Skip to main content

Advertisement

Log in

Heavy Metal Removal Using Modified Tungsten Oxide Fly Ash

  • Original Paper
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

The fly ash (FA) and modified tungsten oxide fly ash (MTFA) were used as an adsorbent for the removal of Ni (II) and Zn (II) ion from aqueous solution. The materials were hydrothermally synthesized and characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The adsorption capacities of the materials were found to be 4.797 and 5.930 mg g−1 for Zn (II) and Ni (II) ions respectively under the optimized process conditions (180 min and pH 6 for both metals ions). The kinetics of the adsorption were performed and found that pseudo-second-order kinetic model fitted well with the experiment. The thermodynamic parameters evaluated show that the adsorption process is spontaneous and exothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Temkin constants relating to sorption potential (L g−1)

b :

Langmuir constant representing adsorption intensity (Lmg−1)

B :

Temkin constants relating to heat of adsorption

C o :

initial concentration of metal ion in solution (mg L−1)

C e :

equilibrium concentration of metal ion in solution (mg L−1)

K 1 :

pseudo-first-order rate constant (min−1)

K 2 :

pseudo-second-order rate constant (g mg−1 min−1)

m :

mass of the adsorbent (g)

n :

adsorption intensity (g L−1)

q e :

adsorption capacity at equilibrium (mg g−1)

q m :

theoretical saturation capacity (mg g−1)

q t :

adsorption capacity at any time t (mg g−1)

R 2 :

correlation coefficient

t :

contact time (min)

T :

temperature (K)

V :

volume of adsorbate solution (L)

X m :

monomolecular adsorption capacity (mg g−1)

References

  1. Hui KS, Chao CYH (2005) Effects of step change of synthesis temperature on synthesis of zeolite 4A from coal fly ash. Microporous Mesoporous Mater 88:145–151

    Article  CAS  Google Scholar 

  2. Yan J, Kirk DW, Jia CQ, Liu X (2007) Sorption of aqueous phosphorus onto bituminous and lignitous coal ashes. J Hazard Mater 148:395–401

    Article  CAS  Google Scholar 

  3. Chuah TG, Jumasiah A, Azni I, Katayon S, Choong SYT (2005) Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination 175:305–316

    Article  CAS  Google Scholar 

  4. Chareonpanich M, Namto T, Kongkachuichay P, Limtrakul J (2004) Synthesis of ZSM-5 zeolite from lignite fly ash and rice husk ash. Fuel Process Technol 85:1623–1634

    Article  CAS  Google Scholar 

  5. Grubb DG, Guimaraes MS, Valencia R (2000) Phosphate immobilization using an acidic type F fly ash. J Hazard Mater 76:217–236

    Article  CAS  Google Scholar 

  6. Iyer RS, Scott JA (2001) Power station fly ash—a review of value-added utilization outside of the construction industry. Resour Conserv Recycl 31:217–228

    Article  Google Scholar 

  7. Yao ZT, Ji XS, Sarker PK, Tang JH (2015) A comprehensive review on the applications of coal fly ash. Earth Sci Rev 141:105–121

    Article  Google Scholar 

  8. Visa M, Duta A (2013) Methyl-orange and cadmium simultaneous removal using fly ash and photo-Fenton systems. J. Hazard Mater 244:773–779

    Article  CAS  Google Scholar 

  9. Visa M (2015) Tungsten oxide–fly ash oxide composites in adsorption and photocatalysis. J Hazard Mater 289:244–256

    Article  CAS  Google Scholar 

  10. Visa M, Chelaru AM (2015) Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment. Appl Surf Sci 303:14–22

    Article  CAS  Google Scholar 

  11. Visa M (2015) New fly ash TiO2 composite for the sustainable treatment of wastewater with complex pollutants load. Appl Surf Sci 339:62–68

    Article  CAS  Google Scholar 

  12. Duta A, Visa M (2015) Simultaneous removal of two industrial dyes by adsorption and photocatalysis on a fly-ash–TiO2 composite. J Photochem Photobiol 306:21–30

    Article  CAS  Google Scholar 

  13. Criado M, Palomo A, Fernandez-Jimenez (2005) Alkali activation of fly ash. Part 1: effect of curing conditions on the carbonation of the reaction products. Fuel 84:2048–2054

    Article  CAS  Google Scholar 

  14. Bakharev T (2005) Geopolymeric materials prepared using class F fly ash and elevated temperature curing. Cem Concr Res 35:1224–1232

    Article  CAS  Google Scholar 

  15. Fernandez-Jimenez A, Palomo A (2005) Composition and microstructure of alkaliactivated fly ash binder: effect of the activator. Cem Concr Res 35:1984–1992

    Article  CAS  Google Scholar 

  16. Swanepoel JC, Strydom CA (2002) Utilization of fly ash in a geopolymeric material. Appl Geochem 17:1143–1148

    Article  CAS  Google Scholar 

  17. Naiya TK, Chowdhury P, Bhattacharya AK, Das SK (2009) Saw dust and neem bark as low-cost natural biosorbent for adsorptive removal of Zn(II) and Cd(II) ions from aqueous solutions. J Chem Eng 48:68–79

    Article  CAS  Google Scholar 

  18. Danish M, Hashim R, Ibrahim MN, Rafatullah M, Sulaiman O, Ahmad T, Shamsuzzoha M, Ahmad A (2011) Sorption of Cu (II) and Ni (II) ions from aqueous solutions using calcium oxide activated carbon: equilibrium, kinetic, and thermodynamic studies. J Chem Eng 56:3607–3619

    CAS  Google Scholar 

  19. Chithra K, Lakshmi S, Jain A (2014) Carica papaya seed as a biosorbent for removal of Cr (VI) and Ni (II) ions from aqueous solution: thermodynamics and kinetic analysis of experimental data. Int J Chem React Eng 1:91–102

    Google Scholar 

  20. Bhatti H, Mumtaz B, Asifhanif M, Nadeem R (2007) Removal of Zn (II) ions from aqueous solution using Moringaoleifera Lam. (horseradish tree) biomass. Biochemistry 42:547–553

    CAS  Google Scholar 

  21. Martins RJE, Pardo R, Boaventura RAR (2004) Cd(II) and Zn(II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness. Water Res 38:693–699

    Article  CAS  Google Scholar 

  22. Zhao X, Song L, Fu J, Tang P, Liu F (2011) Adsorption characteristics of Ni (II) onto MA–DTPA/PVDF chelating membrane. J Hazard Mater 189:732–740

    Article  CAS  Google Scholar 

  23. Adamczuk A, Kołodynska D (2015) Equilibrium, thermodynamic and kinetic studies on removal of chromium, copper, zinc and arsenic from aqueous solutions onto fly ash coated by chitosan. Chem Eng J 274:200–212

    Article  CAS  Google Scholar 

  24. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem 40:1361–1403

    Article  CAS  Google Scholar 

  25. Freundlich HM (1906) Over the adsorption in solution. J Phys Chem 57:385–470

    CAS  Google Scholar 

  26. Temkin MJ, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim 12:327–356

    CAS  Google Scholar 

  27. Onyango MS, Kojima Y, Aoyi O, Bernardo EC, Mtsuda H (2004) Adsorption equilibrium modelling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J Colloid Interface Sci 279:341–350

    Article  CAS  Google Scholar 

  28. Weng CH, Huang CP (2004) Adsorption characteristics of Zn (II) from dilute aqueous solution by fly ash. Colloids Surf A Physicochem Eng Asp 2004(247):137–143

    Article  CAS  Google Scholar 

  29. Vázquez G, Calvo M, Sonia FM, González-Alvarez J, Antorrena G (2009) Chestnut shell as heavy metal adsorbent: optimization study of lead, copper and zinc cations removal. J Hazard Mater 172:1402–1414

    Article  CAS  Google Scholar 

  30. Homaga PL, Inoue K (2010) Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse. Bioresour Technol 101(6):2067–2069

    Article  CAS  Google Scholar 

  31. Shukla SR, Pai RS, Shendarkar AD (2006) Adsorption of Ni (II), Zn (II) and Fe (II) on modified coir fibre. Sep Purif Technol 47:141–147

    Article  CAS  Google Scholar 

  32. Periasamy K, Namasivayam C (1995) Removal of nickel (II) from aqueous solution waste water using an agricultural waste: peanut hulls. Waste Manag 15:63–68

    Article  CAS  Google Scholar 

  33. Singh RS, Singh VK, Tiwari PN, Singh UN, Sharma YC (2009) An economic removal of Ni (II) from aqueous solutions using an indigenous adsorbent. Open Environ Eng J 2:30–36

    Article  CAS  Google Scholar 

Download references

Greek Letters

G°standard Gibbs free energy change

H°standard enthalpy change

S°standard entropy change

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chithra Kumaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Kumaran, C. & Saravanathamizhan, R. Heavy Metal Removal Using Modified Tungsten Oxide Fly Ash. Water Conserv Sci Eng 3, 181–189 (2018). https://doi.org/10.1007/s41101-018-0050-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41101-018-0050-x

Keywords

Navigation