Skip to main content
Log in

Hydraulic conductivity and leachate removal rate of genetically different compacted clays

  • State-of-the-Art Paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Genetically different clays were compacted, contaminated and cured for 21 days with natural leachate from an old active waste disposal site and subsequently remolded at both West Africa (WA) and Modified AASHTO (MA) energies of compaction. The clays were thereafter investigated with a view to understanding the effect of contamination on hydraulic conductivity and mineralogy of the clays, soil–leachate interaction, influence of the energy of compaction and rate of leachate removal with time. Clay mineralogy revealed the presence of mixed clays including Anatase, Calcite, Hematite, Kaolinite, Quartz and Illite. The presence of these mixed clay minerals confers both attenuation and containment properties on the clays and, hence, makes the soils suitable for use as barriers in landfills. Hydraulic conductivity of the undisturbed and uncontaminated clays reduced with increase in energy of compaction from WA to MA. Leachate addition resulted in varied responses from the clays attributable to the different genealogy of the soils. Furthermore, the rate of leachate removal for the soils was observed to be 3.0 × 10-3 cm/s for SMP 1, 4.0 × 10-3cm/s for SMP 2 and 8.0 × 10-2 cm/s for SMP 5. These observations from the different soils are in agreement with results recorded in terms of consistency, hydraulic conductivity, mineralogy and compaction properties. However, influence of leachate on the structure of the genetically different soils played a contributory role in alteration of their mineralogy and, hence, their hydraulic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abd El-Salam MM, Abu-Zuid GI (2015) Impact of landfill leachate on the groundwater quality: a case study in Egypt. J Adv Res 6(4):579–586

    Article  Google Scholar 

  2. Abdussalam AS (2005) The suitability of the Libyan soils for use as engineered landfill liners. Ph.D. Thesis, Loughborough University, p 346

  3. Abu-Rukah Y, Al-Kofahi O (2001) The assessment of the effect of landfill leachate on ground-water quality—a case study. El-Akader landfill site—north Jordan. J Arid Environ 49(3):615–630

    Article  Google Scholar 

  4. Aderemi AO, Oriaku AV, Adewumi GA, Otitoloju AA (2011) Assessment of groundwater contamination by leachate near a municipal solid waste landfill. Afr J Environ Sci Technol 5(11):933–940

    Google Scholar 

  5. Adeyemi GO (2002) Geotechnical properties of lateritic soil developed over quartz schist in Ishara area southwestern Nigeria. J Min Geol 38(1):65–69

    Google Scholar 

  6. Adeyemi GO, Oyediran IA (2005) Engineering geological evaluation of a proposed landfill site at Aba Kulodi, near Ibadan, Southwestern Nigeria. Global J Geol Sci 3(1):25–33

    Google Scholar 

  7. Ahn HS, Jo HY (2009) Influence of exchangeable cations on hydraulic conductivity of compacted bentonite. Appl Clay Sci 44:144–150

    Article  Google Scholar 

  8. Akinbile CO, Yusoff MS (2011) Environmental Impact of Leachate Pollution on Groundwater Supplies in Akure, Nigeria. Int J Environ Sci Dev 2(1):81–86

    Article  Google Scholar 

  9. Allen AR (2000) Attenuation landfills—the future in landfilling. http://wbiis.tu.koszalin.pl/towarzystwo/2000/17allen_t.pdf. Accessed 8 Dec 2008

  10. Anandarajah A (2003) Mechanism controlling permeability change in clays due to changes in pore fluid. J Geotech Geoenviron Eng 129(2):163–172

    Article  Google Scholar 

  11. Anilkumar A, Sukumaran D, Vincent SGT (2015) Effect of municipal solid waste leachate on ground water quality of Thiruvananthapuram District, Kerala, India. Appl Ecol Environ Sci 3(5):151–157

    Google Scholar 

  12. Badv K, Omidi A (2007) Effect of synthetic leachate on the hydraulic conductivity of clayey soil in Urmia city landfill site. Iran J Sci Technol Trans B Eng 31(B5):535–545

    Google Scholar 

  13. Bagchi A (2004) Design of landfills and integrated solid waste management. Wiley, Hoboken

    Google Scholar 

  14. Barbour SL (1987b) The role of physiochemical effects on the behavior of clay soils. Keynote address, 40th Canadian Geotechnical Conference. Regina, pp. 323–342

  15. Batchelder M, Cressey G (1998) Rapid, accurate phase quantification of clay-bearing samples using a position-sensitive X-ray detector. Clays Clay Miner 46(2):183–194

    Article  Google Scholar 

  16. Batchelder M, Mather JD, Joseph JB (1996) The smectite-to-illite transformation at low temperature and implications for landfill. In: Williams LA (ed) Chemical containment of wastes in the geosphere; extended abstracts. BGS, Keyworth

    Google Scholar 

  17. Bello AA (2012) Geotechnical evaluation of reddish brown tropical soils. Geotech Geol Eng 30:481–498

    Article  Google Scholar 

  18. Benson C, Zhai H, Wang X (1994) Estimating the hydraulic conductivity of compacted clay liners. J Geotech Eng ASCE 120:366–387

    Article  Google Scholar 

  19. Benson CH, Trast JM (1995) Hydraulic conductivity of thirteen compacted clays. Clays Clay Miner 43(6):669–681

    Article  Google Scholar 

  20. British Standard Institution (BS1377) (1990) Methods of test for soils for civil engineering purposes. British Standard Institute, London.

  21. British Standard Institution (BS1924) (1990) Methods of test for stabilized soils. British Standard Institute, London

    Google Scholar 

  22. Broderick GP, Daniel DE (1990) Stabilizing compacted clay against chemical attack. J Geotech Eng 116(10):1549–1567

    Article  Google Scholar 

  23. Brovelli A, Malagureea F, Barry DA (2009) Bioclogging in porous media: model development and sensitivity to initial conditions. Environ Model Softw 24:611–626

    Article  Google Scholar 

  24. Christensen JB, Jensen DL, Gron C, Filip Z, Christensen TH (1998) Characterisation of the dissolved organic carbon fraction in landfill leachate-polluted groundwater. Water Res 32(1):125–135

    Article  Google Scholar 

  25. Daniel DE (1993) Case histories of compacted clay liners and covers for waste disposal facilities. Proceedings of 3rd International Conference on Case Histories in Geotechnical Engineering, 2. http://scholarsmine.mst.edu/icchge/3icchge/3icchge-session15/2.

  26. Daniel DE, Benson CH (1990) Water content–density criteria for compacted clay liners. J Geotech Eng ASCE 116(2):1811–1830

    Article  Google Scholar 

  27. Daniel DE, Wu YK (1993) Compacted Clay Liners and Covers for Arid Sites. J Geotech Eng 119(2):228–237

    Article  Google Scholar 

  28. Declan O, Paul Q (2003) Geotechnical engineering and environment aspects of clay liners for landfill projects. www.igsl.ie/Technical/Paper3.doc. Accessed 13 March 2010

  29. EPA (1990) Compilation of information on alternative barriers for liner and cover systems. EPA600-R-91-002. Prepared by Daniel DE, Estornell PM for Office of Research and Development, Washington, DC

  30. Francisca FM, Glatstein DA (2010) Long term hydraulic conductivity of compacted soils permeated with landfill leachate. Appl Clay Sci 49:187–193

    Article  Google Scholar 

  31. Gidigasu MD (1976) Laterite soil engineering—Pedogenesis and Engineering Principles. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  32. Gwóźdź R (2007) Właściwości osadów spoistych Jeziora Rożnowskiego waspekcieich geotechnicznego wykorzystania [Properties of cohesive sediments from Rożnowski Reservoir in the aspect of their geotechnical usage]. Doctoral thesis. Politechnika Krakowska, Kraków

  33. Horn R (2004) Recommendations for the preparation of no shrinking mineral liner systems (in German with English summary and captions) Empfehlungen zur Herstellung nicht schrumpfanfälliger mineralischer Dichtungen mit zusätzlicher tonmineralischer Wasserspeicherschicht für Deponie- ober flächen abdichtung systeme. Müll und Abfall 36:67–71

    Google Scholar 

  34. Horn R, Stępniewski W (2004) Modification of mineral liner to improve its long-term stability. Int Agrophys 18:317–323

    Google Scholar 

  35. Ige OO (2010) Assessment of geotechnical properties of migmatite-derived residual soil from Ilorin, south-western Nigerla, as barrier in sanitary landfills. Cont J Earth Sci 5:32–41

    Google Scholar 

  36. Islam MR, Alamgir M, Mohiuddin KM, Hasan KMM (2008) Investigation of physical properties of a selected soil to use as a clay liner in sanitary landfill. In: Proceedings of National Seminar on Solid Waste Management-WasteSafe, pp 167–174

  37. Jessberger HL (1994) Experiences with liners using natural geotechnical design and quality control of mineral liner system. In: Cristensen TH (ed) Landfilling of wastes. E and FN. Spon, London, pp 55–68

    Google Scholar 

  38. Jones LD, Jefferson I (2012) Expansive soils. In: Burland J (ed) ICE manual of geotechnical engineering, geotechnical engineering principles, problematic soils and site investigation, vol 1. ICE Publishing, London, pp 413–441

    Google Scholar 

  39. Jones RM, Murray EJ, Rix DW, Humphrey RD (1995) Selection of clays for use as landfill liners. Waste Disposal by Landfill. In: Sarsby RW (ed) Proceedings of GREEN ’93, pp 433–438

  40. Junge T, Gräsle W, Bensel G, Horn R (2000) Effect of pore water pressure on tensile strength. Z Pflanzenernährung und Bodenkunde 163:21–27

    Article  Google Scholar 

  41. Kabir MH, Taha MR (2004) Assessment of physical properties of a granite residual soil as an isolation barrier. Electron J Geotech Eng 9:1

    Google Scholar 

  42. Kaya A, Fang HY (2000) Effects of organic fluids on physicochemical parameters of fine-grained soils. Can Geotech J 37(5):943–950

    Article  Google Scholar 

  43. Kayabal PK, Mollamahmutoglu M (2000) The influence of hazardous liquid waste on the permeability of earthen liners. Environ Geol 39(3–4):201–210

    Google Scholar 

  44. Kolstad DC, Benson CH, Edil TB (2004) Hydraulic conductivity and swell of non-prehydrated geosynthetic clay liners permeated with multispecies inorganic solutions. J Geotech Geoenviron Eng 130(12):1236–1249

    Article  Google Scholar 

  45. Kooistra JM, Tovey NK (1994) Effects of compaction on soil microstructure. In: Soane BD, van Quwerkerk C (eds) Soil compaction in crop poduction. Elsevier, Amsterdam, pp 91–112

    Chapter  Google Scholar 

  46. Majer E, Łuczak-Wilamowska B, Wysokiński L, Drągowski A (2007) Zasady oceny przydatności gruntów spoistych Polski do budowy mineralnych barier izolacyjnych (rules for usability evaluation of cohesive soils for mineral liners). ITB, Warszawa

    Google Scholar 

  47. Micha B, Ewa O, Marlena Z (2005) Removal of organic compounds from municipal landfill leachate in a membrane bioreactor. Desalination 198(1–3):16–23. doi:10.1016/j.desal.2006.09.004

    Google Scholar 

  48. Mitchell JK (1993) Fundamentals of soil behavior, 2nd edn. Wiley, New York, p 402

    Google Scholar 

  49. Mitchell JK, Bray JD, Mitchell RA (1995) Material interactions in solid waste landfills, vol 1(46). Proc. Geoenvironment-2000, ASCE Geotechnical Special Publication, pp 568–590 

    Google Scholar 

  50. Moses G, Oriola FOP, Afolayan JO (2013) The impact of compactive effort on the long-term hydraulic conductivity of compacted foundry sand treated with bagasse ash and permeated with municipal solid waste landfill leachate. Front Geotech Eng 2(1):7–15

    Google Scholar 

  51. Nayak S, Sunil B, Shrihari S (2007) Hydraulic and compaction characteristics of leachate-contaminated lateritic soil. Eng Geol 94:137–144

    Article  Google Scholar 

  52. Oeltzschner H (1992) Anforderin an die geologic, hydrogeologie Und Geotechnik beim Bau von Deponie. In: Thorme-Kozmiensky KJ (ed) Additictung Von Deponien and Altlastlen. E. F. Verlag fiir Gnergie und Umwelttechnik combit, Borlin, pp 53–82

    Google Scholar 

  53. Onianwa PC, Adeyemi OG, Sofuwa HAA (1995) Pollution of surface and groundwater around Aperin solid waste landfill site in Ibadan city. Niger J Sci 29:159–164

    Google Scholar 

  54. Oyediran IA, Iroegbuchu CD (2013) Geotechnical characteristics of some southwestern Nigerian clays as barrier soils. Ife J Sci 15(1):17–30

    Google Scholar 

  55. Park J, Vipulanandan C, Kim JW, Oh MH (2006) Effects of surfactants and electrolyte solutions on the properties of soil. Environ Geol 49:977–989

    Article  Google Scholar 

  56. Pickering SM, Murray HH (1994) Clays, Kaolin. In: Carr DD (ed) Industrial Minerals and Rocks, 6th edn. Society of Mining, Metallurgy and Exploration, Littleton, pp 255–277

    Google Scholar 

  57. Quigley RM, Fernandez F, Rowe RK (1988) Clayey barrier assessment for impoundment of domestic waste leachate (southern Ontario) including clay/leachate compatibility by hydraulic conductivity. Can Geotech J 25:574–581

    Article  Google Scholar 

  58. Radford BJ, Bridge BJ, Davis RJ, Mc Garry D, Pillai UP, Rickman JF, Walsh PA, Yule DF (2000) Changes in the properties of a vertisol and responses of wheat after compaction with harvester traffic. Soil Till Res 54:155–170

    Article  Google Scholar 

  59. Rajkumar N, Subramani T, Elango L (2012) Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India. Iran J Environ Health Sci Eng 9:35. doi:10.1186/1735-2746-9-35

    Article  Google Scholar 

  60. Rao SN, Mathew PK (1995) Effects of exchangeable cations on hydraulic conductivity of a marine clay. Clays Clay Miner 43(4):433–437

    Article  Google Scholar 

  61. Rebata-Landa V, Santamarina JC (2006) Mechanical limits to microbial activity in deep sediments. Geochem Geophys Geosyst 7:Q11006

    Article  Google Scholar 

  62. Robrecht MS (2006) Can the diffuse double layer theory describe changes in hydraulic conductivity of compacted clays? Geotech Geol Eng 24:1835–1844

    Article  Google Scholar 

  63. Rowe RK, Quigley RM, Booker JR (1995) Clayey barrier systems for waste disposal facilities. E and F N Spon (Champan and Hall), London

    Book  Google Scholar 

  64. Ruhl JL (1994) Effects of leachates on the hydraulic conductivity of GCLs, M.S. Thesis, Texas University, Austin, p 226

  65. Shackelford CD (1994) Waste-soil interactions that alter hydraulic conductivity. In: Daniel DE, Trautwein SJ (eds) Hydraulic conductivity and waste contaminant transport in soil. American Society for Testing and Materials, Philadelphia 1142, p 111–168.

    Chapter  Google Scholar 

  66. Shan HY, Lai YJ (2002) Effect of hydrating liquid on the hydraulic properties of geosynthetic clay liners. J Geotext Geomembr 20:19–38

    Article  Google Scholar 

  67. Sharma HD, Lewis SP (1994) Waste containment systems, waste stabilization, and landfills: design and evaluation. Wiley, New York

    Google Scholar 

  68. Simms PH, Yanful EK (2001) Measurement and estimation of pore shrinkage and pore distribution in a clayey till during soil-water characteristic curve tests. Can Geotech J 38(4):741–754

    Article  Google Scholar 

  69. Sivapullaiah PV, Manju (2005) Kaolinite-alkali interaction and effects on basic properties. Geotech Geol Eng 23(5):601–614. doi:10.1007/s10706-004-1661-x

    Article  Google Scholar 

  70. Stępniewski W, Widomski MK, Horn R (2011) Hydraulic conductivity and landfill construction, developments in hydraulic conductivity research. In: Dikinya O (ed) InTech. ISBN: 978-953-307- 470-2. http://www.intechopen.com/books/developments-in-hydraulic-conductivity- research/hydraulic-conductivity-and-landfill-construction

  71. Stern RT, Shackelford CD (1998) Permeation of sand-processed clay mixtures with calcium chloride solution. J Geotech Geoenviron Eng 124(3):231–241

    Article  Google Scholar 

  72. Sunil BM, Nayak S, Shrihari S (2006) Effect of pH on the geotechnical properties of laterite. J Eng Geol 85(1):197–203

    Article  Google Scholar 

  73. Sunil BM, Shrihari S, Nayak S (2008) Soil leachate interaction and their effects on hydraulic conductivity and compaction characteristics. J Eng Geol 85(1):197–203

    Google Scholar 

  74. Todres HA, Mishulovich A, Ahmad I (1992) Cement Kiln dust management: permeability, research and development bulletin RD103T. Portland Cement Association, Skokie

    Google Scholar 

  75. Uppot JO, Stephenson RW (1989) Permeability of clays under organic permeants. J Geotech Eng 115(1):115–131

    Article  Google Scholar 

  76. USGS (2001) US Geological Survey Open-File Report 01-041. http://pubs.usgs.gov/of/2001/of01-041/index.htm. Accessed 19 Sep 2016

  77. Whitlow R (1998) Basic soil mechanics, 3rd edn. Longman Group Ltd, London, p 557

    Google Scholar 

  78. Wysocka A, Stępniewski W, Horn R (2007) Swelling-shrinkage properties and hydraulic conductivity of a compacted coal mine tailing rock likely to be used for landfill capping. Int Agrophys 21:405–408

    Google Scholar 

  79. Yavuzcan HG, Matthies D, Auernhammer H (2005) Vulnerability of Bavarian silty loam to compaction under heavy trafic: impacts of tillage method and soil water content. Soil Tillage Res 84:200–215

    Article  Google Scholar 

  80. Yong RN, Taheri E, Khodadadi A, Khodadadi A (2007) Evaluation of remediation methods for soils contaminated with benzo[a]pyrene. Int J Environ Res 1(4):341–346

    Google Scholar 

  81. Zhang S, Grip H, Lovdahl L (2006) Effect of soil compaction on hydraulic properties of two loess soils in China. Soil Tillage Res 90:117–125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Adewuyi Oyediran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyediran, I.A., Olalusi, D.A. Hydraulic conductivity and leachate removal rate of genetically different compacted clays. Innov. Infrastruct. Solut. 2, 46 (2017). https://doi.org/10.1007/s41062-017-0097-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-017-0097-0

Keywords

Navigation