Computational Visual Media

, Volume 3, Issue 3, pp 199–215 | Cite as

Smooth shapes with spherical topology: Beyond traditional modeling, efficient deformation, and interaction

  • D. Schmitter
  • P. García-Amorena
  • M. Unser
Open Access
Research Article


Existing shape models with spherical topology are typically designed either in the discrete domain using interpolating polygon meshes or in the continuous domain using smooth but non-interpolating schemes such as subdivision or NURBS. Both polygon models and subdivision methods require a large number of parameters to model smooth surfaces. NURBS need fewer parameters but have a complicated rational expression and non-uniform shifts in their formulation. We present a new method to construct deformable closed surfaces, which includes exact spheres, by combining the best of two worlds: a smooth, interpolating model with a continuously varying tangent plane and well-defined curvature at every point on the surface. Our formulation is considerably simpler than NURBS and requires fewer parameters than polygon meshes. We demonstrate the generality of our method with applications including intuitive user-interactive shape modeling, continuous surface deformation, shape morphing, reconstruction of shapes from parameterized point clouds, and fast iterative shape optimization for image segmentation. Comparisons with discrete methods and non-interpolating approaches highlight the advantages of our framework.


shape modeling spherical topology parametric surfaces splines differential geometry 



This work was funded by the Swiss National Science Foundation under Grant 200020-162343. We are grateful to Zsuzsanna Püspöki for help with the figures and to Irina Radu for help with the video. We also appreciate the interesting discussions on the subject that we had with Masih Nilchian and Emrah Bostan. We thank Mike McCann for proof-reading the manuscript.


  1. [1]
    Schmitter, D.; García-Amorena, P.; Unser, M. Smoothly deformable spheres: Modeling, deformation, and interaction. In: Proceedings of the SIGGRAPH ASIA 2016 Technical Briefs, Article No. 2, 2016.Google Scholar
  2. [2]
    Piegl, L. On NURBS: A survey. IEEE Computer Graphics and Applications Vol. 11, No. 1, 55–71, 1991.CrossRefGoogle Scholar
  3. [3]
    Piegl, L.; Tiller, W. The NURBS Book, 2nd edn. Springer Berlin Heidelberg, 2010.zbMATHGoogle Scholar
  4. [4]
    Sederberg, T. W.; Zheng, J.; Bakenov, A.; Nasri, A. T splines and T NURCCS. ACM Transactions on Graphics Vol. 22, No. 3, 477–484, 2003.CrossRefGoogle Scholar
  5. [5]
    Lyche, T. Discrete cubic spline interpolation. BIT Numerical Mathematics Vol. 16, No. 3, 281–290, 1976.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Lyche, T. Local spline approximation methods. Journal of Approximation Theory Vol. 15, No. 4, 294–325, 1975.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Manni, C.; Pelosi, F.; Sampoli, L. Generalized B splines as a tool in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering Vol. 200, Nos. 5–8, 867–881, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Schumaker, L. L. Spline Functions: Basic Theory. J. Wiley & Sons, 1981.zbMATHGoogle Scholar
  9. [9]
    Farin, G. E. NURBS: From Projective Geometry to Practical Use, 2nd edn. Natick, MA, USA: A. K. Peters, Ltd., 1999.Google Scholar
  10. [10]
    Rogers, D. F. Preface. In: An Introduction to fNURBSg, The Morgan Kaufmann Series in Computer Graphics. Rogers, D. F. Ed. San Francisco: Morgan Kaufmann, xv–xvii, 2001.Google Scholar
  11. [11]
    Dierckx, P. Algorithms for smoothing data on the sphere with tensor product splines. Computing Vol. 32, No. 4, 319–342, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Gmelig Meyling, R. H. J.; Pfluger, P. R. B spline approximation of a closed surface. IMA Journal of Numerical Analysis Vol. 7, No. 1, 73–96, 1987.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Delgado Gonzalo, R.; Chenouard, N.; Unser, M. Spline based deforming ellipsoids for interactive 3D bioimage segmentation. IEEE Transactions on Image Processing Vol. 22, No. 10, 3926–3940, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Prautzsch, H.; Boehm, W.; Paluszny, M. Bézier and B Spline Techniques. Springer Verlag New York, 2002.CrossRefzbMATHGoogle Scholar
  15. [15]
    Romani, L.; Sabin, M. A. The conversion matrix between uniform B spline and Bézier representations. Computer Aided Geometric Design Vol. 21, No. 6, 549–560, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Botsch, M.; Kobbelt, L.; Pauly, M.; Alliez, P.; Lévy, B. Polygon Mesh Processing. CRC Press, 2010.CrossRefGoogle Scholar
  17. [17]
    Botsch, M.; Steinberg, S.; Bischoff, S.; Kobbelt, L. OpenMesh–A generic and efficient polygon mesh data structure. In: Proceedings of the OpenSG Symposium, 2002.Google Scholar
  18. [18]
    Sorkine, O. Differential representations for mesh processing. Computer Graphics Forum Vol. 25, No. 4, 789–807, 2006.CrossRefGoogle Scholar
  19. [19]
    Sorkine, O.; Cohen-Or, D.; Lipman, Y.; Alexa, M.; Rössl, C.; Seidel, H. P. Laplacian surface editing. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, 175–184, 2004.Google Scholar
  20. [20]
    Dyn, N.; Farkhi, E. Spline subdivision schemes for compact sets. A survey. Serdica Mathematical Journal Vol. 28, No. 4, 349–360, 2002.MathSciNetzbMATHGoogle Scholar
  21. [21]
    Lounsbery, M.; DeRose, T. D.; Warren, J. Multiresolution analysis for surfaces of arbitrary topological type. ACM Transactions on Graphics Vol. 16, No. 1, 34–73, 1997.CrossRefGoogle Scholar
  22. [22]
    Catmull, E.; Clark, J. Recursively generated B spline surfaces on arbitrary topological meshes. In: Seminal Graphics: Poineering Efforts that Shaped the Field. New York: ACM, 183–188, 1998.Google Scholar
  23. [23]
    DeRose, T.; Kass, M.; Truong, T. Subdivision surfaces in character animation. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, 85–94, 1998.Google Scholar
  24. [24]
    Doo, D.; Sabin, M. Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design Vol. 10, No. 6, 356–360, 1978.CrossRefGoogle Scholar
  25. [25]
    Loop, C.; Schaefer, S. Approximating Catmull–Clark subdivision surfaces with bicubic patches. ACM Transactions on Graphics Vol. 27, No. 1, Article No. 8, 2008.Google Scholar
  26. [26]
    Stam, J.; Loop, C. T. Quad/triangle subdivision. Computer Graphics Forum Vol. 22, No. 1, 79–85, 2003.CrossRefGoogle Scholar
  27. [27]
    Charina, M.; Conti, C.; Romani, L. Reproduction of exponential polynomials by multivariate non stationary subdivision schemes with a general dilation matrix. Numerische Mathematik Vol. 127, No. 2, 223–254, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    Novara, P.; Romani, L. Building blocks for designing arbitrarily smooth subdivision schemes with conic precision. Journal of Computational and Applied Mathematics Vol. 279, 67–79, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    Warren, J.; Weime, H. Subdivision Methods for Geometric Design: A Constructive Approach. San Francisco: Morgan Kaufmann, 2001.Google Scholar
  30. [30]
    Hughes, T. J. R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Corporation, 2012.Google Scholar
  31. [31]
    Asirvatham, A.; Praun, E.; Hoppe, H. Consistent spherical parameterization. In: Computational Science–ICCS 2005. Sunderam, V. S.; van Albada, G. D.; Sloot, P. M.; Dongarra, J. Eds. Springer Berlin Heidelberg, 265–272, 2005.CrossRefGoogle Scholar
  32. [32]
    Praun, E.; Hoppe, H. Spherical parametrization and remeshing. ACM Transactions on Graphics Vol. 22, No. 3, 340–349, 2003.CrossRefGoogle Scholar
  33. [33]
    Brechbühler, Ch.; Gerig, G.; Kübler, O. Parametrization of closed surfaces for 3D shape description. Computer Vision and Image Understanding Vol. 61, No. 2, 154–170, 1995.CrossRefGoogle Scholar
  34. [34]
    Berger, M.; Tagliasacchi, A.; Seversky, L.; Alliez, P.; Levine, J.; Sharf, A.; Silva, C. State of the art in surface reconstruction from point clouds. In: Eurographics 2014–State of the Art Reports. Lefebvre, S.; Spagnuolo, M. Eds. The Eurographics Association, 161–185, 2014.Google Scholar
  35. [35]
    Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson surface reconstruction. In: Proceedings of the 4th Eurographics Symposium on Geometry Processing, 61–70, 2006.Google Scholar
  36. [36]
    Catmull, E.; Rom, R. A class of local interpolating splines. Computer Aided Geometric Design Vol. 74, 317–326, 1974.CrossRefGoogle Scholar
  37. [37]
    Keys, R. Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing Vol. 29, No. 6, 1153–1160, 1981.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    Schmitter, D.; Delgado-Gonzalo, R.; Unser, M. A family of smooth and interpolatory basis functions for parametric curve and surface representation. Applied Mathematics and Computation Vol. 272, No. 1, 53–63, 2016.MathSciNetCrossRefGoogle Scholar
  39. [39]
    Schmitter, D.; Delgado-Gonzalo, R.; Unser, M. Trigonometric interpolation kernel to construct deformable shapes for user interactive applications. IEEE Signal Processing Letters Vol. 22, No. 11, 2097–2101, 2015.CrossRefGoogle Scholar
  40. [40]
    Beccari, C. V.; Casciola, G.; Roman, L. Construction and characterization of non uniform local interpolating polynomial splines. Journal of Computational Applied Mathematics Vol. 240, 5–19, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    Schmitter, D.; Gaudet-Blavignac, C.; Piccini, D.; Unser, M. New parametric 3D snake for medical segmentation of structures with cylindrical topology. In: Proceedings of the IEEE International Conference on Image Processing, 276–280, 2015.Google Scholar
  42. [42]
    Zhang, R. J. Uniform interpolation curves and surfaces based on a family of symmetric splines. Computer Aided Geometric Design Vol. 30, No. 9, 844–860, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    Deslauriers, G.; Dubuc, S. Symmetric iterative interpolation processes. In: Constructive Approximation. DeVore, R. A.; Saff, E. B. Eds. Springer US, 49–68, 1989.CrossRefGoogle Scholar
  44. [44]
    Beccari, C. V.; Casciola, G.; Romani, L. Non-uniform interpolatory curve subdivision with edge parameters built upon compactly supported fundamental splines. BIT Numerical Mathematics Vol. 51, No. 4, 781–808, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    Conti, C.; Gemignani, L.; Romani, L. Exponential pseudo splines: Looking beyond exponential B splines. Journal of Mathematical Analysis and Applications Vol. 439, No. 1, 32–56, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    Botsch, M; Sorkine, O. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics Vol. 14, No. 1, 213–230, 2008.CrossRefGoogle Scholar
  47. [47]
    Terzopoulos, D.; Platt, J.; Barr, A.; Fleischer, K. Elastically deformable models. ACM SIGGRAPH Computer Graphics Vol. 21, No. 4, 205–214, 1987.CrossRefGoogle Scholar
  48. [48]
    Davies, R. H.; Cootes, T. F.; Taylor, C. J. A minimum description length approach to statistical shape modeling. In: Information Processing in Medical Imaging. Insana, M. F.; Leahy, R. M. Eds. Springer Berlin Heidelberg, 50–63, 2001.CrossRefGoogle Scholar
  49. [49]
    Styner, M. A.; Rajamani, K. T.; Nolte, L. P.; Zsemlye, G.; Székely, G.; Taylor, C. J.; Davies, R. H. Evaluation of 3D correspondence methods for model building. In: Information Processing in Medical Imaging. Taylor, C.; Noble, J. A. Eds. Springer Berlin Heidelberg, 63–75, 2003.CrossRefGoogle Scholar
  50. [50]
    Aguet, F.; Jacob, M.; Unser, M. Three dimensional feature detection using optimal steerable filters. In: Proceedings of the IEEE International Conference on Image Processing, II-1158–II-1161, 2005.Google Scholar
  51. [51]
    Badoual, A.; Schmitter, D.; Unser, M. An inner product calculus for periodic functions and curves. IEEE Signal Processing Letters Vol. 23, No. 6, 878–882, 2016.CrossRefGoogle Scholar
  52. [52]
    Jacob, M.; Blu, T.; Unser, M. An exact method for computing the area moments of wavelet and spline curves. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 23, No. 6, 633–642, 2001.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Other papers from this open access journal are available free of charge from To submit a manuscript, please go to https://www.

Authors and Affiliations

  1. 1.Biomedical Imaging GroupÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations