Skip to main content
Log in

Abstract

Digital height models (DHM) are a basic requirement for several applications. The generation of DHM is time consuming and expensive, but some nearly worldwide covering height models are available free of charge or commercially and the number and quality are growing. For practical use it is important to have some information about the quality, the accuracy, accuracy characteristics, areas with problems, height definition as digital surface model with the height of the visible surface or as digital terrain model with heights of the bare ground, resolution (point spacing and correlation of neighboured height values), homogeneity and availability. Also morphologic details are important, depending upon the point spacing and relative height accuracy. An overview about the freely available and commercially nearly worldwide covering height models with a satisfying point spacing and accuracy is given. Changes in this area are fast, so only the current status can be described. A really worldwide covering DHM came with the commercial WorldDEM, based on TanDEM-X interferometric synthetic aperture radar (InSAR) from which now also a reduced, free version with 3 arcsec point spacing is available as TDM90. In addition to the highest accuracy in this field with 10 m point spacing, WorldDEM has also very good morphologic details with the exception of city areas. Quality files belonging to WorldDEM include information about areas with problems. Some height models have been analysed by comparison with satisfying reference height models. The characteristics are described as well as the problems of accuracy specifications with different accuracy figures and dependency upon terrain inclination and other parameters, to allow a selection corresponding to the individual requirements. This also includes horizontal shifts or even rotations and higher degree systematic differences between the reference and the analysed DHM.

Zusammenfassung

Qualität von Höhenmodellen von großen Gebieten. Digitale Höhenmodelle sind eine Grundvoraussetzung für viele Anwendungen. Die Erstellung von Höhenmodellen ist zeitaufwändig und damit teuer. Es sind jedoch nahezu weltweite Höhenmodelle frei oder kommerziell verfügbar. Ihre Anzahl und Qualität nimmt zu. Für die praktische Verwendung ist es erforderlich, Informationen über die Qualität zu haben, was sich durch die Genauigkeit, Genauigkeitscharakteristik, Gebiete mit Problemen und die Definition als Oberflächenmodell mit der Höhe der sichtbaren Objekte, oder Geländemodell mit der Höhe des Bodens und der Korrelation benachbarter Höhenwerte beschreiben lässt. Darüber hinaus ist die Homogenität und Verfügbarkeit von Bedeutung. Die morphologischen Details lassen sich durch den Punktabstand und die relative Höhengenauigkeit beschreiben. Es wird ein Überblick über die frei verfügbaren und kommerziellen, nahezu weltweiten Höhenmodelle mit ausreichendem Punktabstand und akzeptabler Genauigkeit gegeben. Die Änderungen in diesem Bereich sind schnell, so dass nur der aktuelle Stand beschrieben werden kann. Ein wirklich weltweites Höhenmodell kam mit dem kommerziellen WorldDEM, das auf dem interferometrischen Radar mit synthetischer Apertur (InSAR) der TanDEM-X-Konfiguration basiert. Zusätzlich zu der höchsten Genauigkeit sind mit Ausnahme der Stadtgebiete die morphologischen Details durch den Punktabstand von 10 m sehr gut. Zusätzliche Qualitätsdateien beschreiben WorldDEM. Die aufgeführten Höhenmodelle wurden mit Referenzhöhenmodellen verglichen, die eine ausreichende Genauigkeit haben. Um die Auswahl geeigneter Höhenmodelle zu erleichtern wird die Charakteristik der Höhenmodelle beschrieben, wie auch die Probleme der Genauigkeitsspezifikationen, verschiedene Genauigkeitsmaße und die Abhängigkeit von der Geländeneigung und anderen Parametern. Dieses enthält auch Informationen über Verschiebungen und manchmal Rotationen der Höhenmodelle, sowie höhergradige systematische Höhenfehler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Source: Airbus DS

Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ACE:

Altimeter corrected elevations

ADR:

Former photogrammetric company in USA

AW3D:

ALOS World 3D with 5 m point spacing

AW3D30:

AW3D with 30 m point spacing

BIMTAS:

Affiliated company of Istanbul Metropolitan Municipality

DEM:

Digital elevation model (general term)—same as DHM

DHM:

Digital height model (general term)—same as DEM

DLR:

German Aerospace Center

DSM:

Digital surface model (height of visible surface)

DTM:

Digital terrain model (height of bare ground)

GCP:

Ground control point

GDEM:

Global digital elevation model

GSD:

Ground sampling distance (distance of neighboured pixel centres on ground)

HEM:

Height error map

IGN:

Institut national de l’information géographique et forestière, France

InSAR:

Interferometric synthetic aperture radar

ISPRS:

International Society for Photogrammetry and Remote Sensing

JAXA:

Japan Aerospace Exploration Agency

LE90:

Linear error (of height) with 90% reliability

LE95:

Linear error (of height) with 95% reliability

LiDAR:

Light detection and ranging (same as laser scanning)

METI:

Japanese Ministry of Trade and Industry

MOMRA:

Saudi Arabian Ministry of Municipalities and Rural Affairs

NGA:

National Geospatial-Intelligence Agency, USA

NMAD:

Normalized median absolute deviation for height

NTT:

Nippon Telegraph and Telephone

RESTEC:

Remote Technology Center of Japan

RMSZ:

Root mean square of height

SRTM:

Shuttle radar topography mission

SZ:

Standard deviation of height

TDM90:

TanDEM-X height model reduced to 90 m point spacing

USGS:

United States Geological Survey

UAV:

Unmanned aerial vehicle

References

  • ALOS World 3 DEM. https://www.aw3d.jp/en/. Accessed January 2019

  • Baade J, Schmullius C (2016) TanDEM-X IDEM precision and accuracy assessment based on a large assembly of differential GNSS measurements in Kruger National Park, South Africa. ISPRS JPRS 119:496–508

    Google Scholar 

  • Ballhorn U, Jubanski J, Siegert F (2011) iCESat/GLAS Data as a Measurement Tool for Peatland Topography and Peat Swamp Forest Biomass in Kalimantan, Indonesia. Remote Sens 3:1957–1982

    Article  Google Scholar 

  • Baudoin A,Schroeder M, Valorge C, Bernard M, Rudowski V (2004) The HRS-SAP initiative: a scientific assessment of the high resolution stereoscopic instrument on board of SPOT 5 by ISPRS investigators. In: Proceedings of ISPRS 2004, IAPRS XXXV part 1, pp 372–378

  • Bayburt S, Kurtak AB, Büyüksalih G, Jacobsen K (2017) Geometric accuracy analysis of WorldDEM in relation to AW3D30, SRTM and ASTER GDEM2, ISPRS hannover workshop 2017, IAPRS, XLII-1/W1, pp 211–217

  • Buyuksalih G, Kocak G, Jacobsen K (2004) Quality assessment of DEM derived from the SRTM X- and C-band data: a case study for rolling topography and dense forest cover, 3rd workshop of EARSeL SIG on “Remote Sensing for Developing Countries”, Cairo 2004

  • Gesch DB, Zhang MJ, Meyer D, Danielson JH (2016) Validation of the ASTER global digital elevation model Version 2 over the conterminous United States. IAPRS XXXIX-B4:281–286

    Google Scholar 

  • Höhle J, Höhle M (2009) Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J Photogramm Remote Sens 64:398–406

    Article  Google Scholar 

  • Jacobsen K (2004) DEM generation by SPOT HRS, ISPRS Congress, Istanbul 2004, Int. Arch IAPRS XXXV:439–444 (B1, Com1)

    Google Scholar 

  • Jacobsen K (2006) ISPRS-ISRO Cartosat-1 scientific assessment programme (C-SAP) technical report—test areas Mausanne and Warsaw, ISPRS Com IV, Goa 2006. IAPRS 36(4):1052–1056

    Google Scholar 

  • Jacobsen K (2010) Comparison of ASTER GDEMs with SRTM height models, EARSeL symposium 2010, Paris, pp 521–526

  • Jacobsen K (2013) Characteristics of Airborne and Spaceborne height models, EARSeL Symposium Matera. http://www.earsel.org/symposia/2013-symposium-Matera/proceedings.php. Accessed January2019

  • Jacobsen K (2016) Analysis and correction of systematic height model errors. ISPRS Arch Vol XLI-B1:333–339

    Google Scholar 

  • JCGM 100:2008. Evaluation of measurement data—guide to the expression of uncertainty in measurement. http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf. Accessed January 2019

  • Mukul M, Srivastava V, Mukul M (2016) Accuracy analysis of the 2014–2015 Global Shuttle Radar Topography Mission (SRTM) 1 arc-sec C-Band height model using International Global Navigation Satellite System Service (IGS) Network. J Earth Syst Sci 125:909–917

    Article  Google Scholar 

  • Rizzoli P et al (2017) Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS JPRS 132:119–139

    Google Scholar 

  • Rodríguez E, Morris CS, Belz JE, Chapin EC, Martin JM, Daffer W, Hensley S (2003) An assessment of the SRTM topographic products. https://www2.jpl.nasa.gov/srtm/SRTM_D31639.pdf. Accessed January 2019

  • Smith RG, Berry P (2011) Evaluation of the differences between the SRTM and satellite radar altimetry height measurements and the approach taken for the ACE2 GDEM in areas of large disagreement. J Environ Monit 2011(13):1646–1652

    Article  Google Scholar 

  • Sörgel U, Jacobsen K, Schack L (2013) TanDEM-X mission: overview and evaluation of intermediate results, photogrammetric weeks 2013

  • Tadono T, Ishida H, Oda F, Naito S, Minakawa K, Iwamoto H (2014) Precise global DEM generation by ALOS PRISM, ISPRS annals of the photogrammetry. Remote Sens Spat Inf Sci 2(4):71

    Google Scholar 

  • Takaku J, Tadono T, Tsutsui K (2014) Generation of high resolution global DSM from ALOS PRISM, the international archives of the photogrammetry. Remote Sens Spat Inf Sci, Volume XL-4, 2014

  • Tetsushi T, Manabu K, Akira I, Gesch D, Oimoen M, Zhang Z, Danielson J, Krieger T, Curtis B, Haase J, Abrams M, Crippen R, Carabajal C (2011) ASTER global digital elevation model Version 2—summary of validation results. https://lpdaacaster.cr.usgs.gov/GDEM/Summary_GDEM2_validation_report_final.pdf. Accessed January 2019

  • Wessel B, Huber M, Wohlfahrt C, Marschalk U, Kosmann D, Roth A (2018) Accuracy assessment of the global TanDEM-X digital elevation model with GPS data. ISPRS JPRS 139:171–182

    Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of parts of this research through the Research Group Project no. RGP-VPP-275.

Funding

King Saud University (The Research Group Project no. RGPVPP-275, the Deanship of Scientific Research, King Saud University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abdullah Aldosari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldosari, A.A., Jacobsen, K. Quality of Height Models Covering Large Areas. PFG 87, 177–190 (2019). https://doi.org/10.1007/s41064-019-00072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41064-019-00072-1

Keywords

Navigation