of waste peach kernel shell supported silver nanoparticles: application of the nanoparticles for catalytic reduction of a variety of dyes in water. J Colloid Interface Sci 493:85–93

    Article  Google Scholar 

  161. Patil SS, Mali MG, Tamboli MS, Patil DR, Kulkarni MV, Yoon H, Kim H, Al-Deyab SS, Yoon SS, Kolekar SS (2016) Green approach for hierarchical nanostructured Ag-ZnO and their photocatalytic performance under sunlight. Catal Today 260:126–134

    Article  Google Scholar 

  162. Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Article  Google Scholar 

  163. Suresh D, Nethravathi P, Rajanaika H, Nagabhushana H, Sharma S (2015) Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater Sci Semicond Process 31:446–454

    Article  Google Scholar 

  164. Nasrollahzadeh M, Issaabadi Z, Sajadi SM (2019) Green synthesis of Cu/Al2O3 nanoparticles as efficient and recyclable catalyst for reduction of 2, 4-dinitrophenylhydrazine, Methylene blue and Congo red. Compos B Eng 166:112–119

    Article  Google Scholar 

  165. Nakkala JR, Bhagat E, Suchiang K, Sadras SR (2015) Comparative study of antioxidant and catalytic activity of silver and gold nanoparticles synthesized from Costus pictus leaf extract. J Mater Sci Technol 31(10):986–994

    Article  Google Scholar 

  166. Mohanty AS, Jena BS (2017) Innate catalytic and free radical scavenging activities of silver nanoparticles synthesized using Dillenia indica bark extract. J Colloid Interface Sci 496:513–521. https://doi.org/10.1016/j.jcis.2017.02.045

    Article  Google Scholar 

  167. Swargiary M, Mitra A, Halder D, Kumar S (2019) Fruit extract capped colloidal silver nanoparticles and their application in reduction of methylene blue dye. Biocatal Biotransform 37(3):183–189

    Article  Google Scholar 

  168. Ahmad A, Wei Y, Syed F, Imran M, Khan ZUH, Tahir K, Khan AU, Raza M, Khan Q, Yuan Q (2015) Size dependent catalytic activities of green synthesized gold nanoparticles and electro-catalytic oxidation of catechol on gold nanoparticles modified electrode. RSC Adv 5(120):99364–99377

    Article  Google Scholar 

  169. Saha J, Begum A, Mukherjee A, Kumar S (2017) A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustain Environ Res 27(5):245–250

    Article  Google Scholar 

  170. Gupta N, Singh HP, Sharma RK (2010) Single-pot synthesis: plant mediated gold nanoparticles catalyzed reduction of methylene blue in presence of stannous chloride. Colloids Surf A 367(1–3):102–107

    Article  Google Scholar 

  171. Varadavenkatesan T, Selvaraj R, Vinayagam R (2019) Dye degradation and antibacterial activity of green synthesized silver nanoparticles using Ipomoea digitata Linn. flower extract. Int J Environ Sci Technol 16(5):2395–2404

    Article  Google Scholar 

  172. Suvith V, Philip D (2014) Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 118:526–532

    Article  Google Scholar 

  173. Isa N, Lockman Z (2019) Methylene blue dye removal on silver nanoparticles reduced by Kyllinga brevifolia. Environ Sci Pollut Res 26(11):11482–11495

    Article  Google Scholar 

  174. Ajitha B, Ashok Kumar Reddy Y, Shameer S, Rajesh KM, Suneetha Y, Sreedhara Reddy P (2015) Lantana camara leaf extract mediated silver nanoparticles: antibacterial, green catalyst. J Photochem Photobiol B 149:84–92. https://doi.org/10.1016/j.jphotobiol.2015.05.020

    Article  Google Scholar 

  175. Vanaja M, Paulkumar K, Baburaja M, Rajeshkumar S, Gnanajobitha G, Malarkodi C, Sivakavinesan M, Annadurai G (2014) Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorganic chemistry and applications 2014

  176. Anbuvannan M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N (2015) Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. Spectrochim Acta Part A Mol Biomol Spectrosc 143:304–308

    Article  Google Scholar 

  177. Sreekanth T, Jung M-J, Eom I-Y (2016) Green synthesis of silver nanoparticles, decorated on graphene oxide nanosheets and their catalytic activity. Appl Surf Sci 361:102–106

    Article  Google Scholar 

  178. Mata R, Nakkala JR, Sadras SR (2015) Catalytic and biological activities of green silver nanoparticles synthesized from Plumeria alba (frangipani) flower extract. Mater Sci Eng C 51:216–225

    Article  Google Scholar 

  179. Paul B, Bhuyan B, Purkayastha DD, Dey M, Dhar SS (2015) Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue. Mater Lett 148:37–40

    Article  Google Scholar 

  180. Cheera P, Karlapudi S, Sellola G, Ponneri V (2016) A facile green synthesis of spherical Fe3O4 magnetic nanoparticles and their effect on degradation of methylene blue in aqueous solution. J Mol Liq 221:993–998

    Article  Google Scholar 

  181. Ahmed KBA, Subramanian S, Sivasubramanian A, Veerappan G, Veerappan A (2014) Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 130:54–58

    Article  Google Scholar 

  182. Tahir K, Nazir S, Li B, Khan AU, Khan ZUH, Ahmad A, Khan FU (2015) An efficient photo catalytic activity of green synthesized silver nanoparticles using Salvadora persica stem extract. Sep Purif Technol 150:316–324

    Article  Google Scholar 

  183. Vidhu V, Philip D (2014) Spectroscopic, microscopic and catalytic properties of silver nanoparticles synthesized using Saraca indica flower. Spectrochim Acta Part A Mol Biomol Spectrosc 117:102–108

    Article  Google Scholar 

  184. Das J, Velusamy P (2014) Catalytic reduction of methylene blue using biogenic gold nanoparticles from Sesbania grandiflora L. J Taiwan Inst Chem Engineers 45(5):2280–2285

    Article  Google Scholar 

  185. Edison TJI, Sethuraman M (2012) Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem 47(9):1351–1357

    Article  Google Scholar 

  186. Issaabadi Z, Nasrollahzadeh M, Sajadi SM (2017) Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity. J clean Prod 142:3584–3591

    Article  Google Scholar 

  187. Nethravathi P, Kumar MP, Suresh D, Lingaraju K, Rajanaika H, Nagabhushana H, Sharma S (2015) Tinospora cordifolia mediated facile green synthesis of cupric oxide nanoparticles and their photocatalytic, antioxidant and antibacterial properties. Mater Sci Semicond Process 33:81–88

    Article  Google Scholar 

  188. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Raj GA (2015) Bio-approach: Plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity. Adv Powder Technol 26(6):1639–1651

    Article  Google Scholar 

  189. Susarla SM, Mulliken JB, Kaban LB, Manson PN, Dodson TB (2017) The colourful history of malachite green: from ancient Egypt to modern surgery. Int J Oral Maxillofac Surg 46(3):401–403. https://doi.org/10.1016/j.ijom.2016.09.022

    Article  Google Scholar 

  190. Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2014) Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity. Spectrochim Acta Part A Mol Biomol Spectrosc 130:295–301

    Article  Google Scholar 

  191. Heleyel M, Elhami S (2019) Sensitive, simple and rapid colorimetric detection of malachite green in water, salmon and canned tuna samples based on gold nanoparticles. J Sci Food Agric 99(4):1919–1925. https://doi.org/10.1002/jsfa.9387

    Article  Google Scholar 

  192. Gavrilenko NA, Volgina TN, Pugachev EV, Gavrilenko MA (2019) Visual determination of malachite green in sea fish samples. Food Chem 274:242–245. https://doi.org/10.1016/j.foodchem.2018.08.139

    Article  Google Scholar 

  193. Gebreslassie YT (2020) Equilibrium, kinetics, and thermodynamic studies of malachite green adsorption onto Fig (Ficus cartia) leaves. J Anal Methods Chem 2020:7384675. https://doi.org/10.1155/2020/7384675

    Article  Google Scholar 

  194. Martinez Gache SA, Recoulat Angelini AA, Sabeckis ML, Gonzalez Flecha FL (2020) Improving the stability of the malachite green method for the determination of phosphate using Pluronic F68. Anal Biochem 597:113681. https://doi.org/10.1016/j.ab.2020.113681

    Article  Google Scholar 

  195. Song J, Han G, Wang Y, Jiang X, Zhao D, Li M, Yang Z, Ma Q, Parales RE, Ruan Z, Mu Y (2020) Pathway and kinetics of malachite green biodegradation by Pseudomonas veronii. Sci Rep 10(1):4502. https://doi.org/10.1038/s41598-020-61442-z

    Article  Google Scholar 

  196. Weng Y, Li J, Ding X, Wang B, Dai S, Zhou Y, Pang R, Zhao Y, Xu H, Tian B, Hua Y (2020) Functionalized gold and silver bimetallic nanoparticles using deinococcus radiodurans protein extract mediate degradation of toxic dye malachite green. Int J Nanomed 15:1823–1835. https://doi.org/10.2147/IJN.S236683

    Article  Google Scholar 

  197. Kaith B, Sharma J, Kaur T, Sethi S, Shanker U, Jassal V (2016) Microwave-assisted green synthesis of hybrid nanocomposite: removal of Malachite green from waste water. Iran Polym J 25(9):787–797

    Article  Google Scholar 

  198. Vignesh A, Manigundan K, Santhoshkumar J, Shanmugasundaram T, Gopikrishnan V, Radhakrishnan M, Joseph J, Ayyasamy PM, Kumar GD, Meganathan R, Balagurunathan R (2020) Microbial degradation, spectral analysis and toxicological assessment of malachite green by Streptomyces chrestomyceticus S20. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-020-02339-z

    Article  Google Scholar 

  199. Li B, Gan L, Owens G, Chen Z (2018) New nano-biomaterials for the removal of malachite green from aqueous solution via a response surface methodology. Water Res 146:55–66. https://doi.org/10.1016/j.watres.2018.09.006

    Article  Google Scholar 

  200. Moradi Shahrebabak S, Saber-Tehrani M, Faraji M, Shabanian M, Aberoomand-Azar P (2020) Magnetic solid phase extraction based on poly(beta-cyclodextrin-ester) functionalized silica-coated magnetic nanoparticles (NPs) for simultaneous extraction of the malachite green and crystal violet from aqueous samples. Environ Monit Assess 192(5):262. https://doi.org/10.1007/s10661-020-8185-6

    Article  Google Scholar 

  201. Jassal V, Shanker U, Kaith B (2016) Aegle marmelos mediated green synthesis of different nanostructured metal hexacyanoferrates: activity against photodegradation of harmful organic dyes. Scientifica 2016:2715026

  202. Prasad KS, Prajapati S, Selvaraj K (2015) Efficient sorption and photocatalytic degradation of malachite green dye onto NiS nanoparticles prepared using novel green approach. Korean J Chem Eng 32(10):1986–1992

    Article  Google Scholar 

  203. Fardood ST, Atrak K, Ramazani A (2017) Green synthesis using tragacanth gum and characterization of Ni–Cu–Zn ferrite nanoparticles as a magnetically separable photocatalyst for organic dyes degradation from aqueous solution under visible light. J Mater Sci Mater Electron 28(14):10739–10746

    Article  Google Scholar 

  204. Devi TB, Ahmaruzzaman M (2016) Bio-inspired sustainable and green synthesis of plasmonic Ag/AgCl nanoparticles for enhanced degradation of organic compound from aqueous phase. Environ Sci Pollut Res 23(17):17702–17714

    Article  Google Scholar 

  205. Kumar MP, Suresh D, Nagabhushana H, Sharma S (2015) Beta vulgaris aided green synthesis of ZnO nanoparticles and their luminescence, photocatalytic and antioxidant properties. Eur Phys J Plus 130(6):109

    Article  Google Scholar 

  206. Suresh D, Nethravathi P, Kumar MP, Naika HR, Nagabhushana H, Sharma S (2015) Chironji mediated facile green synthesis of ZnO nanoparticles and their photoluminescence, photodegradative, antimicrobial and antioxidant activities. Mater Sci Semicond Process 40:759–765

    Article  Google Scholar 

  207. Elango G, Roopan SM (2015) Green synthesis, spectroscopic investigation and photocatalytic activity of lead nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 139:367–373

    Article  Google Scholar 

  208. Lateef A, Ojo S, Folarin B, Gueguim-Kana E, Beukes L (2016) Kolanut (Cola nitida) mediated synthesis of silver–gold alloy nanoparticles: antifungal, catalytic, larvicidal and thrombolytic applications. J Cluster Sci 27(5):1561–1577

    Article  Google Scholar 

  209. Sengan M, Veeramuthu D, Veerappan A (2018) Photosynthesis of silver nanoparticles using Durio zibethinus aqueous extract and its application in catalytic reduction of nitroaromatics, degradation of hazardous dyes and selective colorimetric sensing of mercury ions. Mater Res Bull 100:386–393

    Article  Google Scholar 

  210. Weng X, Huang L, Chen Z, Megharaj M, Naidu R (2013) Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Ind Crops Prod 51:342–347

    Article  Google Scholar 

  211. Huang L, Luo F, Chen Z, Megharaj M, Naidu R (2015) Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green. Spectrochim Acta Part A Mol Biomol Spectrosc 137:154–159

    Article  Google Scholar 

  212. Devi TA, Ananthi N, Amaladhas TP (2016) Photobiological synthesis of noble metal nanoparticles using Hydrocotyle asiatica and application as catalyst for the photodegradation of cationic dyes. J Nanostruct Chem 6(1):75–92

    Article  Google Scholar 

  213. Prasad C, Sreenivasulu K, Gangadhara S, Venkateswarlu P (2017) Bio inspired green synthesis of Ni/Fe3O4 magnetic nanoparticles using Moringa oleifera leaves extract: a magnetically recoverable catalyst for organic dye degradation in aqueous solution. J Alloy Compd 700:252–258

    Article  Google Scholar 

  214. Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2014) Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim Acta Part A Mol Biomol Spectrosc 117:801–804

    Article  Google Scholar 

  215. Badmapriya D, Asharani I (2016) Dye degradation studies catalysed by green synthesized Iron oxide nanoparticles. Int J ChemTech Res 9(06):409–416

    Google Scholar 

  216. Rupa EJ, Anandapadmanaban G, Mathiyalagan R, Yang D-C (2018) Synthesis of zinc oxide nanoparticles from immature fruits of Rubus coreanus and its catalytic activity for degradation of industrial dye. Optik 172:1179–1186

    Article  Google Scholar 

  217. Jassal V, Shanker U, Kaith B, Shankar S (2015) Green synthesis of potassium zinc hexacyanoferrate nanocubes and their potential application in photocatalytic degradation of organic dyes. RSC Adv 5(33):26141–26149

    Article  Google Scholar 

  218. Lateef A, Akande MA, Azeez MA, Ojo SA, Folarin BI, Gueguim-Kana EB, Beukes LS (2016) Phytosynthesis of silver nanoparticles (AgNPs) using miracle fruit plant (Synsepalum dulcificum) for antimicrobial, catalytic, anticoagulant, and thrombolytic applications. Nanotechnol Rev 5(6):507–520

    Article  Google Scholar 

  219. Upadhyay RK, Soin N, Bhattacharya G, Saha S, Barman A, Roy SS (2015) Grape extract assisted green synthesis of reduced graphene oxide for water treatment application. Mater Lett 160:355–358

    Article  Google Scholar 

  220. Razzaghi D, Barzan M, Sasani Ghamsari M, Ghorbanzadeh A, Koohian A, Ajamgard N (2020) Modification of the optical characteristics of Rhodamine B dye with different concentrations using gold nanorods. J Mod Opt 67(3):1–7

  221. Yuan C, Li M, Wang M, Zhang X, Yin Z, Song K, Zhang Z (2020) Sensitive development of latent fingerprints using Rhodamine B-diatomaceous earth composites and principle of efficient image enhancement behind their fluorescence characteristics. Chem Eng J 383:123076

    Article  Google Scholar 

  222. Jeyapragasam T, Kannan RS (2016) Microwave assisted green synthesis of silver nanorods as catalysts for rhodamine B degradation. Russ J Phys Chem A 90(7):1334–1337

    Article  Google Scholar 

  223. Wang M, Nie X, Tian L, Hu J, Yin D, Qiao H, Li T, Li Y (2019) Rhodamine B in spices determined by a sensitive UPLC-MS/MS method. Food Addit Contam Part B Surveill 12(1):59–64. https://doi.org/10.1080/19393210.2018.1548504

    Article  Google Scholar 

  224. Mercade-Prieto R, Rodriguez-Rivera L, Chen XD (2017) Fluorescence lifetime of Rhodamine B in aqueous solutions of polysaccharides and proteins as a function of viscosity and temperature. Photochem Photobiol Sci 16(11):1727–1734. https://doi.org/10.1039/c7pp00330g

    Article  Google Scholar 

  225. Lv T, Xu Y, Li H, Liu F, Sun S (2018) A Rhodamine B-based fluorescent probe for imaging Cu(2+) in maize roots. Bioorg Med Chem 26(8):1448–1452. https://doi.org/10.1016/j.bmc.2017.09.026

    Article  Google Scholar 

  226. Sun SG, Ding H, Yuan G, Zhou L (2020) An efficient TP-FRET-based lysosome-targetable fluorescent probe for imaging peroxynitrite with two well-resolved emission channels in living cells, tissues and zebrafish. Anal Chim Acta 1100:200–207. https://doi.org/10.1016/j.aca.2019.11.065

    Article  Google Scholar 

  227. Liu Z, Wang Q, Wang H, Su W, Dong S (2020) A FRET based two-photon fluorescent probe for visualizing mitochondrial thiols of living cells and tissues. Sensors (Basel). https://doi.org/10.3390/s20061746

    Article  Google Scholar 

  228. Ojemaye MO, Okoh AI (2019) Multiple nitrogen functionalized magnetic nanoparticles as an efficient adsorbent: synthesis, kinetics, isotherm and thermodynamic studies for the removal of rhodamine B from aqueous solution. Sci Rep 9(1):9672. https://doi.org/10.1038/s41598-019-45293-x

    Article  Google Scholar 

  229. Hu K, Cheng J, Lu B, Zhao W, Dong C, Yang H, Huang Y, Zhang S (2019) Magnetic mesoporous polyimide composite for efficient extraction of Rhodamine B in food samples. J Sep Sci 42(11):2023–2031. https://doi.org/10.1002/jssc.201900054

    Article  Google Scholar 

  230. Saha S, Shukla SK, Singh HR, Pradhan KK, Jha SK (2020) Production and purification of bioflocculants from newly isolated bacterial species: a comparative decolourization study of cationic and anionic textile dyes. Environ Technol. https://doi.org/10.1080/09593330.2020.1737737

    Article  Google Scholar 

  231. Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40(3–4):997–1026

    Article  Google Scholar 

  232. Bhooma V, Nagasathiya K, Vairamani M, Parani M (2020) Identification of synthetic dyes magenta III (new fuchsin) and rhodamine B as common adulterants in commercial saffron. Food Chem 309:125793. https://doi.org/10.1016/j.foodchem.2019.125793

    Article  Google Scholar 

  233. Wang W, Du Y, Xiao Z, Li Y, Li B, Yang G (2017) Determination of trace Rhodamine B in chili oil by deep eutectic solvent extraction and an ultra high-performance liquid chromatograph equipped with a fluorescence detector. Anal Sci 33(6):715–717. https://doi.org/10.2116/analsci.33.715

    Article  Google Scholar 

  234. Cheng YY, Tsai TH (2017) Pharmacokinetics and biodistribution of the illegal food colorant Rhodamine B in rats. J Agric Food Chem 65(5):1078–1085. https://doi.org/10.1021/acs.jafc.6b04975

    Article  Google Scholar 

  235. Koutavarapu R, Babu B, Reddy CV, Reddy IN, Reddy KR, Rao M, Aminabhavi TM, Cho M, Kim D, Shim J (2020) ZnO nanosheets-decorated Bi2WO6 nanolayers as efficient photocatalysts for the removal of toxic environmental pollutants and photoelectrochemical solar water oxidation. J Environ Manage 265:110504

    Article  Google Scholar 

  236. Reddy CV, Reddy IN, Harish V, Reddy KR, Shetti NP, Shim J, Aminabhavi TM (2020) Efficient removal of toxic organic dyes and photoelectrochemical properties of iron-doped zirconia nanoparticles. Chemosphere 239:124766

    Article  Google Scholar 

  237. Basavarajappa PS, Patil SB, Ganganagappa N, Reddy KR, Raghu AV, Reddy CV (2020) Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int J Hydrogen Energy 45(13):7764–7778

    Article  Google Scholar 

  238. Reddy CV, Reddy KR, Harish V, Shim J, Shankar M, Shetti NP, Aminabhavi TM (2020) Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes. Int J Hydrogen Energy 45(13):7656–7679

    Article  Google Scholar 

  239. Duraimurugan J, Shanavas S, Ramesh R, Acevedo R, Anbarasan P, Maadeswaran P (2020) Hydrothermal assisted phytofabrication of zinc oxide nanoparticles with different nanoscale characteristics for the photocatlytic degradation of Rhodamine B. Optik 202:163607

    Article  Google Scholar 

  240. Maryami M, Nasrollahzadeh M, Mehdipour E, Sajadi SM (2016) Preparation of the Ag/RGO nanocomposite by use of Abutilon hirtum leaf extract: a recoverable catalyst for the reduction of organic dyes in aqueous medium at room temperature. Int J Hydrogen Energy 41(46):21236–21245

    Article  Google Scholar 

  241. Vijayan R, Joseph S, Mathew B (2018) Anticancer, antimicrobial, antioxidant, and catalytic activities of green-synthesized silver and gold nanoparticles using Bauhinia purpurea leaf extract. Bioprocess Biosyst Eng 42(2):1–15

  242. Kora AJ, Rastogi L (2016) Catalytic degradation of anthropogenic dye pollutants using palladium nanoparticles synthesized by gum olibanum, a glucuronoarabinogalactan biopolymer. Ind Crops Prod 81:1–10

    Article  Google Scholar 

  243. Ismail M, Khan M, Khan SB, Akhtar K, Khan MA, Asiri AM (2018) Catalytic reduction of picric acid, nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles. J Mol Liq 268:87–101

    Article  Google Scholar 

  244. Groiss S, Selvaraj R, Varadavenkatesan T, Vinayagam R (2017) Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora. J Mol Struct 1128:572–578

    Article  Google Scholar 

  245. Lai X, Guo R, Xiao H, Lan J, Jiang S, Cui C, Ren E (2019) Rapid microwave-assisted bio-synthesized silver/Dandelion catalyst with superior catalytic performance for dyes degradation. J Hazard Mater 371:506–512

    Article  Google Scholar 

  246. Paul B, Bhuyan B, Purkayastha DD, Dhar SS (2015) Green synthesis of silver nanoparticles using dried biomass of Diplazium esculentum (retz.) sw. and studies of their photocatalytic and anticoagulative activities. J Mol Liq 212:813–817

    Article  Google Scholar 

  247. Maham M, Nasrollahzadeh M, Bagherzadeh M, Akbari R (2017) Green synthesis of palladium/titanium dioxide nanoparticles and their application for the reduction of methyl orange, congo red and Rhodamine B in aqueous medium. Comb Chem High Throughput Screen 20(9):787–795. https://doi.org/10.2174/1386207320666171023154523

    Article  Google Scholar 

  248. Tajbakhsh M, Alinezhad H, Nasrollahzadeh M, Kamali TA (2016) Green synthesis of the Ag/HZSM-5 nanocomposite by using Euphorbia heterophylla leaf extract: a recoverable catalyst for reduction of organic dyes. J Alloy Compd 685:258–265

    Article  Google Scholar 

  249. Choudhary MK, Kataria J, Sharma S (2017) A biomimetic synthesis of stable gold nanoparticles derived from aqueous extract of Foeniculum vulgare seeds and evaluation of their catalytic activity. Appl Nanosc 7(7):439–447

    Article  Google Scholar 

  250. Ismail M, Khan M, Khan SB, Khan MA, Akhtar K, Asiri AM (2018) Green synthesis of plant supported CuAg and CuNi bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. J Mol Liq 260:78–91

    Article  Google Scholar 

  251. Khan Z, Al-Thabaiti SA (2018) Green synthesis of zero-valent Fe-nanoparticles: Catalytic degradation of rhodamine B, interactions with bovine serum albumin and their enhanced antimicrobial activities. J Photochem Photobiol B 180:259–267. https://doi.org/10.1016/j.jphotobiol.2018.02.017

    Article  Google Scholar 

  252. Malleshappa J, Nagabhushana H, Sharma S, Vidya Y, Anantharaju K, Prashantha S, Prasad BD, Naika HR, Lingaraju K, Surendra B (2015) Leucas aspera mediated multifunctional CeO2 nanoparticles: structural, photoluminescent, photocatalytic and antibacterial properties. Spectrochim Acta Part A Mol Biomol Spectrosc 149:452–462

    Article  Google Scholar 

  253. Bordbar M, Negahdar N, Nasrollahzadeh M (2018) Melissa Officinalis L. leaf extract assisted green synthesis of CuO/ZnO nanocomposite for the reduction of 4-nitrophenol and Rhodamine B. Sep Purif Technol 191:295–300

    Article  Google Scholar 

  254. Francis S, Joseph S, Koshy EP, Mathew B (2017) Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environ Sci Pollut Res Int 24(21):17347–17357. https://doi.org/10.1007/s11356-017-9329-2

    Article  Google Scholar 

  255. Devi HS, Singh NR, Singh HP, Singh TD (2015) Facile synthesis of biogenic gold nanocatalyst for efficient degradation of organic pollutants. J Environ Chem Eng 3(3):2042–2049

    Article  Google Scholar 

  256. Paul B, Bhuyan B, Purkayastha DD, Vadivel S, Dhar SS (2016) One-pot green synthesis of gold nanoparticles and studies of their anticoagulative and photocatalytic activities. Mater Lett 185:143–147

    Article  Google Scholar 

  257. Bhuyan B, Paul A, Paul B, Dhar SS, Dutta P (2017) Paederia foetida Linn. promoted biogenic gold and silver nanoparticles: synthesis, characterization, photocatalytic and in vitro efficacy against clinically isolated pathogens. J Photochem Photobiol B 173:210–215

    Article  Google Scholar 

  258. Paul B, Bhuyan B, Purkayastha DD, Dhar SS (2016) Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf. J Photochem Photobiol B 154:1–7

    Article  Google Scholar 

  259. Fu L, Zheng Y, Ren Q, Wang A, Deng B (2015) Green biosynthesis of SnO2 nanoparticles by plectranthus amboinicus leaf extract their photocatalytic activity toward rhodamine B degradation. J Ovonic Res 11(1):21–26

    Google Scholar 

  260. Kumar VA, Uchida T, Mizuki T, Nakajima Y, Katsube Y, Hanajiri T, Maekawa T (2016) Synthesis of nanoparticles composed of silver and silver chloride for a plasmonic photocatalyst using an extract from a weed Solidago altissima (goldenrod). Adv Nat Sci Nanosci Nanotechnol 7(1):015002

    Article  Google Scholar 

  261. Veisi H, Azizi S, Mohammadi P (2018) Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. J Clean Prod 170:1536–1543

    Article  Google Scholar 

  262. Francis S, Joseph S, Koshy EP, Mathew B (2018) Microwave assisted green synthesis of silver nanoparticles using leaf extract of elephantopus scaber and its environmental and biological applications. Artif Cells Nanomed Biotechnol 46(4):795–804

    Article  Google Scholar 

  263. Santos AR, da Silva AF, Batista AFP, Freitas CF, Bona E, Sereia MJ, Caetano W, Hioka N, Mikcha JMG (2020) Application of response surface methodology to evaluate photodynamic inactivation mediated by eosin Y and 530 nm LED against Staphylococcus aureus. Antibiotics (Basel). https://doi.org/10.3390/antibiotics9030125

    Article  Google Scholar 

  264. MeenaKumari M, Philip D (2015) Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts. Spectrochim Acta Part A Mol Biomol Spectrosc 135:632–638. https://doi.org/10.1016/j.saa.2014.07.037

    Article  Google Scholar 

  265. Rajan A, Vilas V, Philip D (2015) Catalytic and antioxidant properties of biogenic silver nanoparticles synthesized using Areca catechu nut. J Mol Liq 207:231–236

    Article  Google Scholar 

  266. Ayad MM, Belal F, Hosney MM, Abo El Abass S, Elsayed N (2018) Spectroscopic determination of succinylcholine in dosage forms using eosin Y. Luminescence 33(2):376–381. https://doi.org/10.1002/bio.3424

    Article  Google Scholar 

  267. Wei Z, Chen D, Guo Z, Jia P, Xing H (2020) Eosin Y-embedded zirconium-based metal-organic framework as a dual-emitting built-in self-calibrating platform for pesticide detection. Inorg Chem. https://doi.org/10.1021/acs.inorgchem.9b03635

    Article  Google Scholar 

  268. Inoa J, Patel M, Dominici G, Eldabagh R, Patel A, Lee J, Xing Y (2020) Benzylic hydroperoxidation via visible-light induced Csp3-H activation. J Org Chem. https://doi.org/10.1021/acs.joc.0c00385

    Article  Google Scholar 

  269. Kang J, Song I, Kim H, Kim H, Lee S, Choi Y, Chang HJ, Sohn DK, Yoo H (2018) Rapid tissue histology using multichannel confocal fluorescence microscopy with focus tracking. Quant Imaging Med Surg 8(9):884–893. https://doi.org/10.21037/qims.2018.09.18

    Article  Google Scholar 

  270. Zheng H, Pan Y, Xiang X (2007) Oxidation of acidic dye Eosin Y by the solar photo-Fenton processes. J Hazard Mater 141(3):457–464. https://doi.org/10.1016/j.jhazmat.2006.12.018

    Article  Google Scholar 

  271. Karthik R, Govindasamy M, Chen S-M, Cheng Y-H, Muthukrishnan P, Padmavathy S, Elangovan A (2017) Biosynthesis of silver nanoparticles by using Camellia japonica leaf extract for the electrocatalytic reduction of nitrobenzene and photocatalytic degradation of Eosin-Y. J Photochem Photobiol B 170:164–172

    Article  Google Scholar 

  272. Ritchie EE, Princz JI, Robidoux PY, Scroggins RP (2013) Ecotoxicity of xanthene dyes and a non-chlorinated bisphenol in soil. Chemosphere 90(7):2129–2135. https://doi.org/10.1016/j.chemosphere.2012.10.096

    Article  Google Scholar 

  273. Francis S, Joseph S, Koshy EP, Mathew B (2017) Synthesis and characterization of multifunctional gold and silver nanoparticles using leaf extract of Naregamia alata and their applications in the catalysis and control of mastitis. New J Chem 41(23):14288–14298

    Article  Google Scholar 

  274. Qiu Y, Yang H, Chen H, Ge L, Xu X, Xiong X, He J (2010) Detection of CEA mRNA, p53 and AE1/AE3 in haematoxylin-eosin-negative lymph nodes of early-stage non-small cell lung cancer may improve veracity of N staging and indicate prognosis. Jpn J Clin Oncol 40(2):146–152. https://doi.org/10.1093/jjco/hyp144

    Article  Google Scholar 

  275. Sharma P, Pant S, Rai S, Yadav RB, Dave V (2018) Green synthesis of silver nanoparticle capped with Allium cepa and their catalytic reduction of textile dyes: an ecofriendly approach. J Polym Environ 26(5):1795–1803

    Article  Google Scholar 

  276. Diallo A, Manikandan E, Rajendran V, Maaza M (2016) Physical & enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via Aspalathus linearis. J Alloy Compd 681:561–570

    Article  Google Scholar 

  277. Pandian CJ, Palanivel R, Dhananasekaran S (2015) Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chin J Chem Eng 23(8):1307–1315

    Article  Google Scholar 

  278. Zinatloo-Ajabshir S, Morassaei MS, Salavati-Niasari M (2018) Nd2Sn2O7 nanostructures as highly efficient visible light photocatalyst: green synthesis using pomegranate juice and characterization. J Clean Prod 198:11–18

    Article  Google Scholar 

  279. Vinoda B, Vinuth M, Bodke Y, Manjanna J (2015) Photocatalytic degradation of toxic methyl red dye using silica nanoparticles synthesized from rice husk ash. J Environ Anal Toxicol 5(336):2161–0525

    Google Scholar 

  280. Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B 39(1):75–90

    Article  Google Scholar 

  281. Bonigala B, Kasukurthi B, Konduri VV, Mangamuri UK, Gorrepati R, Poda S (2018) Green synthesis of silver and gold nanoparticles using Stemona tuberosa Lour and screening for their catalytic activity in the degradation of toxic chemicals. Environ Sci Pollut Res Int 25(32):32540–32548. https://doi.org/10.1007/s11356-018-3105-9

    Article  Google Scholar 

  282. Kumar M, Tanoj N, Saran S (2019) A modified, efficient and sensitive pH indicator dye method for the screening of acid-producing acetobacter strains having potential application in bio-cellulose production. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-019-03211-x

    Article  Google Scholar 

  283. Yetisen AK, Moreddu R, Seifi S, Jiang N, Vega K, Dong X, Dong J, Butt H, Jakobi M, Elsner M, Koch AW (2019) Dermal tattoo biosensors for colorimetric metabolite detection. Angew Chem Int Ed Engl 58(31):10506–10513. https://doi.org/10.1002/anie.201904416

    Article  Google Scholar 

  284. Kim YH, Yang YJ, Kim JS, Choi DS, Park SH, Jin SY, Park JS (2018) Non-destructive monitoring of apple ripeness using an aldehyde sensitive colorimetric sensor. Food Chem 267:149–156. https://doi.org/10.1016/j.foodchem.2018.02.110

    Article  Google Scholar 

  285. Pu Q, Yang X, Guo Y, Dai T, Yang T, Ou X, Li J, Sheng S, Xie G (2019) Simultaneous colorimetric determination of acute myocardial infarction biomarkers by integrating self-assembled 3D gold nanovesicles into a multiple immunosorbent assay. Mikrochim Acta 186(3):138. https://doi.org/10.1007/s00604-019-3242-y

    Article  Google Scholar 

  286. Verma K, Saha G, Kundu LM, Dubey VK (2019) Biochemical characterization of a stable azoreductase enzyme from Chromobacterium violaceum: application in industrial effluent dye degradation. Int J Biol Macromol 121:1011–1018. https://doi.org/10.1016/j.ijbiomac.2018.10.133

    Article  Google Scholar 

  287. Sinha T, Ahmaruzzaman M (2015) Biogenic synthesis of Cu nanoparticles and its degradation behavior for methyl red. Mater Lett 159:168–171

    Article  Google Scholar 

  288. Maniyam MN, Ibrahim AL, Cass AEG (2020) Decolourization and biodegradation of azo dye methyl red by Rhodococcus strain UCC 0016. Environ Technol 41(1):71–85. https://doi.org/10.1080/09593330.2018.1491634

    Article  Google Scholar 

  289. Badr Y, El-Wahed MA, Mahmoud M (2008) Photocatalytic degradation of methyl red dye by silica nanoparticles. J Hazard Mater 154(1–3):245–253

    Article  Google Scholar 

  290. Hashemi SH, Kaykhaii M, Keikha AJ, Sajjadi Z (2018) Application of Box-Behnken design in response surface methodology for the molecularly imprinted polymer pipette-tip solid phase extraction of methyl red from seawater samples and its determination by spectrophotometery. Mar Pollut Bull 137:306–314. https://doi.org/10.1016/j.marpolbul.2018.10.037

    Article  Google Scholar 

  291. Khalikova MA, Satinsky D, Solich P, Novakova L (2015) Development and validation of ultra-high performance supercritical fluid chromatography method for determination of illegal dyes and comparison to ultra-high performance liquid chromatography method. Anal Chim Acta 874:84–96. https://doi.org/10.1016/j.aca.2015.03.003

    Article  Google Scholar 

  292. Sankar R, Rizwana K, Shivashangari KS, Ravikumar V (2015) Ultra-rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles. Appl Nanosci 5(6):731–736

    Article  Google Scholar 

  293. Vilas V, Philip D, Mathew J (2016) Facile one-pot synthesis of crystalline palladium nanoparticles with exceptional catalytic and antiradical activities. Mater Chem Phys 170:1–11

    Article  Google Scholar 

  294. Davar F, Majedi A, Mirzaei A (2015) Green synthesis of ZnO nanoparticles and its application in the degradation of some dyes. J Am Ceram Soc 98(6):1739–1746

    Article  Google Scholar 

  295. Nakkala JR, Mata R, Sadras SR (2016) The antioxidant and catalytic activities of green synthesized gold nanoparticles from Piper longum fruit extract. Process Saf Environ Prot 100:288–294

    Article  Google Scholar 

  296. Tamuly C, Hazarika M, Bordoloi M, Das MR (2013) Photocatalytic activity of Ag nanoparticles synthesized by using Piper pedicellatum C. DC fruits. Mater Lett 102:1–4

    Article  Google Scholar 

  297. Fu L, Fu Z (2015) Plectranthus amboinicus leaf extract–assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceram Int 41(2):2492–2496

    Article  Google Scholar 

  298. Sreeju N, Rufus A, Philip D (2016) Microwave-assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications. J Mol Liq 221:1008–1021

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant form funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SG contributed to conceptualization, investigation, date curation, writing, original draft preparation; SG and KKT contributed to writing review, editing, supervision.

Corresponding author

Correspondence to Kiran Kumar Tejavath.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Tejavath, K.K. Phytosynthesized nanoparticle-directed catalytic reduction of synthetic dyes: beast to beauty. Nanotechnol. Environ. Eng. 6, 6 (2021). https://doi.org/10.1007/s41204-021-00101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41204-021-00101-8

Keywords

Navigation