Advertisement

Monitoring Flooding Damages in Vegetation Caused by Mining Activities Using Optical Remote Sensing

  • Virginia E. García Millán
  • Ulrike Faude
  • Alexandra Bicsan
  • Adrian Klink
  • Sebastian Teuwsen
  • Kian Pakzad
  • Andreas Müterthies
Original Article
  • 86 Downloads

Abstract

Ground removal during the mineral extraction in mine galleries provokes permanent changes in ground compacting during mine exploitation and after mine closure. In extreme cases, the loss of cohesion in ground layer over mines causes surface subsidence and eventually the emergence of flooded areas on the surface. Mining companies are obligated to the surveillance and mending of damages caused by the mines during and after the exploitation of the mine. For that reason, it is necessary to determine accurately if the causes of a flooding are related to their activity or to other causes. The objective of the present study is to locate mine-related flooding using a two-step workflow that involves remote sensing data. First, a screening on water bodies was applied using multispectral data at landscape level followed by a multi-temporal analysis to detect changes in the distribution of water bodies. A second step addressed the differentiation of mine-related flooded areas from other dynamic water bodies using high-resolution hyperspectral data over vegetation affected by flooding. The proposed workflow reduces costs of monitoring for mining companies by identifying potential flooding areas, while an exhaustive study can be done in few selected areas to assure the causes of the flooding using technology that is more sophisticated. Even though supervision by experts is required at some steps of the workflow, the proposed methods can be integrated in a geoportal to permit a broad spectrum of users the access to the information.

Keywords

Airborne Flooding Hyperspectral Mining Multispectral Multi-temporal Vegetation damage 

Zusammenfassung

Monitoring potentiell von Bergbauaktivitäten hervorgerufener Vernässungsschäden der Vegetation mittels optischer Fernerkundungsverfahren. Zur Unterstützung der Umsetzung rechtlicher Vorgaben wurden in GMES4Mining mit Blick auf das Monitoring von potentiellen Auswirkungen des Bergbaus die Potenziale innovativer Fernerkundungsmethoden untersucht. Sowohl in der aktiven Phase als auch in der des Nachbergbaus kann es in den umliegenden Regionen zu Veränderungen der Kompaktheit der über den Abbauhorizonten gelegenen Gesteinsschichten, und somit zu Bodenbewegungen kommen. In extremen Fällen können sich durch die Zusammenhänge der geologischen und bergbaulichen Strukturen untereinander Ereignisse wie Tagesbrüche oder Vernässungsgebiete an der Landoberfläche abzeichnen. Bergbauunternehmen sind verpflichtet, Bergbauschäden zu überwachen und zu regulieren, sowohl während als auch nach Abschluss der Phase der Bergbauaktivitäten. Dazu ist es notwendig, genau zu ermitteln, ob die Gründe der Bodenbewegung, Überflutung bzw.Vernässung aus den Phasen des Bergbaus resultieren oder aber einen natürlichen Ursprung haben. Das Ziel der vorliegenden Studie ist das Lokalisieren solcher potentiell bergbaubedingter Vernässungs- bzw. Überflutungsgebiete durch die Anwendung eines zweistufigen Verfahrens, das maßgeblich modernste Fernerkundungsdaten und -verfahren nutzt. In der ersten Stufe erfolgt ein Screening multispektraler Fernerkundungsdaten mittlerer Auflösung, um oberflächliche Gewässerflächen zu finden. Danach werden mit Hilfe einer multitemporalen Analyse die Wasserflächen detektiert, die sich bezüglich ihrer oberflächlichen Ausdehnung betrachtet über den Beobachtungszeitraum verändert haben. In einem zweiten Schritt werden hochauflösende Hyperspektraldaten verwendet, um die Vegetation im Bereich der detektierten Gewässerflächen zu lokalisieren, deren Zustand durch die Vernässungsgebiete beeinflusst ist. Dies und die Parameter aus dem jeweiligen lokalen Bergbau dienen zur Verifizierung der detektierten Gebiete und zur Untersuchung, ob die Vernässungen bergbaubedingt seien können oder nicht. Der vorgeschlagene Workflow reduziert die Kosten eines Monitorings, da zuerst potentielle Überflutungsgebiete identifiziert werden, und nur diese in einem zweiten Schritt durch eine genauere Untersuchung mit hochauflösenden Daten hinsichtlich der Ursache verifiziert werden. Zudem kann die vorgestellte Methodik in ein Geoportal integriert werden und somit für ein breites Spektrum von Nutzern wie Behörden, Institutionen und Unternehmen, aber auch der Öffentlichkeit zugänglich gemacht werden. Trotzdem ist die Überwachung einiger Schritte im Workflow durch Spezialisten und die Expertise von Fachleuten aus dem Bergbau für das Ergebnis des Monitorings notwendig.

Notes

Acknowledgements

This project is supported by funds from the EU and North Rhine-Westphalia. Additionally, we would like to thank Ruhrkohle Aktien Gesellschaft (RAG), RWE and the Regionalverband Ruhr (RVR) for providing images and information about the flooding process in the test site.

References

  1. Adam E, Mutanga O, Rugege D (2010) 2010: multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetl Ecol Manag 18(3):281–296CrossRefGoogle Scholar
  2. Akiwumi FA, Butler DR (2008) Mining and environmental change in Sierra Leone, West Africa: a remote sensing and hydrogeomorphological study. Environ Monit Assess 142(1):309–318CrossRefGoogle Scholar
  3. Baatz M, Schäpe A (2000) Multiresolution segmentation—an optimization approach for high quality multi-scale image segmentation. In: Beiträge zum AGITSyposium Salzburg 2000. WichmannGoogle Scholar
  4. Belluco E, Camuffo M, Ferrari S, Modenese L, Silvestri S, Marani A, Marani M (2006) Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing. Remote Sens Environ 105(1):54–67CrossRefGoogle Scholar
  5. Benecke N, Zimmermann K, Müterthies A, Pakzad K, Stephan S, Kateloe J, Preusse A, Pebesma E, Prinz T (2012) GMES4Mining—Innovative Geoservices for Exploration and Monitoring of Mining Areas. In: Proceedings of the 7th International Symposium AIMS 2012, Aachen (2012) (in press) Google Scholar
  6. Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65(1):2–16CrossRefGoogle Scholar
  7. Bochow M, Heim B, Küster T, Rogass C, Bartsch I, Segl K, Kaufmann H (2012) On the use of airborne imaging spectroscopy data for the automatic detection and delineation of surface water bodies. In: Remote sensing of planet earth, pp 1–22Google Scholar
  8. Bowen IS (1926) The ratio of heat losses by conduction and by evaporation from any water surface. Phys Rev 27(6):779CrossRefGoogle Scholar
  9. Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7):1145–1159Google Scholar
  10. Brüggemeier F-J (1994) A nature fit for industry: the environmental history of the Ruhr Basin, 1840–1990. Environ Hist Rev 18(1):35–54CrossRefGoogle Scholar
  11. Busch W, Coldewey WG, Walter D, Wesche D, Tielmann I (2012) Analyse von Senkungserscheinungen außerhalb prognostizierter bergbaulicher Einwirkungsbereiche des Bergwerks Prosper-Haniel. Gutachten der TU Clausthal und der WWU Münster vom 31.08.2012 im Auftrag der Bezirksregierung Arnsberg (Abt. 6), Clausthal-ZellerfeldGoogle Scholar
  12. Chevrel S, Kuosmannen V, Belocky R, Marsh S, Tukianiene T, Mollat H, Quental L, Vosen P, Schumacher V, Kuronen E, Aastrup P (2001) Hyperspectral airborne imagery for mapping mining-related contaminated areas in various European environments–first results of the MINEO project. In: 5th International Airborne Remote Sensing Conference, vol 17, p 20Google Scholar
  13. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing Environ 37(1):35–46Google Scholar
  14. Devleeschouwer X, Declercq P-Y, Flamion B, Julien V (2008) Uplift revealed by radar interferometry around Liège (Belgium): a relation with rising mining groundwater. In: Proceedings of the Post-Mining Symposium, pp 6–8Google Scholar
  15. DIRECTIVE 2006/21/EC (2006) Directive on the management of waste from extractive industries. Official Journal of the European Union, L012, LuxemburgoGoogle Scholar
  16. Dzegniuk B, Hejmanowski R, Sroka A (1997) Evaluation of the damage hazard to building objects on the mining areas considering the deformation course in time. In: Proceedings of Xth international congress of the international society for mine surveying, pp 2-6Google Scholar
  17. Dittmann C, Vosen P, Brunn A (2002) Assessing and monitoring the environmental impact of mining activities in Europe using advanced Earth Observation techniques. In: MINEO (Central Europe) environment test site in Germany. Contamination/impact mapping and modelling. Final reportGoogle Scholar
  18. Dong Y, Fu B, Ninomiya Y (2009) Geomorphological changes associated with underground coal mining in the Fushun area, northeast China revealed by multitemporal satellite remote sensing data -. Int J Remote Sens 30(18):4767–4784CrossRefGoogle Scholar
  19. Fischer C, Busch W (2002) Monitoring of environmental changes caused by hard-coal mining. In: Proc. SPIE, pp 64–72Google Scholar
  20. Fischer C, Kakoulli I (2006) Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications. Stud Conserv 51(sup1):3–16CrossRefGoogle Scholar
  21. Galloway DL, Jones DR, Ingebritsen SE (1999) Land subsidence in the United States, vol 1182. US Geological SurveyGoogle Scholar
  22. García Millán VE, Müterthies A, Pakzad K, Teuwsen S, Benecke N, Zimmermann K, Kateloe HJ, Preusse A, Helle K, Knoth C (2014) GMES4Mining: GMES-based Geoservices for Mining to Support Prospection and Exploration and the Integrated Monitoring for Environmental Protection and Operational Security. BHM Berg-und Hüttenmännische Monatshefte 159(2):66–73Google Scholar
  23. Giersch H, Paqué KH, Schmieding H (1992) The fading miracle: four decades of market economy in Germany. Cambridge University Press, Cambridge, UKGoogle Scholar
  24. Green AA, Berman M, Switzer P, Craig MD (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on geoscience and remote sensing, vol 26, pp 65–74Google Scholar
  25. Guéguen Y, Deffontaines B, Fruneau B, Al Heib M, De Michele M, Racoules D, Guise Y, Planchenault J (2009) Monitoring residual mining subsidence of Nord/Pas-de-Calais coal basin from differential and Persistent Scatterer Interferometry (Northern France). J Appl Geophys 69(1):24–34Google Scholar
  26. Hunt ER, Rock BN (1989) Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens Environ 30(1):43–54CrossRefGoogle Scholar
  27. Jin X, Paswaters S, Cline H (2009) A comparative study of target detection algorithms for hyperspectral imagery. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV. Proceedings of SPIE, vol 7334, pp 73341W1–73341W12Google Scholar
  28. Kratzsch H (1983) 1983: Mining subsidence engineering. Springer, BerlinCrossRefGoogle Scholar
  29. Kruse FA, Lefkoff AB, Boardman JB, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz AFH (1993) The Spectral Image Processing System (SIPS)—Interactive Visualization and Analysis of Imaging Spectrometer Data. In: Remote Sensing of Environment. Special issue on AVIRIS, May–June, vol 44, pp 145–163Google Scholar
  30. Latifovic R, Fytas K, Chen J, Paraszczak J (2005) Assessing land cover change resulting from large surface mining development. Int J Appl Earth Obs Geoinf 7(1):29–48CrossRefGoogle Scholar
  31. Pradhan B (2010) Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J Spatial Hydrol 9:1–18Google Scholar
  32. Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl Opt 36(33):8710–8723CrossRefGoogle Scholar
  33. Preusse A, Kateloe HJ, Sroka A, Hegemann M (2008) Technical Assessment of Subsequent Burdens due to Hard Coal Mining. In: 27th International Conference on Ground Control in Mining. ICGCM. Morgantown, WV, USAGoogle Scholar
  34. Rapideye AG (2011) Satellite imagery product specifications. Satellite Imagery Product Specifications: VersionGoogle Scholar
  35. Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81(2):337–354CrossRefGoogle Scholar
  36. Townsend PA, Helmers DP, Kingdon CC, McNeil BE, de Beurs KM, Eshleman KN (2009) Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series. Remote Sens Environ 113(1):62–72CrossRefGoogle Scholar
  37. Tucker CJ (1980) Remote sensing of leaf water content in the near infrared. Remote Sens Environ 10(1):23–32CrossRefGoogle Scholar
  38. Van Hengel W, Spitzer D (1991) Multi-temporal water depth mapping by means of Landsat TM. Int J Remote Sens 12:703–712CrossRefGoogle Scholar
  39. Wiemker R, Hepp T (1994) Surface orientation invariant matching of spectral signatures. In: Proceedings-Spie The International Society for Optical Engineering. SPIE International Society for Optical, p 916Google Scholar
  40. Zhengfu BIAN, Inyang HI, Daniels JL, Frank OTTO, Struthers S (2010) Environmental issues from coal mining and their solutions. Min Sci Technol (China) 20(2):215–223CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation (DGPF) e.V. 2018

Authors and Affiliations

  • Virginia E. García Millán
    • 1
  • Ulrike Faude
    • 1
  • Alexandra Bicsan
    • 1
  • Adrian Klink
    • 1
  • Sebastian Teuwsen
    • 1
  • Kian Pakzad
    • 1
  • Andreas Müterthies
    • 1
  1. 1.EFTAS Fernerkundung, GmbHMünsterGermany

Personalised recommendations