Augmented Reality Geovisualisation for Underground Utilities

Abstract

Prior to an excavation for a construction project, fieldwork is necessary to identify the location of all underground utilities. There is a demand for identifying the accurate positioning of the underground utilities, in order to support the contractors in avoiding damages to existing underground infrastructures. Such damages could cost thousands of euros, needless to underline the danger in human lives, in the presence of gas and electricity. There is a concrete market request for solutions that are able to effectively handle underground utilities’ data and function in support to the fieldwork. The fusion of technologies such as global navigation satellite systems (GNSS), sensors, geographic information systems (GIS) and geodatabases, augmented and virtual reality (AR/VR) can lead to products and services for monitoring, documenting and managing the utility-based geospatial data. The LARA project, a H2020 co-funded project by the European Commission (EC), embraced these needs and developed a software and hardware (S/H) system. The LARA hand-held and mobile device involves state-of-the-art technologies in the domain of positioning and sensors, AR and 3D GIS geodatabases and aids the users in “seeing” beneath the ground by rendering the complexity of the 3D utilities’ models. The visualization of underground utilities is made using a mixed reality paradigm, where the user can see at the same time the surroundings and the utilities rendered at their exact location in 3D. In order to cope with the end-users expectations, two types of visualizations have been implemented and tested. LARA system tested in two case studies during the project lifetime and the results are promising.

Zusammenfassung

Augmented-Reality – Visualisierung unterirdischer Versorgungsleitungen. Bei der Durchführung von Bauprojekten ist es im Vorfeld einer Aufgrabung wichtig, die genaue Lage aller unterirdischen Versorgungsleitungen zu kennen. Dadurch können Baufirmen die Beschädigung der bestehenden unterirdischen Infrastruktur vermeiden. Anderenfalls können leicht Schäden von mehreren Tausend Euro entstehen oder durch eine mögliche Beschädigung von Gas- und Elektrizitätsleitungen Menschenleben gefährdet werden. Der Markt fordert daher konkrete Lösungen, die in der Lage sind, die Daten der unterirdischen Versorgungsleitungen effizient zu verarbeiten. Eine mögliche Lösung für die Überwachung, Dokumentation und Verwaltung der Versorgungsleitungen besteht in der Verknüpfung von Daten aus globalen Satellitennavigationssystemen (GNSS), anderen Sensoren, Geoinformationssystemen (GIS) und Geodatenbanken, sowie Augmented und Virtual Reality (AR/VR). Das von der Europäischen Kommission kofinanzierte Horizon-2020-Projekt LARA widmet sich dieser Aufgabe und hat ein kombiniertes Software- und Hardwaresystem entwickelt. Das tragbare LARA-Gerät enthält modernste Technologien im Bereich der Positionierung und Sensorik, sowie der AR- und 3D-GIS-Geodatenbanken, und hilft den Benutzern dabei, unter die Erde zu "sehen", indem es die komplexe Struktur der unterirdischen Leitungen dreidimensional darstellt. Die Visualisierung erfolgt nach dem Mixed-Reality-Paradigma, bei dem der Benutzer gleichzeitig die reale Umgebung und den berechneten Verlauf der Versorgungsleitungen sehen kann. Das LARA-System wurde während der Projektlaufzeit in zwei Fallstudien mit vielversprechenden Ergebnissen getestet.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. 1.

    http://goo.gl/YoD5uS.

  2. 2.

    http://www.mappingtheunderworld.ac.uk/introduction.html.

  3. 3.

    http://inspire.jrc.ec.europa.eu.

  4. 4.

    http://www.esdi-humboldt.eu.

  5. 5.

    http://www.lara-project.eu.

  6. 6.

    http://ec.europa.eu/programmes/horizon2020/.

  7. 7.

    https://goo.gl/PKXr5k.

  8. 8.

    http://www.mappingtheunderworld.ac.uk.

References

  1. Brovelli MA, Minghini M, Zamboni G (2016) Public participation in GIS via mobile applications. ISPRS J Photogramm Remote Sens 114:306–315

    Article  Google Scholar 

  2. Chassagne O (2012) One-centimeter accuracy with PPP. InsideGNSS, Red Bank, pp 49–54

    Google Scholar 

  3. Davis FD (2012) Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q 13:319–340

    Article  Google Scholar 

  4. Debevec P, Graham P, Busch J A, Bolas M (2012) A single-shot light probe. ACM SIGGRAPH 2012 Talks, SIGGRAPH ’12, pp 10:1–10:1

  5. Gerhard W, Andreas B, Gimter S, Volker B, Hankemeier P (1996) Reducing distance dependent errors for real-time precise DGPS applications by establishing reference station network. In: Conference proceedings of ion GPS, Institute of Navigation, pp 845–852

  6. Huang W, Sun M, Li S (2016) A 3D GIS-based interactive registration mechanism for outdoor augmented reality system. Expert Syst Appl 55:48–58

    Article  Google Scholar 

  7. Imbert N, Vignat F, Kaewrat C, Boonbrahm P (2012) Adding physical properties to 3D models in augmented reality for realistic interactions experiments. Proc Comput Sci 25:364–369

    Article  Google Scholar 

  8. Jimenez R, Delgado E, Mohd Nor R, Smagas K, Valari E, Stylianidis E (2016) Market potential for a location based and augmented reality system for utilities management. In: 22nd international conference on virtual systems and multimedia (VSMM), pp 1-4

  9. Petovello M (2011) What is a virtual reference station and how does it work?. InsideGNSS, Red Bank

    Google Scholar 

  10. Van Krevelen DWF, Poelman R (2010) A survey of augmented reality technologies, applications and limitations. Int J Virtual Real 9(2):1–20

    Article  Google Scholar 

  11. Kwik F, Bahama R (2016) Using augmented reality to enhance aetherpet, a prototype of a social game. Proc Comput Sci 59:282–290

    Article  Google Scholar 

  12. Lachapelle G, Petovello M, Gao Y, Garin LJ (2006) Precise point positioning and its challenges, aided-GNSS and signal tracking. InsideGNSS, Red Bank, pp 12–16

    Google Scholar 

  13. Lindeman R W., Lee G, Beattie L, Gamper H, Pathinarupothi R, Akhilesh A (2012) GeoBoids: A mobile AR application for exergaming. In: IEEE international symposium on mixed and augmented reality—arts, media, and humanities (ISMAR-AMH), pp 93–94

  14. Scott Madry A (2015) Global navigation satellite systems and their applications. Springer, Berlin, pp 1–8

    Google Scholar 

  15. Nielsen J (1993) Usability engineering. Academic Press, Cambridge

    Google Scholar 

  16. Pagani A (2014) Modeling reality for camera registration in augmented reality applications. Knstliche Intelligenz 9(2):1–20

    Google Scholar 

  17. Patias P, Tsioukas V, Pikridas C, Patonis F, Georgiadis Ch (2016) Robust pose estimation through visual/GNSS mixing. In: 22nd international conference on virtual systems and multimedia (VSMM), pp 1–8

  18. Petovello M (2014) How do measurement errors propagate into GNSS position estimates?. InsideGNSS, Red Bank, pp 30–34

    Google Scholar 

  19. Rauschnabel PA, Rossmann A, Dieck MC (2017) An adoption framework for mobile augmented reality games: the case of Pokmon Go. Comput Hum Behav 26:276–286

    Article  Google Scholar 

  20. Schall G, Zollman S, Reitmayr G (2013) Smart Vidente: advances in mobile augmented reality for interactive visualization of underground infrastructure. J Pers Ubiquitous Comput Issue 7(17):1533–1549

    Article  Google Scholar 

  21. Schall G, Junghanns S, Schmalstieg D (2010) VIDENTE—3D visualization of underground infrastructure using handheld augmented reality. In: Anand S, Ware M, Jackson M, Vairava Moorthy K, Abrahart R (eds) GeoHydroinformatics: integrating GIS and water engineering. CRC Press, Boca Raton, pp 207–219

    Google Scholar 

  22. Shin DH, Dunston PS (2008) Identification of application areas for augmented reality in industrial construction based on technology suitability. Autom Constr 17(7):882–894

    Article  Google Scholar 

  23. Stylianidis E, Valari E, Smagas K, Pagani A, Henriques J, Garca G, Jimeno E, Carrillo I, Patias P, Georgiadis Ch, Kounoudes A, Michail K (2016) LBS augmented reality assistive system for utilities infrastructure management through Galileo and EGNOS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS), Heipke, pp 1179–1185

    Google Scholar 

  24. Stylianidis E, Valari E, Smagas K, Pagani A, Henriques J, Garca G, Jimeno E, Carrillo I, Patias P, Georgiadis Ch, Kounoudes A, Michail K (2016) LARA: a location-based and augmented reality assistive system for underground utilities’ networks through GNSS. In: 22nd international conference on virtual systems and multimedia (VSMM), pp 1–9

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Stylianidis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stylianidis, E., Valari, E., Pagani, A. et al. Augmented Reality Geovisualisation for Underground Utilities. PFG 88, 173–185 (2020). https://doi.org/10.1007/s41064-020-00108-x

Download citation

Keywords

  • Augmented reality
  • Virtual reality
  • GIS
  • Underground utilities
  • Visualization

Schlüsselwörter

  • Augmented reality
  • Virtual reality
  • GIS
  • Visualisierung von unterirdischen Versorgungsleitungen