Finite difference probabilistic slope stability analysis based on collocation-based stochastic response surface method (CSRSM)


Significant damage has been observed due to the landslide along the East–West motorway section, located near Ain Bouzian–El-Harrouch region, Northeast Algeria. In this paper, a probabilistic study was carried out to assess the stability of a slope, with a total height of 60 m and varying inclination angles. Two cases were considered with and without the presence of the groundwater table. To investigate the failure probability of the slope, the collocation-based stochastic response surface method was employed. The input random parameters were the Young modulus E, cohesion C, and friction angle φ, where probabilistic system response is the factor of safety. To identify the effective contribution of each random parameter in the variability of the system response, a global sensitivity analysis based on Sobol indices was conducted. Also, a parametric study was realized to inspect the effect of input geotechnical parameter variations on the reliability of slope stability. The result showed that the slope reliability analysis is strongly influenced by the inherent variability of friction angle and hydrogeological ground conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20


  1. 1.

    Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation, special report, vol 247. National Research Council, Transportation Research Board, Washington, pp 36–75.

  2. 2.

    Jaksa MB (1995) The influence of spatial variability on the geotechnical design properties of a stiff, overconsolidated clay. Ph.D. dissertation, The University of Adelaide, Adelaide

  3. 3.

    Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979.

    Article  Google Scholar 

  4. 4.

    Shahri AA (2016) An optimized artificial neural network structure to predict clay sensitivity in a high landslide prone area using piezocone penetration test (CPTu) data: a case study in southwest of Sweden. Geotech Geol Eng 34(2):745–758

    Article  Google Scholar 

  5. 5.

    El-Ramly H, Morgenstern NR, Cruden DM (2002) Probabilistic slope stability analysis for practice. Can Geotech J 39:665–683.

    Article  Google Scholar 

  6. 6.

    Eftekhari A, Taromi M, Saeidi M (2014) Uncertainties and complexities of the geological model in slope stability: a case study of Sabzkuh tunnel. Int J Min GeoEng 48(1):69–79

    Google Scholar 

  7. 7.

    Matsuo M, Kuroda K (1974) Probabilistic approach to design of embankments. Soils Found 14(2):1–17

    Article  Google Scholar 

  8. 8.

    Alonso EE (1976) Risk analysis of slopes and its application to slopes in Canadian sensitive clays. Géotechnique 26:453–472

    Article  Google Scholar 

  9. 9.

    Andrea RAD, Sangrey DA (1982) Safety factors for probabilistic slope design. J Geotech Eng 108(9):1108–1118

    Google Scholar 

  10. 10.

    Li KS, Lumb P (1987) Probabilistic design of slopes. Can Geotech J 24:520–531

    Article  Google Scholar 

  11. 11.

    Lacasse S, Nadim F (1996) Uncertainties in characterising soil properties. In: Shackelford CD et al (eds) Geotechnical special publication no 58, Proceedings of Uncertainity’96 held in Madison, Wisconson, July 31, pp 49–75. GSP 58, ASCE

  12. 12.

    Hassan A, Wolff T (1999) Search algorithm for minimum reliability index of earth slopes. J Geotech Geoenviron Eng 125:301–308

    Article  Google Scholar 

  13. 13.

    Christian JT, Ladd CC, Baecher GB (1994) Reliability applied to slope stability analysis. ASCE J Geotechn Eng 120(12):2180–2207

    Article  Google Scholar 

  14. 14.

    Duncan JM (2000) Factors of safety and reliability in geotechnical engineering. J Geotech and Geoenviron Eng 126(6):307–316

    Article  Google Scholar 

  15. 15.

    Griffiths DV, Fenton GA (2004) Probabilistic slope stability analysis by finite elements. J Geotech Geoenvirn Eng 130(5):507–518

    Article  Google Scholar 

  16. 16.

    Breitung K (1984) Asymptotic approximation for multi-normal integrals. J Eng Mech 110(3):357–366

    Article  Google Scholar 

  17. 17.

    Koyluoglu HU, Nielsen SRK (1994) New approximations for SORM integrals. Struct Saf 13(4):235–246

    Article  Google Scholar 

  18. 18.

    Hicks MA, Spencer WA (2010) Influence of heterogeneity on the reliability and failure of a long 3D slope. Comput Geotech 37(7–8):948–955

    Article  Google Scholar 

  19. 19.

    Daryani ME, Bahadori H, Daryani KE (2017) Soil probabilistic slope stability analysis using stochastic finite difference method. Mod Appl Sci 11(4):23

    Article  Google Scholar 

  20. 20.

    Shen H (2012) Non-deterministic analysis of slope stability based on numerical simulation. Thesis doctorat Technische Universität Bergakademie Freiberg, Germany

  21. 21.

    Dawson EM, Roth WH, Drescher A (1999) Slope stability analysis by strength reduction. Geotechnique 49(6):835–848

    Article  Google Scholar 

  22. 22.

    Deman G, Konakli K, Sudret B, Kerrou J, Perrochet P, Benabderrahmane H (2016) Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model. Reliab Eng Syst Saf 147:156–169

    Article  Google Scholar 

  23. 23.

    Iooss B, Lemaîtrie P (2014) A review on global sensitivity analysis methods. Uncertainty management in simulation-optimization of complex systems, pp 101–122. arXiv:1404.2405v1 [math.ST]

  24. 24.

    Saltelli A, Sobol I (1995) About the use of rank transformation in sensitivity of model output. Reliab Eng Syst Saf 50:225–239

    Article  Google Scholar 

  25. 25.

    Saltellia A, Albrechtb D, Tarantolac S, Ferrettib F (2017) A new sample-based algorithms to compute the total sensitivity index.

  26. 26.

    Homma T, Saltelli A (1996) Importance measures in global sensitivity analysis of non linear models. Reliab Eng Syst Saf 52:1–17

    Article  Google Scholar 

  27. 27.

    Archer G, Saltelli A, Sobol IM (1997) Sensitivity measures, ANOVA-like techniques and the use of bootstrap. J Stat Comput Simul 58:99–120

    Article  Google Scholar 

  28. 28.

    Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55:271–280

    Article  Google Scholar 

  29. 29.

    Oakley JE, O’Hagan A (2004) Probabilistic sensitivity analysis of complex models: a Bayesian approach. J R Stat Soc Ser B Stat Methodol 66(3):751–769

    Article  Google Scholar 

  30. 30.

    Sobol IM, Tarantola S, Gatelli D, Kucherenko Sand, Mauntz W (2007) Estimating the approximation error when fixing unessential factors in global sensitivity analysis. Reliab Eng Syst Saf 92(7):957–960

    Article  Google Scholar 

  31. 31.

    Iooss B (2011) Revue sur l’analyse de sensibilité globale de modèles numériques. J Soc Fr Stat 152(1):1–23

    Google Scholar 

  32. 32.

    Fort JC, Klein T, Lagnoux A, Laurent B (2013) Estimation of the Sobol indices in a linear functional multidimensional model. J Stat Plan Inference 143(9):1590–1605

    Article  Google Scholar 

  33. 33.

    Kucherenko S, Delpuech B, Iooss B, Tarantola S (2015) Application of the control variate technique to estimation of total sensitivity indices. Reliab Eng Syst Saf 134(C):251–259

    Article  Google Scholar 

  34. 34.

    Lamboni M (2018) Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance. Stat Pap 59:361–386.

    Article  Google Scholar 

  35. 35.

    Shahri AA, Spross J, Johansson F, Larsson S (2019) Landslide susceptibility hazard map in southwest Sweden using artificial neural network. CATENA 183:104225

    Article  Google Scholar 

  36. 36.

    Cho SE (2009) Probabilistic stability analyses of slopes using the ANN-based response surface. Comput Geotech 36(5):787–797

    Article  Google Scholar 

  37. 37.

    Pourghasemi HR, Jirandeh AG, Pradhan B, Xu C, Gokceoglu C (2013) Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. J Earth Syst Sci 122(2):349–369

    Article  Google Scholar 

  38. 38.

    Ercanoglu M (2008) An overview on the landslide susceptibility assessment techniques. In: 1st WSEAS international conference on environmental and geological science and engineering (EG’08), Malta, pp 11–13

  39. 39.

    Ghaderi A, Shahri AA, Larsson S (2019) An artificial neural network based model to predict spatial soil type distribution using piezocone penetration test data (CPTu). Bull Eng Geol Environ 78(6):4579–4588

    Article  Google Scholar 

  40. 40.

    Sonam LB, Ratika P, Ghose MK (2015) A survey on landslide susceptibility mapping using soft computing. IOSR J Appl Geol Geophys (IOSR-JAGG) 3(1):16–20

    Google Scholar 

  41. 41.

    Houmadi Y, Ahmed A, Soubra AH (2012) Probabilistic analysis of a one-dimensional soil consolidation problem. Georisk Assess Manag Risk Eng Syst Geohazards 6(1):36–49.

    Article  Google Scholar 

  42. 42.

    Mollon G, Dias D, Soubra AH (2011) Probabilistic analysis of pressurized tunnels against face stability using collocation-based stochastic response surface method. J Geotech Geoenviron Eng 137(4):385397.

    Article  Google Scholar 

  43. 43.

    Isukapalli SS, Roy A, Georgopoulos PG (1998) Stochastic response surface methods (SRSM) for uncertainty propagation: application to environmental and biological Systems. Risk Anal 18(3):357363.

    Article  Google Scholar 

  44. 44.

    Isukapalli SS (199p) Uncertainty analysis of transport transformation models. Thesis (PhD), The State University of New Jersey

  45. 45.

    Berveiller M, Sudret B, Lemaire M (2006) Stochastic finite elements: a non intrusive approach by regression. Eur J Comput Mech 15(1–3):81–92.

    Article  Google Scholar 

  46. 46.

    Sudret B (2006) Global sensitivity analysis using polynomial chaos expansions. In: Spanos P, Deodatis G (eds) Proc. 5th int. conf. on comp. stoch. mech (CSM5), Rhodos

  47. 47.

    Phoon KK, Huang SP (2007) Geotechnical probabilistic analysis using collocation-based stochastic finite element method. In: Proc. X ICASP, Tokyo

  48. 48.

    Huang SP, Liang B, Phoon KK (2009) Geotechnical probabilistic analysis by collocation-based stochastic response surface method: an EXCEL add-in implementation. Georisk Assess Manag Risk Eng Syst Geohazards 3(2):75–86

    Article  Google Scholar 

  49. 49.

    Malliavin P (1997) Stochasticanalysis, Grundlehren Der MathematischenWissenschaften.

  50. 50.

    Huber M, Westrich B, Vermeer PA, Moorman C (2011) Response surface method in advanced reliability based design. In: Budelmann, Holst, Proske: Proceedings of the 9th international probabilistic workshop, Braunschweig. Institute of Geotechnical Engineering, University of Stuttgart

  51. 51.

    Li D, Chen Y, Lu W, Zhou C (2011) Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables. Comput Geotech 38(1):58–68.

    Article  Google Scholar 

  52. 52.

    Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models. Wiley, New York

    Google Scholar 

  53. 53.

    Pappenberger F, Rattomand Vandenberghe V (2010) Review of sensitivity analysis methods. In: Vanrolleghem PA (ed) Modelling aspects of water framework directive implementation. IWA Publishing, London, pp 191–265

    Google Scholar 

  54. 54.

    Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Salsana M, Tarantola S (2008) Global sensitivity analysis—the primer. Wiley, New York

    Google Scholar 

  55. 55.

    Saltelli A, Ratto M, Tarantola S, Campolongo F (2006) Sensitivity analysis practices: strategies for model-based inference. Reliab Eng Syst Saf 91:1109–1125

    Article  Google Scholar 

  56. 56.

    Phoon KK (2008) Reliability-based design in geotechnical engineering: computations and applications. Taylor & Francis, Abingdon

    Google Scholar 

  57. 57.

    Sudret B (2007) Uncertainty propagation and sensitivity analysis in mechanical models—contributions to structural reliability and stochastic spectral methods. Université Blaise Pascal, Clermont-Ferrand, France. Habilitation `a diriger des recherches

  58. 58.

    Sudret B (2014) Polynomial chaos expansions and stochastic finite element methods. In: Phoon K-K, Ching J (eds) Risk and reliability in geotechnical engineering, Chap 6. CRC Press, pp 265–300

  59. 59.

    Achour Y, Pourghasemi HR (2020) How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geosci Front 11:871–883

    Article  Google Scholar 

Download references


Not applicable.

Author information



Corresponding author

Correspondence to Samir Ghedjati.



The deterministic model of Ain Bouzian landslide using FLAC3D code (PK 232+000 to PK 233+000)






Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghedjati, S., Lamara, M. & Houmadi, Y. Finite difference probabilistic slope stability analysis based on collocation-based stochastic response surface method (CSRSM). Innov. Infrastruct. Solut. 5, 73 (2020).

Download citation


  • Slope stability
  • Safety factor
  • Failure probability
  • Probabilistic method