, 4:6 | Cite as

Paleo-sea ice distribution and polynya variability on the Kara Sea shelf during the last 12 ka

  • Tanja HörnerEmail author
  • Ruediger Stein
  • Kirsten Fahl
Original Article
Part of the following topical collections:
  1. PAST Gateways


The Kara Sea is an important area for paleo-climatic research since sea ice and brine formation take place on its shelf—two processes inducing supra-regional climatic implications and thereby connecting regional environmental variability with global climatic conditions. To gain information about past sea ice coverage and variations, three sediment cores distributed in the southern and central parts of the marginal Sea were investigated. By applying the sea ice biomarker IP25 and the PIP25 index [phytoplankton biomarker (dinosterol)-IP25 index] post-glacial sea ice variability could be detected in the central Kara Sea (Core BP00-36/4), with most intense sea ice cover between 12.4 and 11.8 ka coinciding with the Younger Dryas (12.9–11.6 ka), and reduced sea ice cover between 10 and 8 ka during the Holocene Thermal Maximum. During the last ~ 7 ka, increasing sea ice indicators might indicate a Holocene cooling trend, probably induced by declining summer insolation. Furthermore, temporal changes in the fast ice—polynya distribution in the southern Kara Sea were detected: expanding fast ice during the late Holocene and a cyclic short-term Holocene climate variability documented by abrupt changes in the sea ice coverage at the BP00-07/7 core site. Core BP99-04/7 from the Yenisei estuary recorded consistently seasonal sea ice cover since ~ 9.3 ka, apart from five short phases of fast ice expansion to the core site. The strong influence of river run-off as well as estuary processes might prevent the detection of (short-term) climatic signals at this study site.


Sea ice Arctic Ocean Kara Sea Biomarker Holocene Polynya 



We thank all members of the expeditions with RV Akademik Boris Petrov (BP99 and BP00; part of a German–Russian research project Siberian River Run-off (SIRRO), funded by the Federal Ministry of Education and Research) for providing the sediment material. Financial support by the Federal Ministry of Education and Research (Transdrift, Grant-No. 03G0833B) and the Alfred Wegener Institute is gratefully acknowledged. Thanks to Simon Belt and colleagues (Biogeochemistry Research Centre, University of Plymouth) for providing the internal standard for IP25 analysis.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

41063_2018_40_MOESM1_ESM.pdf (94 kb)
Supplementary material 1 (PDF 93 KB)
41063_2018_40_MOESM2_ESM.pdf (87 kb)
Supplementary material 2 (PDF 87 KB)
41063_2018_40_MOESM3_ESM.pdf (93 kb)
Supplementary material 3 (PDF 93 KB)


  1. 1.
    Dieckmann GS, Hellmer HH (2008) The importance of sea ice: an overview. In: Thomas DN, Diekmann GS (eds) Sea ice: an introduction to its physics, chemistry, biology, and geology. Blackwell Science, Oxford, pp 1–21Google Scholar
  2. 2.
    Loeb V, Siegel V, Holm-Hansen O, Hewitt R, Fraser W, Trivelplece W, Trivelplece S (1997) Effects of sea ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900Google Scholar
  3. 3.
    Overland JE, Wang M (2010) Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62:1–9Google Scholar
  4. 4.
    Stein R (2008) Proxies used for palaeoenvironmental reconstructions in the Arctic Ocean. In Stein R Arctic Ocean sediments: processes, proxies, and paleoenvironment, vol 2. Elsevier, Amsterdam, pp 133–243Google Scholar
  5. 5.
    Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35(1):L01703. CrossRefGoogle Scholar
  6. 6.
    Francis JA, Hunter E, Key JR, Wang X (2005) Clues to variability in Arctic minimum sea ice extent. Geophy Res Lett 32(L21):L21501. CrossRefGoogle Scholar
  7. 7.
    Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GV, Nagurnyi AP, Zakharov VF, Bobylev LP, Pettersson LH (2004) Arctic climate change: observed and modelled temperature and sea ice variability. Tellus A 56:328–341Google Scholar
  8. 8.
    Kwok R, Rothrock D (2009) Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys Res Lett 36:L15501. CrossRefGoogle Scholar
  9. 9.
    Miller GH, Brigham-Grette J, Alley RB, Anderson L, Bauch HA, Douglas MSV, Edwards ME, Elias SA, Finney BP, Fitzpatrick JJ, Funder SV, Herbert TD, Hinzman LD, Kaufman DS, MacDonald GM, Polyak L, Robock A, Serreze MC, Smol JP, Spielhagen RF, White JWC, Wolfe AP, Wolff EW (2010) Temperature and precipitation history of the Arctic. Quat Sci Rev 29:1679–1715Google Scholar
  10. 10.
    Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea ice cover. Science 315:1533–1536Google Scholar
  11. 11.
    Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501. CrossRefGoogle Scholar
  12. 12.
    Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change 110:1005–1027Google Scholar
  13. 13.
    Rachold V, Eicken H, Gordeev VV, Grigoriev MN, Hubberten HW, Lisitzin AP, Shevchenko VP, Schirmeister L (2004) Modern terrigenous organic carbon input to the Arctic Ocean. In: Stein R, Macdonald RW (eds) The Arctic Ocean organic carbon cycle: present and past. Springer, Berlin, pp 33–56Google Scholar
  14. 14.
    Dmitrenko I, Golovin P, Gribanov V, Kassens H, Höleman J (1998) Influence of the summer river runoff on ice formation in the Kara and Laptev seas. In: Shen HT (ed) Ice in surface waters. Balkema, Rotterdam, pp 251–257Google Scholar
  15. 15.
    Eicken H, Reimnitz E, Alexandrov V, Martin T, Kassens H, Viehoff T (1997) Sea-ice processes in the Laptev Sea and their importance for sediment export. Cont Shelf Res 17:205–233Google Scholar
  16. 16.
    Broecker WS (1997) Thermohaline circulation, the achilles heel of our climate system: will man-made CO2 upset the current Balance? Science 278(5343):1582–1588Google Scholar
  17. 17.
    Lisitzin AP (1995) The marginal filter of the ocean. Oceanology 34(5):671–682Google Scholar
  18. 18.
    Dittmers K, Niessen F, Stein R (2003) Holocene sediment budget and sedimentary history for the Ob and Yenisei estuaries. In Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian River run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance, proceedings in marine sciences. Elsevier, Amsterdam, pp 457–488Google Scholar
  19. 19.
    Stein R, Fahl K, Dittmers K, Niessen F, Stepanets OV (2003) Holocene siliciclastic and organic carbon fluxes in the Ob and Yenisei estuaries and the adjacent inner Kara Sea: quantification, variability, and paleoenvironmental implications. In Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. Proceedings in Marine Sciences. Elsevier, Amsterdam, pp 401–434Google Scholar
  20. 20.
    Stein R, Dittmers K, Fahl K, Kraus M, Matthiessen J, Niessen F, Pirrung M, Polyakova Y, Schoster F, Steinke T, Fütterer DK (2004) Arctic (palaeo) river discharge and environmental change: evidence from Holocene Kara Sea sedimentary records. Quat Sci Rev 23:1485–1511Google Scholar
  21. 21.
    Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642Google Scholar
  22. 22.
    Bauch HA, Mueller-Lupp T, Taldenkova E, Spielhagen RF, Kassens H, Grootes PM, Thiede J, Heinemeier J, Petryashov VV (2001) Chronology of the Holocene transgression at the North Siberian margin. Glob Planet Change 31:125–139Google Scholar
  23. 23.
    Jakobsson M, Mayer LA, Coakley B, Dowdeswell JA, Forbes S, Fridman B, Hodnesdal H, Noormets R, Pedersen R, Rebesco M, Schenke H-W, Zarayskaya Y, Accettella D, Armstrong A, Anderson RM, Bienhoff P, Camerlenghi A, Church I, Edwards M, Gardner JV, Hall JK, Hell B, Hestvik OB, Kristoffersen Y, Marcussen C, Mohammad R, Mosher D, Nghiem SV, Pedrosa MT, Travaglini PG, Weatherall P (2012) The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophys Res Lett 39:L12609Google Scholar
  24. 24.
    Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) (2003) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. Proceedings in Marine Sciences. Elsevier, AmsterdamGoogle Scholar
  25. 25.
    Volkov V, Johannessen O, Borodachev V, Voinov G, Pettersson L, Bobylev L, Kouraev A (2002) Polar seas oceanography. An integrated case study of the Kara Sea. Springer, LondonGoogle Scholar
  26. 26.
    Divine D, Korsnes R, Makshtas A (2004) Temporal and spatial variations of shore-fast ice in the Kara Sea. Cont Shelf Res 24(15):1717–1736Google Scholar
  27. 27.
    Chapman D (1999) Dense water formation beneath a time dependent coastal Polynya. J Phys Oceanogr 29:807–820Google Scholar
  28. 28.
    Martin S, Cavalieri D (1989) Contributions of the Siberian shelf polynyas to the Arctic Ocean intermediate and deep water. J Geophys Res 94(C9):12725–12738Google Scholar
  29. 29.
    Reimnitz E, Dethleff D, Nürnberg D (1994) Contrasts in Arctic shelf sea-ice regimes and some implications: Beaufort Sea versus Laptev Sea. Mar Geol 119:215–225Google Scholar
  30. 30.
    Dethleff D, Loewe P, Kleine E (1998) The Laptev sea flaw lead-detailed investigation on ice formation and export during 1991/1992 winter season. Cold Regions Sci Technol 27:225–243Google Scholar
  31. 31.
    Eicken H, Viehoff T, Martin T, Kolatschek J, Alexandrov V, Reimnitz E (1995) Studies of clean and sediment-laden ice in the Laptev Sea. Rep Polar Res 176:62–70Google Scholar
  32. 32.
    Reimnitz E, Kassens H, Eicken H (1995) Sediment transport by Laptev Sea ice. Rep Polar Res 176:71–77Google Scholar
  33. 33.
    Willmes S, Heinemann G (2016) Sea-ice Wintertime lead frequencies and regional characteristics in the Arctic, 2003–2015. Remote Sens 8:4Google Scholar
  34. 34.
    Seager R, Battisti DS, Yin J, Gordon N, Naik N, Clement AC, Cane MA (2002) Is the Gulf Stream responsible for Europe’s mild winters? Q J Royal Meteorol Soc 128:2563–2586Google Scholar
  35. 35.
    Holland MM, Finnis J, Serreze MC (2006) Simulated Arctic Ocean freshwater budgets in the 20th and 21st centuries. J Clim 19:6221–6242Google Scholar
  36. 36.
    Dyke A, England J, Reimnitz E, Jetté H (1997) Changes in driftwood delivery to the Canadian Arctic Archipelago: the hypothesis of postglacial oscillations of the transpolar drift. ARCTIC 50(1):1–16Google Scholar
  37. 37.
    Funder S, Goosse H, Jepsen H, Kaas E, Kjaer KH, Korsgaard NJ, Larsen NK, Linderson H, Lysa A, Moller P, Olsen J,Willerslev E (2011) A 10,000-year record of Arctic Ocean sea-ice variability—view from the beach. Science 333(6043):747–750Google Scholar
  38. 38.
    Darby DA, Ortiz JD, Grosch CE, Lund SP (2012) 1,500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift. Nat Geosci 5(12):897–900Google Scholar
  39. 39.
    Smith WO, Barber DG (2007) Polynyas and climate change: a view to the future. In: Smith WO, Barber DG (eds) Polynyas: windows to the world, Elsevier oceanography series, vol 74. Elsevier, pp 411–419Google Scholar
  40. 40.
    Werner K, Spielhagen RF, Bauch D, Hass HC, Kandiano E (2013) Atlantic Water advection versus sea-ice advances in the eastern Fram Strait during the last 9 ka: multiproxy evidence for a two-phase Holocene. Paleoceanography 28(2):283–295Google Scholar
  41. 41.
    Belt ST, Massé G, Rowland SJ, Poulin M, Michel C, LeBlanc B (2007) A novel chemical fossil of palaeo sea ice: IP25. Org Geochem 38:16–27Google Scholar
  42. 42.
    Müller J, Wagner A, Fahl K, Stein R, Prange M, Lohmann G (2011) Towards quantitative sea ice reconstructions in the northern North Atlantic: a combined biomarker and numerical modelling approach. Earth Planet Sci Lett 306:137–148Google Scholar
  43. 43.
    Brown TA, Belt ST, Tatarek A, Mundy CJ (2014) Source identification of the Arctic sea ice proxy IP25. Nat Commun 5:4197Google Scholar
  44. 44.
    Navarro-Rodriguez A, Belt ST, Knies J, Brown TA (2013) Mapping recent sea ice conditions in the Barents Sea using the proxy biomarker IP25: implications for palaeo sea ice reconstructions. Quat Sci Rev 79:26–39. CrossRefGoogle Scholar
  45. 45.
    Xiao X, Fahl K, Müller J, Stein R (2015) Sea-ice distribution in the modern Arctic Ocean: biomarker records from Trans-Arctic Ocean surface sediments. Geochim Cosmochim Acta 155:16–29Google Scholar
  46. 46.
    Smik L, Cabedo-Sanz P, Belt ST (2016) Semi-quantitative estimates of paleo Arctic sea ice concentration based on source-specific highly branched isoprenoid alkenes: a further development of the PIP25 index. Org Geochem 92:63–69Google Scholar
  47. 47.
    Belt ST, Cabedo-Sanz P, Smik L, Navarro-Rodriguez A, Berben SM, Knies J, Husum K (2015) Identification of paleo Arctic winter sea ice limits and the marginal ice zone: optimised biomarker-based reconstructions of late Quaternary Arctic sea ice. Earth Planet Sci Lett 431:127–139Google Scholar
  48. 48.
    Stein R, Fahl K, Gierz P, Niessen F, Lohmann G (2017) Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial. Nat Commun 8:373. CrossRefGoogle Scholar
  49. 49.
    Stein R, Fahl K, Müller J (2012) Proxy reconstruction of Arctic Ocean sea ice history: “From IRD to IP25”. Polarforschung 82:37–71Google Scholar
  50. 50.
    Belt ST, Müller J (2013) The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quat Sci Rev 79:9–25Google Scholar
  51. 51.
    Müller J, Massé G, Stein R, Belt ST (2009) Variability of sea ice conditions in the Fram Strait over the past 30,000 years. Nat Geosci 2:772–776Google Scholar
  52. 52.
    Müller J, Werner K, Stein R, Fahl K, Moros M, Jansen E (2012) Holocene cooling culminates in sea ice oscillations in Fram Strait Quat Sci Rev 47:1–14Google Scholar
  53. 53.
    Vare LL, Massé G, Gregory TR, Smart CW, Belt ST (2009) Sea ice variations in the central Canadian Arctic Archipelago during the Holocene. Quat Sci Rev 28(13):1354–1366Google Scholar
  54. 54.
    Fahl K, Stein R (2012) Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea ice cover: new insights from biomarker proxy records. Earth Planet Sci Lett 351/352:123–133Google Scholar
  55. 55.
    Cabedo-Sanz P, Belt ST, Knies J, Husum K (2013) Identification of contrasting seasonal sea ice conditions during the Younger Dryas. Quat Sci Rev 79:74–86Google Scholar
  56. 56.
    Stein R, Fahl K (2013) Biomarker proxy IP25 shows potential for studying entire Quaternary Arctic sea-ice history. Org Geochem 55:98–102. CrossRefGoogle Scholar
  57. 57.
    Berben SMP, Husum K, Cabedo-Sanz P, Belt ST (2014) Holocene sub-centennial evolution of Atlantic water inflow and sea ice distribution in the western Barents Sea. Clim Past 10:181–198Google Scholar
  58. 58.
    Knies J et al (2014) The emergence of modern sea ice cover in the Arctic Ocean. Nat Commun 5:1–5. CrossRefGoogle Scholar
  59. 59.
    Müller J, Stein R (2014) High-resolution record of late glacial and deglacial sea ice changes in Fram Strait corroborates ice-ocean interactions during abrupt climate shifts. Earth Planet Sci Lett 403:446–455Google Scholar
  60. 60.
    Xiao X, Stein R, Fahl K (2015) MIS 3 to MIS 1 temporal and LGM spatial variability in Arctic Ocean sea-ice cover: reconstruction from biomarkers. Paleoceanography. CrossRefGoogle Scholar
  61. 61.
    Hoff U, Rasmussen TL, Stein R, Ezat M, Fahl K (2016) Sea ice and millennial scale climate change in the Nordic seas 90 ka BP to Present. Nat Commun 7:12247. CrossRefGoogle Scholar
  62. 62.
    Méheust M, Stein R, Fahl K, Max L, Riethdorf JR (2015) High-resolution IP25-based reconstruction of sea ice variability in the western North Pacific and Bering Sea during the past 18,000 years. Geo Mar Lett 36:101–111Google Scholar
  63. 63.
    Stein R, Fahl K, Schreck M, Knorr G, Niessen F, Forwick M, Gebhardt C, Jensen L, Kaminski M, Kopf A, Matthiessen J, Jokat W, Lohmann G (2016) Evidence for ice-free summers in the late Miocene central Arctic Ocean. Nat Commun 7:11148. CrossRefGoogle Scholar
  64. 64.
    Stein R, Fahl K, Schade I, Manerung A, Wassmuth S, Niessen F, Nam SI (2017) Holocene variability in sea ice cover, primary production, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean). J Quat Sci 32:362–379Google Scholar
  65. 65.
    Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250Google Scholar
  66. 66.
    Stein R, Macdonald RW (2004) Geochemical proxies used for organic carbon source identification in Arctic Ocean Sediments. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer-Verlag, Berlin, pp 24–32Google Scholar
  67. 67.
    Huang WY, Meinschein WG (1976) Sterols as source indicators of organic material in sediments. Geochim Cosmochim Acta 40:323–330Google Scholar
  68. 68.
    Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9:83–99Google Scholar
  69. 69.
    Fahl K, Stein R (1997) Modern organic carbon deposition in the Laptev Sea and the adjacent continental slope: surface water productivity vs. terrigenous input. Org Geochem 26:379–390Google Scholar
  70. 70.
    Fahl K, Stein R (1999) Biomarkers as organic-carbon-source and environmental Indicators in the Late Quaternary Arctic Ocean: problems and perspectives. Mar Chem 63:293–309Google Scholar
  71. 71.
    Fahl K, Stein R (2007) Biomarker records, organic carbon accumulation, and river discharge in the Holocene southern Kara Sea (Arctic Ocean). Geo Mar Lett 27:13–25Google Scholar
  72. 72.
    Xiao X, Fahl K, Stein R (2013) Biomarker distributions in surface sediments from the Kara and Laptev seas (Arctic Ocean): indicators for organic-carbon sources and sea ice coverage. Quat Sci Rev 79:40–52Google Scholar
  73. 73.
    Volkman JK (2006) Lipid markers for marine organic matter. In: Volkman K (ed) Marine organic matter: biomarkers, isotopes and DNA. Springer, Berlin, pp 27–70Google Scholar
  74. 74.
    Volkman JK, Barrett SM, Dunstan GA, Jeffrey SW (1993) Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom. Org Geochem 20:7–15Google Scholar
  75. 75.
    Fahl K, Stein R, Gaye-Haake B, Gebhardt C, Kodina LA, Unger D, Ittekkot V (2003) Biomarkers in surface sediments from the Ob and Yenisei estuaries and southern Kara Sea: evidence for particulate organic carbon sources, pathways, and degradation. In: Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. Proceedings in Marine Sciences, vol 6. Elsevier, Amsterdam, pp 329–348Google Scholar
  76. 76.
    Stein R, Stepanets O (eds) (2000) Scientific cruise report of the joint Russian–German Kara-Sea expedition of RV ‘‘Akademik Boris Petrov’’ in 1999. Reports on Polar Research 360:141Google Scholar
  77. 77.
    Stein R, Stepanets O (eds) (2001) The German–Russian project on Siberian River Run-Off (SIRRO): scientific cruise report of the Kara Sea expedition ‘‘SIRRO 2000’’ of RV ‘‘Akademik Boris Petrov’’ and first results. Reports on Polar Marine Research 393:287Google Scholar
  78. 78.
    Simstich J, Stanovoy V, Bauch D, Erlenkeuser H, Spielhagen RF (2004) Holocene variability of bottom water hydrography on the Kara Sea shelf (Siberia) depicted in multiple single-valve analyses of stable isotopes in ostracods. Mar Geol 206:147–164Google Scholar
  79. 79.
    Stuiver M, Reimer PJ, Braziunas TF (1998) High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40:1127–1152Google Scholar
  80. 80.
    Mangerud J, Gulliksen S (1975) Apparent radiocarbon ages of recent marine shells from Norway, Spitsbergen, and Arctic Canada. Quat Res 5:273–296Google Scholar
  81. 81.
    Werner K, Sarnthein M (2016) Planktic Foraminifera record Early Holocene 14C Reservoir Ages in Arctic Gateway. EGU Gen Assem Conf Abstr 18:2657Google Scholar
  82. 82.
    Boucsein B, Stein R (2000) Particulate organic matter in surface sediments of the Laptev Sea (Arctic Ocean): application of maceral analysis as organic-carbon-source indicator. Mar Geol 162:573–586Google Scholar
  83. 83.
    Svendsen JI, Astakhov VI, Bolshiyanov DY, Demidov I, Dowdeswell JA, Gautallin V, Hjort C, Hubberten HW, Larsen E, Mangerud J, Melles M, Möller P, Saarnisto M, Siegert MJ (1999) Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian. Boreas 28(1):234–242Google Scholar
  84. 84.
    Polyak L, Gataullin V, Gainanov V, Gladysh V, Goremykin Y (2002) Kara Sea expedition yields insight into of LGM ice sheet. EOS 83:525–529Google Scholar
  85. 85.
    Stein R, Niessen F, Dittmers K, Levitan M, Schoster F, Simstich J, Steinke T, Stepanets OV (2002) Siberian river run-off and Late Quaternary glaciation in the southern Kara Sea, Arctic Ocean: preliminary results. Polar Res 21(2):315–322Google Scholar
  86. 86.
    Jakobsson M, Andreassen K, Bjarnadóttir LR, Dove D, Dowdeswell JA, England JH, Svend Funder S, Hogan K, Ingólfsson O, Jennings A, Larsen NK, Kirchner N, Landvik JY, Mayer L, Mikkelsen N, Möller P, Niessen F, Nilsson J, O’Regan M, Polyak L, Nørgaard-Pedersen N, Stein R (2014) Arctic Ocean glacial history. Quat Sci Rev 92:40–67Google Scholar
  87. 87.
    Stein R, MacDonald RW (eds) (2004) The organic carbon cycle in the Arctic Ocean. Springer, BerlinGoogle Scholar
  88. 88.
    Hörner T, Stein R, Fahl K (2017) Evidence for Holocene centennial variability in sea ice cover based on IP25 biomarker reconstruction in the southern Kara Sea (Arctic Ocean). GeoMar Lett 37(5):515–526Google Scholar
  89. 89.
    Polyakova YeI, Stein R (2004) Holocene paleoenvironmental implications of diatom and organic carbon records from the Southeastern Kara Sea (Siberian Margin). Quat Res 62:256–266Google Scholar
  90. 90.
    Laskar J, Robutel P, Joutel F, Gastineau M, Correia A, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285Google Scholar
  91. 91.
    Andersen KK, Azuma N, Barnola JM, Bigler M, Biscaye P, Caillon N, Chappellaz J, Clausen HB, Dahl-Jensen D, Fischer H, Flückiger J, Fritzsche D, Fujii Y, Goto-Azuma K, Grønvold K, Gundestrup NS, Hansson M, Huber C, Hvidberg CS, Johnsen SJ, Jonsell U, Jouzel J, Kipfstuhl S, Landais A, Leuenberger M, Lorrain R, Masson-Delmotte V, Miller H, Motoyama H, Narita H, Popp T, Rasmussen SO, Raynaud D, Röthlisberger R, Ruth U, Samyn D, Schwander J, Shoji H, Siggard-Andersen ML, Steffensen JP, Stocker T, Sveinbjörnsdottir AE, Svensson A, Takata M, Tison JL, Thorsteinsson T, Watanabe O, Wilhelms F, White J (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431(7005):147–151Google Scholar
  92. 92.
    Stuiver M, Grootes PM, Braziunas TF (1995) The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quat Res 44:341–354Google Scholar
  93. 93.
    Koç N, Jansen E, Haflidason H (1993) Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian seas through the last 14 ka based on diatoms. Quat Sci Rev 12:115–140Google Scholar
  94. 94.
    Hald M, Andersson C, Ebbesen H, Jansen E, Klitgaard-Kristensen D, Risebrobakken BR, Salomonsen GR, Sarnthein M, Sejrup HP, Telford RJ (2007) Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene. Quat Sci Rev 26:3423–3440Google Scholar
  95. 95.
    Risebrobakken B, Moros M, Ivanova EV, Chistyakova N, Rosenberg R (2010) Climate and oceanographic variability in the SW Barents Sea during the Holocene. The Holocene 20(4):609–621Google Scholar
  96. 96.
    Hörner T, Stein R, Fahl K, Birgel D (2016) Post-glacial variability of sea ice cover, river run-off and biological production in the western Laptev Sea (Arctic Ocean)—a high-resolution biomarker study. Quat Sci Rev 143:133–149Google Scholar
  97. 97.
    Andreev AA, Grosse G, Schirrmeister L, Kuznetsova TV, Kuzmina SA, Bobrov AA, Tarasov PE, Novenko EY, Meyer H, Derevyagin AY (2009) Weichselian and Holocene palaeoenvironmental history of the Bol’shoy Lyakhovsky Island, New Siberian Archipelago. Arct Sib Boreas 38:72–110Google Scholar
  98. 98.
    Kuzmina S, Sher A (2006) Some features of the Holocene insect faunas of northeastern Siberia. Quat Sci Rev 25:1790–1820Google Scholar
  99. 99.
    Rasmussen SO, Andersen KK, Svensson AM, Steffensen JP, Vinther BM, Clausen HB, Siggaard-Andersen M-L, Johnsen SJ, Larsen LB, Dahl-Jensen D, Bigler M, Röthlisberger R, Fischer H, Goto-Azuma K, Hansson ME, Ruth U (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res 111:D06102, CrossRefGoogle Scholar
  100. 100.
    Divine D, Korsnes R, Makshtas A, Godtliebsen F, Svendsen H (2005) Atmospheric-driven state transfer of shore-fast ice in the northeastern Kara Sea. J Geophys Res 110:C09013. CrossRefGoogle Scholar
  101. 101.
    Brown TA, Belt ST, Mundy C, Philippe B, Massé G, Poulin M (2011) Temporal and vertical variations of lipid biomarkers during a bottom ice diatom bloom in the Canadian Beaufort Sea: further evidence for the use of the IP25 biomarker as a proxy for spring Arctic sea ice. Polar Biol 34:1857–1868. CrossRefGoogle Scholar
  102. 102.
    Andreev AA, Klimanov VA (2000) Quantitative Holocene climatic reconstruction from Arctic Russia. J Paleolimnol 24:81–91Google Scholar
  103. 103.
    Andreev AA, Siegert C, Klimanov VA, Derevyagin AY, Shilova GN, Melles M (2002) Late Pleistocene and Holocene vegetation and climate on Taymyr Lowland, Northern Siberia. Quat Res 57:138–150Google Scholar
  104. 104.
    Vorobyova GA (1994) Paleoclimates around Lake Baikal in Pleistocene and the Holocene. In Baikal as a nature laboratory for global change, vol 2. Lisna, Irkutsk, pp 54–55Google Scholar
  105. 105.
    Forwick M, Vorren TO (2007) Holocene mass-transport activity and climate in outer Isfjorden, Spitsbergen: marine and subsurface evidence. The Holocene 17:707–716Google Scholar
  106. 106.
    Forwick M, Vorren TO (2009) Late Weichselian and Holocene sedimentary environments and ice rafting in Isfjorden, Spitsbergen. Palaeogeogr Palaeoclimatol Palaeoecol 280:258–274Google Scholar
  107. 107.
    Hald M, Ebbesen H, Forwick M, Godtliebsen F, Khomenko L, Korsun S, Olsen LR, Vorren TO (2004) Holocene paleoceanography and glacial history of the West Spitsbergen area, Euro-Arctic margin. Quat Sci Rev 23:2075–2088Google Scholar
  108. 108.
    Rasmussen TL, Forwick M, Mackensen A (2012) Reconstruction of inflow of Atlantic Water to Isfjorden, Svalbard during the Holocene: correlation to climate and seasonality. Mar Micropaleont 94/95:80–90Google Scholar
  109. 109.
    Taldenkova E, Bauch HA, Gottschalk J, Nikolaev S, Rostovtseva Y, Pogodina I, Ovsepyan Y, Kandiano E (2010) History of ice-rafting and water mass evolution at the northern Siberian continental margin (Laptev Sea) during Late Glacial and Holocene times. Quat Sci Rev 29:3919–3935Google Scholar
  110. 110.
    Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828Google Scholar
  111. 111.
    Hahne J, Melles M (1997) Late- and post-glacial vegetation and climate history of the south-western Taymyr Peninsula, central Siberia, as revealed by pollen analysis of a core from Lama Lake. Veg Hist Archaeobot 6:1–8Google Scholar
  112. 112.
    Hubberten H-W, Andreev A, Kuhnke T, Melles M, Siegert C (2001) The Late Quaternary climatic and environmental history of the Taymyr Peninsula, northern Central Siberia with special emphasis on the last 10,000 years. Terra Nostra 3:100–104Google Scholar
  113. 113.
    Kraus M, Matthiessen J, Stein R (2003) A high-resolution Holocene marine pollen record from the northern Yenisei Estuary (southeastern Kara Sea) and paleoenvironmental implications. In Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. Proceedings in Marine Sciences. Elsevier, Amsterdam, pp 435–456Google Scholar
  114. 114.
    Andrews JT, Helgadottir G, Geirsdottir A, Jennings AE (2001) Multicentury-scale records of carbonate (hydrographic?) variability on the northern Iceland margin over the last 5000 years. Quat Res 56:199–206Google Scholar
  115. 115.
    Nesje A, Matthews JA, Dahl SO, Berrisford MS, Andersson C (2001) Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records. Holocene 11:267–280Google Scholar
  116. 116.
    Seppä H, Birks HJB (2001) July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions. The Holocene 11:527–537Google Scholar
  117. 117.
    Viau AE, Gajewski K, Sawada MC, Fines P (2006) Millennial-scale temperature variations in North America during the Holocene. J Geophys Res 111:D09102Google Scholar
  118. 118.
    Lubinski DJ, Forman SL, Miller GH (1999) Holocene glacier and climate fluctuations on Franz Josef Land, Arctic Russia, 80°N. Quat Sci Rev 18(1):85–108Google Scholar
  119. 119.
    Grootes PM, Stuiver M, White JWC, Johnsen S, Jouzel J (1993) Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366:552–554Google Scholar
  120. 120.
    Andrews JT, Jennings AE, Moros M, Hillaire-Marcel C, Eberle D (2006) Is there a pervasive Holocene ice-rafted debris (IRD) signal in the northern North Atlantic? The answer appears to be either no, or it depends on the proxy! PAGES News 14/2:7–9Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Helmholtz Centre for Polar and Marine ResearchAlfred Wegener InstituteBremerhavenGermany
  2. 2.Helmholtz Centre Potsdam, GFZ German Research Centre for GeosciencesPotsdamGermany
  3. 3.MARUM and Faculty of GeosciencesUniversity of BremenBremenGermany

Personalised recommendations