Skip to main content
Log in

Heat cracks in brake discs for heavy vehicles

Development of a model to describe the formation of heat cracks in brake discs for heavy vehicles based on experimental research

  • Original Paper
  • Published:
Automotive and Engine Technology Aims and scope Submit manuscript

Abstract

Existing models describing the formation of heat cracks in heavy-duty vehicles are not detailed enough to predict the sensitivity of brake discs for heat cracks. In this paper, results from a dynamometer experiment are discussed. They allow a deeper understanding of the processes that result in the failure of brake discs. The experiment described is a standardized heat crack test, which was performed over 300 cycles and ended with a through-thickness crack. During the test, the brake disc was monitored via a thermographic camera, a pyrometer, two sliding thermocouples, a set of capacitive displacement sensors, and an eddy current crack detector. The results show that the current explanation model might not consider several factors that contribute to the crack propagation. Cyclic shear movements at the disc surface are observed, which are likely caused by the cooling channel pins. The variation of the coning of the disc correlates with the maximum disc surface temperature and the crack growth rate. The consequences of the observations are discussed to develop a more detailed model to explain the formation of heat cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brezolin, A., Soares, M.R.F.: (2007) Influence of Friction Material Properties on Thermal Disc Crack Behavior in Brake Systems. Influence of friction material. In: SAE Brasil 2007 Congress and Exhibit. SAE International 400 Commonwealth Drive, Warrendale

  2. Collignon, M., Cristol, A.-L., Dufrénoy, P., Desplanques, Y., Balloy, D.: Failure of truck brake discs: a coupled numerical–experimental approach to identifying critical thermomechanical loadings. Failure of truck brake discs. Tribol. Int. 59, 114–120 (2013). https://doi.org/10.1016/j.triboint.2012.01.001

    Article  Google Scholar 

  3. Cristol, A., Collignon, M., Desplanques, Y., Dufrénoy, P., Balloy, D., Regheere, G.: Improvement of truck brake disc lifespan by material design. In: Transport Research Arena, Paris (2014)

  4. Dufrénoy, P., Bodovillé, G., Degallaix, G.: Damage mechanisms and thermomechanical loading of brake discs. In: Petit, J., Rémy, L. (eds.) Temperature-fatigue interaction: SF2M, vol. 29, pp. 167–176. Elsevier, London (2002)

    Google Scholar 

  5. Gao, C.H., Huang, J.M., Lin, X.Z., Tang, X.S.: Stress analysis of thermal fatigue fracture of brake disks based on thermomechanical coupling. J. Tribol. 129, 536 (2007). https://doi.org/10.1115/1.2736437

    Article  Google Scholar 

  6. Kim, D.-J., Lee, Y.-M., Park, J.-S., Seok, C.-S.: Thermal stress analysis for a disk brake of railway vehicles with consideration of the pressure distribution on a frictional surface. Mater. Sci. Eng. A. 483–484, 456–459 (2008). https://doi.org/10.1016/j.msea.2007.01.170

    Article  Google Scholar 

  7. Le Gigan, G., Vernersson, T., Lunden, R., Skoglund, P.: Disc brakes for heavy vehicles: an experimental study of temperatures and cracks. Disc brakes for heavy vehicles. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 229, 684–707 (2015). https://doi.org/10.1177/0954407014550843

    Article  Google Scholar 

  8. Poeste, T.: Untersuchungen zu reibungsinduzierten Veränderungen der Mikrostruktur und Eigenspannungen im System Bremse: Mikrostruktur und Eigenspannungen. Dissertation, Technische Universität Berlin (2005)

  9. Rashid, A., Stromberg, N.: Sequential simulation of thermal stresses in disc brakes for repeated braking. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 227, 919–929 (2013). https://doi.org/10.1177/1350650113481701

    Article  Google Scholar 

  10. Sardá, A.: Wirkungskette der Entstehung von Hotspots und Heißrubbeln in Pkw-Scheibenbremsen. Dissertation, Technische Universität Darmstadt (2009)

  11. Steffen, T., Bruns, R.: Hotspotbildung bei Pkw-Bremsscheiben. ATZ Automobiltech Z. 100, 408–413 (1998). https://doi.org/10.1007/BF03221499

    Article  Google Scholar 

  12. Wiegemann, S.-E., Fecher, N., Merkel, N., Winner, H.: Automatic Heat Crack Detection of Brake Discs on the Dynamometer: EB2016-SVM-057. In: Eurobrake, Milan (2016)

  13. Yamabe, J., Takagi, M., Matsui, T., Kimura, T., Sasaki, M.: Development of Disc Brake Rotors for Heavy- and Medium-Duty Trucks with High Thermal Fatigue Strength. In: International Truck and Bus Meeting & Exhibition, Fort Worth (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Bilgic Istoc.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Definitions

Appendix: Definitions

See Tables 1 and 2.

Table 1 Quantities
Table 2 Indices

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgic Istoc, S., Winner, H. Heat cracks in brake discs for heavy vehicles. Automot. Engine Technol. 3, 61–68 (2018). https://doi.org/10.1007/s41104-018-0027-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41104-018-0027-y

Keywords

Navigation