Skip to main content
Log in

Why Design Matters: From Decorated Metal Oxide Clusters to Functional Metal–Organic Frameworks

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

The opportunity to generate functional solids with defined properties by deliberate design has not been materialized in traditional solid-state chemistry over many decades. The emergence of metal–organic frameworks (MOFs), permanently porous, crystalline solids with defined metrics, has allowed for studying design, synthesis, and properties, which then translated into new applications. Aggregates of metal ions stitched together by multidentate functional groups form such metal oxide clusters and represent the nodes of MOFs. These clusters, termed secondary building units (SBUs), are decorated with organic moieties that provide directionality and can be linked through geometric principles into extended nets using organic molecules (spacers). This concept of reticular chemistry has afforded permanently porous MOFs, and has resulted in over 20,000 structures over the past 20 years. However, there are still only a limited number of symmetric, discrete SBUs commonly used to design and synthesize MOFs. We herein introduce the most important SBUs that have emerged over time together with prototypal MOF structures and their fundamental applications. Both the discovery and the scientific impact will be highlighted alongside advantages and/or drawbacks. In addition, an outlook will be given on how the combination of multiple SBUs can lead to heterogeneous but ordered materials with higher complexity and functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Maddox J (1988) Crystals from first principles. Nature 335:201

    Article  Google Scholar 

  2. Hoskins BF, Robson R (1989) Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J Am Chem Soc 111(15):5962–5964. https://doi.org/10.1021/ja00197a079

    Article  CAS  Google Scholar 

  3. Kinoshita Y, Matsubara I, Saito Y (1959) The crystal structure of bis(glutaronitrilo)copper(I) nitrate. Bull Chem Soc Jpn 32 (11):1216–1221. https://www.jstage.jst.go.jp/article/bcsj1926/32/11/32_11_1216/_pdf

    Article  CAS  Google Scholar 

  4. Kinoshita Y, Matsubara I, Saito Y (1959) The crystal structure of bis(succinonitrilo)copper(I) nitrate. Bull Chem Soc Jpn 32 (7):741–747. https://www.jstage.jst.go.jp/article/bcsj1926/32/7/32_7_741/_pdf

    Article  CAS  Google Scholar 

  5. Kinoshita Y, Matsubara I, Higuchi T, Saito Y (1959) The crystal structure of bis(adiponitrilo)copper(I) nitrate. Bull Chem Soc Jpn 32(11):1221–1226. https://www.jstage.jst.go.jp/article/bcsj1926/32/11/32_11_1221/_pdf

    Article  CAS  Google Scholar 

  6. Nugent P, Belmabkhout Y, Burd SD, Cairns AJ, Luebke R, Forrest K, Pham T, Ma S, Space B, Wojtas L, Eddaoudi M, Zaworotko MJ (2013) Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495(7439):80–84

    Article  CAS  PubMed  Google Scholar 

  7. Adil K, Belmabkhout Y, Pillai RS, Cadiau A, Bhatt PM, Assen AH, Maurin G, Eddaoudi M (2017) Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem Soc Rev 46(11):3402–3430. https://doi.org/10.1039/C7CS00153C

    Article  CAS  PubMed  Google Scholar 

  8. Schoedel A, Ji Z, Yaghi OM (2016) The role of metal–organic frameworks in a carbon-neutral energy cycle. Nature Energy 1:16034. https://doi.org/10.1038/nenergy.2016.34. http://www.nature.com/articles/nenergy201634#supplementary-information

  9. Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M, Yaghi OM (2001) Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal−organic carboxylate frameworks. Acc Chem Res 34(4):319–330. https://doi.org/10.1021/ar000034b

    Article  CAS  PubMed  Google Scholar 

  10. Moulton B, Zaworotko MJ (2001) From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem Rev 101(6):1629–1658. https://doi.org/10.1021/cr9900432

    Article  CAS  PubMed  Google Scholar 

  11. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423(6941):705

    Article  CAS  PubMed  Google Scholar 

  12. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal–organic frameworks. Science 341(6149):1230444

    Article  PubMed  Google Scholar 

  13. Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6th revised edn. Elsevier Science, Amsterdam

    Google Scholar 

  14. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science 279(5350):548–552

    Article  CAS  PubMed  Google Scholar 

  15. Zakhidov AA, Baughman RH, Iqbal Z, Cui C, Khayrullin I, Dantas SO, Marti J, Ralchenko VG (1998) Carbon structures with three-dimensional periodicity at optical wavelengths. Science 282(5390):897–901

    Article  CAS  PubMed  Google Scholar 

  16. Jiang J, Zhao Y, Yaghi OM (2016) Covalent chemistry beyond molecules. J Am Chem Soc 138(10):3255–3265. https://doi.org/10.1021/jacs.5b10666

    Article  CAS  PubMed  Google Scholar 

  17. Li H, Eddaoudi M, Groy TL, Yaghi OM (1998) Establishing microporosity in open metal−organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J Am Chem Soc 120(33):8571–8572. https://doi.org/10.1021/ja981669x

    Article  CAS  Google Scholar 

  18. Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283(5405):1148–1150. https://doi.org/10.1126/science.283.5405.1148

    Article  CAS  PubMed  Google Scholar 

  19. Kondo M, Yoshitomi T, Matsuzaka H, Kitagawa S, Seki K (1997) Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4′-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn). Angew Chem Int Ed Engl 36(16):1725–1727. https://doi.org/10.1002/anie.199717251

    Article  CAS  Google Scholar 

  20. Tranchemontagne DJ, Mendoza-Cortés JL, O’Keeffe M, Yaghi OM (2009) Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem Soc Rev 38(5):1257. https://doi.org/10.1039/b817735j

    Article  CAS  PubMed  Google Scholar 

  21. Deng H, Doonan CJ, Furukawa H, Ferreira RB, Towne J, Knobler CB, Wang B, Yaghi OM (2010) Multiple functional groups of varying ratios in metal–organic frameworks. Science 327(5967):846–850. https://doi.org/10.1126/science.1181761

    Article  CAS  PubMed  Google Scholar 

  22. O’Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM (2008) The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc Chem Res 41 (12):1782–1789. http://rcsr.net. https://doi.org/10.1021/ar800124u

    Article  PubMed  Google Scholar 

  23. O’Keeffe M, Yaghi OM (2012) Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem Rev 112(2):675–702. https://doi.org/10.1021/cr200205j

    Article  CAS  PubMed  Google Scholar 

  24. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472. https://doi.org/10.1126/science.1067208

    Article  CAS  PubMed  Google Scholar 

  25. Fankuchen I (1935) Crystal structure of sodium uranyl acetate. Cryst Mater. https://doi.org/10.1524/zkri.1935.91.1.473

    Article  Google Scholar 

  26. Go YB, Wang X, Jacobson AJ (2007) (6,3)-Honeycomb structures of uranium(VI) benzenedicarboxylate derivatives: the use of noncovalent interactions to prevent interpenetration. Inorg Chem 46(16):6594–6600. https://doi.org/10.1021/ic700693f

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Liu Z, Li Y, Bai Z, Liu W, Wang Y, Xu X, Xiao C, Sheng D, Diwu J, Su J, Chai Z, Albrecht-Schmitt TE, Wang S (2015) Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J Am Chem Soc 137(19):6144–6147. https://doi.org/10.1021/jacs.5b02480

    Article  CAS  PubMed  Google Scholar 

  28. Hu K-Q, Jiang X, Wang C-Z, Mei L, Xie Z-N, Tao W-Q, Zhang X-L, Chai Z-F, Shi W-Q (2016) Solvent-dependent synthesis of porous anionic uranyl-organic frameworks featuring a highly symmetrical (3,4)-connected ctn or bor topology for selective dye adsorption. Chem Eur J 23(3):529–532. https://doi.org/10.1002/chem.201604225

    Article  CAS  PubMed  Google Scholar 

  29. Liu C, Chen F-Y, Tian H-R, Ai J, Yang W, Pan Q-J, Sun Z-M (2017) Interpenetrated uranyl-organic frameworks with bor and pts topology: structure, spectroscopy, and computation. Inorg Chem 56(22):14147–14156. https://doi.org/10.1021/acs.inorgchem.7b02274

    Article  CAS  PubMed  Google Scholar 

  30. Li P, Vermeulen NA, Malliakas CD, Gómez-Gualdrón DA, Howarth AJ, Mehdi BL, Dohnalkova A, Browning ND, O’Keeffe M, Farha OK (2017) Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science. https://doi.org/10.1126/science.aam7851

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li P, Vermeulen NA, Gong X, Malliakas CD, Stoddart JF, Hupp JT, Farha OK (2016) Design and synthesis of a water-stable anionic uranium-based metal–organic framework (MOF) with ultra large pores. Angew Chem Int Ed 55(35):10358–10362. https://doi.org/10.1002/anie.201605547

    Article  CAS  Google Scholar 

  32. Furukawa H, Go YB, Ko N, Park YK, Uribe-Romo FJ, Kim J, O’Keeffe M, Yaghi OM (2011) Isoreticular expansion of metal–organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. Inorg Chem 50(18):9147–9152. https://doi.org/10.1021/ic201376t

    Article  CAS  PubMed  Google Scholar 

  33. Chen B, Eddaoudi M, Reineke TM, Kampf JW, O’Keeffe M, Yaghi OM (2000) Cu2(ATC)·6H2O: design of open metal sites in porous metal−organic crystals (ATC: 1,3,5,7-adamantane tetracarboxylate). J Am Chem Soc 122(46):11559–11560. https://doi.org/10.1021/ja003159k

    Article  CAS  Google Scholar 

  34. Ma L, Jin A, Xie Z, Lin W (2009) Freeze drying significantly increases permanent porosity and hydrogen uptake in 4,4-connected metal–organic frameworks. Angew Chem Int Ed 48(52):9905–9908. https://doi.org/10.1002/anie.200904983

    Article  CAS  Google Scholar 

  35. Chen B, Eddaoudi M, Hyde ST, O’Keeffe M, Yaghi OM (2001) Interwoven metal–organic framework on a periodic minimal surface with extra-large pores. Science 291(5506):1021–1023

    Article  CAS  PubMed  Google Scholar 

  36. Eddaoudi M, Kim J, O’Keeffe M, Yaghi OM (2002) Cu2[o-Br-C6H3(CO2)2]2(H2O)2·(DMF)8(H2O)2: a framework deliberately designed to have the NbO structure type. J Am Chem Soc 124(3):376–377. https://doi.org/10.1021/ja017154e

    Article  CAS  PubMed  Google Scholar 

  37. Eddaoudi M, Kim J, Vodak D, Sudik A, Wachter J, O’Keeffe M, Yaghi OM (2002) Geometric requirements and examples of important structures in the assembly of square building blocks. Proc Natl Acad Sci USA 99(8):4900–4904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moulton B, Lu J, Hajndl R, Hariharan S, Zaworotko MJ (2002) Crystal engineering of a nanoscale Kagomé lattice. Angew Chem Int Ed 41(15):2821–2824. https://doi.org/10.1002/1521-3773(20020802)41:15%3c2821:aid-anie2821%3e3.0.co;2-y

    Article  CAS  Google Scholar 

  39. Chen B, Ockwig NW, Millward AR, Contreras DS, Yaghi OM (2005) High H2 adsorption in a microporous metal–organic framework with open metal sites. Angew Chem Int Ed 44(30):4745–4749

    Article  CAS  Google Scholar 

  40. Duong TD, Sapchenko SA, da Silva I, Godfrey HGW, Cheng Y, Daemen LL, Manuel P, Ramirez-Cuesta AJ, Yang S, Schröder M (2018) Optimal binding of acetylene to a nitro-decorated metal–organic framework. J Am Chem Soc. https://doi.org/10.1021/jacs.8b08504

    Article  PubMed  PubMed Central  Google Scholar 

  41. Eddaoudi M, Kim J, Wachter JB, Chae HK, O’Keeffe M, Yaghi OM (2001) Porous metal−organic polyhedra: 25 Å cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J Am Chem Soc 123(18):4368–4369. https://doi.org/10.1021/ja0104352

    Article  CAS  PubMed  Google Scholar 

  42. Nouar F, Eubank JF, Bousquet T, Wojtas L, Zaworotko MJ, Eddaoudi M (2008) Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal–organic frameworks. J Am Chem Soc 130(6):1833–1835. https://doi.org/10.1021/ja710123s

    Article  CAS  PubMed  Google Scholar 

  43. Guillerm V, Kim D, Eubank JF, Luebke R, Liu X, Adil K, Lah MS, Eddaoudi M (2014) A supermolecular building approach for the design and construction of metal–organic frameworks. Chem Soc Rev 43(16):6141–6172. https://doi.org/10.1039/c4cs00135d

    Article  CAS  PubMed  Google Scholar 

  44. Zheng B, Bai J, Duan J, Wojtas L, Zaworotko MJ (2010) Enhanced CO2 binding affinity of a high-uptake rht-type metal−organic framework decorated with acylamide groups. J Am Chem Soc 133(4):748–751. https://doi.org/10.1021/ja110042b

    Article  CAS  PubMed  Google Scholar 

  45. Zhao D, Yuan D, Sun D, Zhou H-C (2009) Stabilization of metal−organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. J Am Chem Soc 131(26):9186–9188. https://doi.org/10.1021/ja901109t

    Article  CAS  PubMed  Google Scholar 

  46. Farha OK, Özgür Yazaydın A, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG, Nguyen ST, Snurr RQ, Hupp JT (2010) De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2(11):944–948

    Article  CAS  PubMed  Google Scholar 

  47. Yuan D, Zhao D, Sun D, Zhou H-C (2010) An isoreticular series of metal–organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Ed 49(31):5357–5361. https://doi.org/10.1002/anie.201001009

    Article  CAS  Google Scholar 

  48. Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydın AÖ, Hupp JT (2012) Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134(36):15016–15021. https://doi.org/10.1021/ja3055639

    Article  CAS  PubMed  Google Scholar 

  49. Li J-R, Timmons DJ, Zhou H-C (2009) Interconversion between molecular polyhedra and metal−organic frameworks. J Am Chem Soc 131(18):6368–6369. https://doi.org/10.1021/ja901731z

    Article  CAS  PubMed  Google Scholar 

  50. Stoeck U, Krause S, Bon V, Senkovska I, Kaskel S (2012) A highly porous metal–organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake. Chem Commun 48(88):10841–10843. https://doi.org/10.1039/c2cc34840c

    Article  CAS  Google Scholar 

  51. Stoeck U, Senkovska I, Bon V, Krause S, Kaskel S (2015) Assembly of metal–organic polyhedra into highly porous frameworks for ethene delivery. Chem Commun 51(6):1046–1049. https://doi.org/10.1039/c4cc07920e

    Article  CAS  Google Scholar 

  52. Abourahma H, Bodwell GJ, Lu J, Moulton B, Pottie IR, Walsh RB, Zaworotko MJ (2003) Coordination polymers from calixarene-like [Cu2(dicarboxylate)2]4 building blocks: structural diversity via atropisomerism. Cryst Growth Des 3(4):513–519. https://doi.org/10.1021/cg0340345

    Article  CAS  Google Scholar 

  53. Tan C, Yang S, Champness NR, Lin X, Blake AJ, Lewis W, Schroder M (2011) High capacity gas storage by a 4,8-connected metal–organic polyhedral framework. Chem Commun 47(15):4487–4489

    Article  CAS  Google Scholar 

  54. Li M, Li D, O’Keeffe M, Yaghi OM (2014) Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem Rev 114(2):1343–1370. https://doi.org/10.1021/cr400392k

    Article  CAS  PubMed  Google Scholar 

  55. Pang J, Jiang F, Wu M, Liu C, Su K, Lu W, Yuan D, Hong M (2015) A porous metal–organic framework with ultrahigh acetylene uptake capacity under ambient conditions. Nat Commun 6:7575. https://doi.org/10.1038/ncomms8575

    Article  PubMed  Google Scholar 

  56. Rao X, Cai J, Yu J, He Y, Wu C, Zhou W, Yildirim T, Chen B, Qian G (2013) A microporous metal–organic framework with both open metal and Lewis basic pyridyl sites for high C2H2 and CH4 storage at room temperature. Chem Commun 49(60):6719–6721. https://doi.org/10.1039/c3cc41866a

    Article  CAS  Google Scholar 

  57. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130(42):13850–13851. https://doi.org/10.1021/ja8057953

    Article  CAS  PubMed  Google Scholar 

  58. Reinsch H, Stassen I, Bueken B, Lieb A, Ameloot R, De Vos D (2015) First examples of aliphatic zirconium MOFs and the influence of inorganic anions on their crystal structures. CrystEngComm 17(2):331–337. https://doi.org/10.1039/C4CE01457J

    Article  CAS  Google Scholar 

  59. Zhang Y, Zhang X, Lyu J, Otake K-i, Wang X, Redfern LR, Malliakas CD, Li Z, Islamoglu T, Wang B, Farha OK (2018) A flexible metal–organic framework with 4-connected Zr6 nodes. J Am Chem Soc 140(36):11179–11183. https://doi.org/10.1021/jacs.8b06789

    Article  CAS  PubMed  Google Scholar 

  60. Sarkisov L, Martin RL, Haranczyk M, Smit B (2014) On the flexibility of metal–organic frameworks. J Am Chem Soc 136(6):2228–2231. https://doi.org/10.1021/ja411673b

    Article  CAS  PubMed  Google Scholar 

  61. Koyama H, Saito Y (1954) The crystal structure of zinc oxyacetate, Zn4O(CH3COO)6. Bull Chem Soc Jpn 27(2):112–114. https://doi.org/10.1246/bcsj.27.112

    Article  CAS  Google Scholar 

  62. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402(6759):276–279

    Article  CAS  Google Scholar 

  63. Koh K, Van Oosterhout JD, Roy S, Wong-Foy AG, Matzger AJ (2012) Exceptional surface area from coordination copolymers derived from two linear linkers of differing lengths. Chem Sci 3(8):2429–2432

    Article  CAS  Google Scholar 

  64. Wong-Foy AG, Matzger AJ, Yaghi OM (2006) Exceptional H2 saturation uptake in microporous metal−organic frameworks. J Am Chem Soc 128(11):3494–3495. https://doi.org/10.1021/ja058213h

    Article  CAS  PubMed  Google Scholar 

  65. Chae HK, Siberio-Perez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427(6974):523–527

    Article  CAS  PubMed  Google Scholar 

  66. Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM (2010) Ultrahigh porosity in metal–organic frameworks. Science 329(5990):424–428

    Article  CAS  PubMed  Google Scholar 

  67. Klein N, Senkovska I, Gedrich K, Stoeck U, Henschel A, Mueller U, Kaskel S (2009) A mesoporous metal–organic framework. Angew Chem Int Ed 48(52):9954–9957. https://doi.org/10.1002/anie.200904599

    Article  CAS  Google Scholar 

  68. Liu L, Konstas K, Hill MR, Telfer SG (2013) Programmed pore architectures in modular quaternary metal–organic frameworks. J Am Chem Soc 135(47):17731–17734. https://doi.org/10.1021/ja4100244

    Article  CAS  PubMed  Google Scholar 

  69. Hönicke IM, Senkovska I, Bon V, Baburin IA, Bönisch N, Raschke S, Evans JD, Kaskel S (2018) Balancing mechanical stability and ultrahigh porosity in crystalline framework materials. Angew Chem Int Ed 57(42):13780–13783. https://doi.org/10.1002/anie.201808240

    Article  CAS  Google Scholar 

  70. Tu B, Pang Q, Ning E, Yan W, Qi Y, Wu D, Li Q (2015) Heterogeneity within a mesoporous metal–organic framework with three distinct metal-containing building units. J Am Chem Soc 137(42):13456–13459. https://doi.org/10.1021/jacs.5b07687

    Article  CAS  PubMed  Google Scholar 

  71. Tu B, Pang Q, Xu H, Li X, Wang Y, Ma Z, Weng L, Li Q (2017) Reversible redox activity in multicomponent metal–organic frameworks constructed from trinuclear copper pyrazolate building blocks. J Am Chem Soc 139(23):7998–8007. https://doi.org/10.1021/jacs.7b03578

    Article  CAS  PubMed  Google Scholar 

  72. Figgis BN, Robertson GB (1965) Crystal-molecular structure and magnetic properties of Cr3(CH3.COO)6 O Cl.5H2O. Nature 205(4972):694–695

    Article  CAS  Google Scholar 

  73. Barthelet K, Riou D, Férey G (2002) [VIII(H2O)]3O(O2CC6H4CO2)3·(Cl, 9H2O) (MIL-59): a rare example of vanadocarboxylate with a magnetically frustrated three-dimensional hybrid framework. Chem Commun 14:1492–1493

    Article  Google Scholar 

  74. Mellot-Draznieks C, Serre C, Surblé S, Audebrand N, Férey G (2005) Very large swelling in hybrid frameworks: a combined computational and powder diffraction study. J Am Chem Soc 127(46):16273–16278. https://doi.org/10.1021/ja054900x

    Article  CAS  PubMed  Google Scholar 

  75. Sudik AC, Côté AP, Yaghi OM (2005) Metal–organic frameworks based on trigonal prismatic building blocks and the new “acs” topology. Inorg Chem 44(9):2998–3000. https://doi.org/10.1021/ic050064g

    Article  CAS  PubMed  Google Scholar 

  76. Serre C, Millange F, Surblé S, Férey G (2004) A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. Angew Chem Int Ed 43(46):6285–6289

    Article  Google Scholar 

  77. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042

    Article  PubMed  Google Scholar 

  78. Surblé S, Serre C, Mellot-Draznieks C, Millange F, Férey G (2006) A new isoreticular class of metal–organic-frameworks with the MIL-88 topology. Chem Commun 3:284. https://doi.org/10.1039/b512169h

    Article  CAS  Google Scholar 

  79. Serre C, Mellot-Draznieks C, Surblé S, Audebrand N, Filinchuk Y, Férey G (2007) Role of solvent–host interactions that lead to very large swelling of hybrid frameworks. Science 315(5820):1828–1831

    Article  CAS  PubMed  Google Scholar 

  80. Shen J-Q, Liao P-Q, Zhou D-D, He C-T, Wu J-X, Zhang W-X, Zhang J-P, Chen X-M (2017) Modular and stepwise synthesis of a hybrid metal–organic framework for efficient electrocatalytic oxygen evolution. J Am Chem Soc 139(5):1778–1781. https://doi.org/10.1021/jacs.6b12353

    Article  CAS  PubMed  Google Scholar 

  81. Mellot-Draznieks C, Dutour J, Férey G (2004) Computational design of hybrid frameworks: structure and energetics of two Me3OF3{–O2C–C6H4–CO2–}3 metal-dicarboxylate polymorphs, MIL-hypo-1 and MIL-hypo-2. Z Anorg Allg Chem 630(15):2599–2604. https://doi.org/10.1002/zaac.200400416

    Article  CAS  Google Scholar 

  82. Liu Y, Eubank JF, Cairns AJ, Eckert J, Kravtsov VC, Luebke R, Eddaoudi M (2007) Assembly of metal–organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with soc topology and high hydrogen storage. Angew Chem Int Ed 46(18):3278–3283

    Article  CAS  Google Scholar 

  83. Feng D, Wang K, Wei Z, Chen Y-P, Simon CM, Arvapally RK, Martin RL, Bosch M, Liu T-F, Fordham S, Yuan D, Omary MA, Haranczyk M, Smit B, Zhou H-C (2014) Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nat Commun. https://doi.org/10.1038/ncomms6723

    Article  PubMed  PubMed Central  Google Scholar 

  84. Alezi D, Belmabkhout Y, Suyetin M, Bhatt PM, Weseliński ŁJ, Solovyeva V, Adil K, Spanopoulos I, Trikalitis PN, Emwas A-H, Eddaoudi M (2015) MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J Am Chem Soc 137(41):13308–13318. https://doi.org/10.1021/jacs.5b07053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Towsif Abtab SM, Alezi D, Bhatt PM, Shkurenko A, Belmabkhout Y, Aggarwal H, Weseliński ŁJ, Alsadun N, Samin U, Hedhili MN, Eddaoudi M (2018) Reticular chemistry in action: a hydrolytically stable MOF capturing twice its weight in adsorbed water. Chem 4(1):94–105. https://doi.org/10.1016/j.chempr.2017.11.005

    Article  CAS  Google Scholar 

  86. Wang K, Feng D, Liu T-F, Su J, Yuan S, Chen Y-P, Bosch M, Zou X, Zhou H-C (2014) A series of highly stable mesoporous metalloporphyrin Fe-MOFs. J Am Chem Soc 136(40):13983–13986. https://doi.org/10.1021/ja507269n

    Article  CAS  PubMed  Google Scholar 

  87. Feng D, Wang K, Wei Z, Chen Y-P, Simon CM, Arvapally RK, Martin RL, Bosch M, Liu T-F, Fordham S, Yuan D, Omary MA, Haranczyk M, Smit B, Zhou H-C (2014) Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nat Commun 5:5723. https://doi.org/10.1038/ncomms6723

    Article  CAS  PubMed  Google Scholar 

  88. Liu Q, Cong H, Deng H (2016) Deciphering the spatial arrangement of metals and correlation to reactivity in multivariate metal–organic frameworks. J Am Chem Soc 138(42):13822–13825. https://doi.org/10.1021/jacs.6b08724

    Article  CAS  PubMed  Google Scholar 

  89. Furukawa H, Gándara F, Zhang Y-B, Jiang J, Queen WL, Hudson MR, Yaghi OM (2014) Water adsorption in porous metal–organic frameworks and related materials. J Am Chem Soc 136(11):4369–4381. https://doi.org/10.1021/ja500330a

    Article  CAS  PubMed  Google Scholar 

  90. Jiang J, Gándara F, Zhang Y-B, Na K, Yaghi OM, Klemperer WG (2014) Superacidity in sulfated metal–organic framework-808. J Am Chem Soc 136(37):12844–12847. https://doi.org/10.1021/ja507119n

    Article  CAS  PubMed  Google Scholar 

  91. Feng D, Wang K, Su J, Liu T-F, Park J, Wei Z, Bosch M, Yakovenko A, Zou X, Zhou H-C (2014) A highly stable zeotype mesoporous zirconium metal–organic framework with ultralarge pores. Angew Chem Int Ed 54(1):149–154. https://doi.org/10.1002/anie.201409334

    Article  CAS  Google Scholar 

  92. Wang R, Wang Z, Xu Y, Dai F, Zhang L, Sun D (2014) Porous zirconium metal–organic framework constructed from 2D → 3D interpenetration based on a 3,6-connected kgd net. Inorg Chem 53(14):7086–7088. https://doi.org/10.1021/ic5012764

    Article  CAS  PubMed  Google Scholar 

  93. Feng D, Chung W-C, Wei Z, Gu Z-Y, Jiang H-L, Chen Y-P, Darensbourg DJ, Zhou H-C (2013) Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination. J Am Chem Soc 135(45):17105–17110. https://doi.org/10.1021/ja408084j

    Article  CAS  PubMed  Google Scholar 

  94. Alezi D, Spanopoulos I, Tsangarakis C, Shkurenko A, Adil K, Belmabkhout Y, O’Keeffe M, Eddaoudi M, Belmabkhout Y, Trikalitis PN (2016) Reticular chemistry at its best: directed assembly of hexagonal building units into the awaited metal–organic framework with the intricate polybenzene topology, pbz-MOF. J Am Chem Soc 138(39):12767–12770. https://doi.org/10.1021/jacs.6b08176

    Article  CAS  PubMed  Google Scholar 

  95. Yuan S, Lu W, Chen Y-P, Zhang Q, Liu T-F, Feng D, Wang X, Qin J, Zhou H-C (2015) Sequential linker installation: precise placement of functional groups in multivariate metal–organic frameworks. J Am Chem Soc 137(9):3177–3180. https://doi.org/10.1021/ja512762r

    Article  CAS  PubMed  Google Scholar 

  96. Guillerm V, Gross S, Serre C, Devic T, Bauer M, Férey G (2010) A zirconium methacrylate oxocluster as precursor for the low-temperature synthesis of porous zirconium(IV) dicarboxylates. Chem Commun 46(5):767. https://doi.org/10.1039/b914919h

    Article  CAS  Google Scholar 

  97. Guillerm V, Grancha T, Imaz I, Juanhuix J, Maspoch D (2018) Zigzag ligands for transversal design in reticular chemistry: unveiling new structural opportunities for metal–organic frameworks. J Am Chem Soc 140(32):10153–10157. https://doi.org/10.1021/jacs.8b07050

    Article  CAS  PubMed  Google Scholar 

  98. Tan Y-X, He Y-P, Zhang J (2011) Pore partition effect on gas sorption properties of an anionic metal–organic framework with exposed Cu2+ coordination sites. Chem Commun 47(38):10647–10649

    Article  CAS  Google Scholar 

  99. Liu T-F, Vermeulen NA, Howarth AJ, Li P, Sarjeant AA, Hupp JT, Farha OK (2016) Adding to the arsenal of zirconium-based metal–organic frameworks: the topology as a platform for solvent-assisted metal incorporation. Eur J Inorg Chem 27:4349–4352. https://doi.org/10.1002/ejic.201600627

    Article  CAS  Google Scholar 

  100. Morris W, Volosskiy B, Demir S, Gándara F, McGrier PL, Furukawa H, Cascio D, Stoddart JF, Yaghi OM (2012) Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks. Inorg Chem 51(12):6443–6445. https://doi.org/10.1021/ic300825s

    Article  CAS  PubMed  Google Scholar 

  101. Feng D, Gu Z-Y, Li J-R, Jiang H-L, Wei Z, Zhou H-C (2012) Zirconium-metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts. Angew Chem Int Ed 51(41):10307–10310. https://doi.org/10.1002/anie.201204475

    Article  CAS  Google Scholar 

  102. Mondloch JE, Bury W, Fairen-Jimenez D, Kwon S, DeMarco EJ, Weston MH, Sarjeant AA, Nguyen ST, Stair PC, Snurr RQ, Farha OK, Hupp JT (2013) Vapor-phase metalation by atomic layer deposition in a metal–organic framework. J Am Chem Soc 135(28):10294–10297. https://doi.org/10.1021/ja4050828

    Article  CAS  PubMed  Google Scholar 

  103. Deria P, Mondloch JE, Tylianakis E, Ghosh P, Bury W, Snurr RQ, Hupp JT, Farha OK (2013) Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies. J Am Chem Soc 135(45):16801–16804. https://doi.org/10.1021/ja408959g

    Article  CAS  PubMed  Google Scholar 

  104. Liu J, Ye J, Li Z, Otake K-i, Liao Y, Peters AW, Noh H, Truhlar DG, Gagliardi L, Cramer CJ, Farha OK, Hupp JT (2018) Beyond the active site: tuning the activity and selectivity of a metal–organic framework-supported Ni catalyst for ethylene dimerization. J Am Chem Soc 140(36):11174–11178. https://doi.org/10.1021/jacs.8b06006

    Article  CAS  PubMed  Google Scholar 

  105. Jiang H-L, Feng D, Wang K, Gu Z-Y, Wei Z, Chen Y-P, Zhou H-C (2013) An exceptionally stable, porphyrinic Zr metal–organic framework exhibiting pH-dependent fluorescence. J Am Chem Soc 135(37):13934–13938. https://doi.org/10.1021/ja406844r

    Article  CAS  PubMed  Google Scholar 

  106. Zhang M, Chen Y-P, Bosch M, Gentle T, Wang K, Feng D, Wang ZU, Zhou H-C (2013) Symmetry-guided synthesis of highly porous metal–organic frameworks with fluorite topology. Angew Chem Int Ed 53(3):815–818. https://doi.org/10.1002/anie.201307340

    Article  CAS  Google Scholar 

  107. Pang J, Yuan S, Qin J, Liu C, Lollar C, Wu M, Yuan D, Zhou H-C, Hong M (2017) Control the structure of Zr-tetracarboxylate frameworks through steric tuning. J Am Chem Soc 139(46):16939–16945. https://doi.org/10.1021/jacs.7b09973

    Article  CAS  PubMed  Google Scholar 

  108. Wang B, Yang Q, Guo C, Sun Y, Xie L-H, Li J-R (2017) Stable Zr(IV)-based metal–organic frameworks with predesigned functionalized ligands for highly selective detection of Fe(III) ions in water. ACS Appl Mater Interfaces 9(11):10286–10295. https://doi.org/10.1021/acsami.7b00918

    Article  CAS  PubMed  Google Scholar 

  109. Carter JH, Han X, Moreau FY, da Silva I, Nevin A, Godfrey HGW, Tang CC, Yang S, Schröder M (2018) Exceptional adsorption and binding of sulfur dioxide in a robust zirconium-based metal–organic framework. J Am Chem Soc. https://doi.org/10.1021/jacs.8b08433

    Article  PubMed  PubMed Central  Google Scholar 

  110. Pang J, Yuan S, Du D, Lollar C, Zhang L, Wu M, Yuan D, Zhou H-C, Hong M (2017) Flexible zirconium MOFs as bromine-nanocontainers for bromination reactions under ambient conditions. Angew Chem Int Ed 56(46):14622–14626. https://doi.org/10.1002/anie.201709186

    Article  CAS  Google Scholar 

  111. Allen F (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr Sect B 58(3 Part 1):380–388

    Article  Google Scholar 

  112. Trickett CA, Gagnon KJ, Lee S, Gándara F, Bürgi H-B, Yaghi OM (2015) Definitive molecular level characterization of defects in UiO-66 crystals. Angew Chem Int Ed 54(38):11162–11167. https://doi.org/10.1002/anie.201505461

    Article  CAS  Google Scholar 

  113. Kim H, Yang S, Rao SR, Narayanan S, Kapustin EA, Furukawa H, Umans AS, Yaghi OM, Wang EN (2017) Water harvesting from air with metal–organic frameworks powered by natural sunlight. Science 356:430–434

    Article  CAS  PubMed  Google Scholar 

  114. Wißmann G, Schaate A, Lilienthal S, Bremer I, Schneider AM, Behrens P (2012) Modulated synthesis of Zr-fumarate MOF. Microporous Mesoporous Mater 152:64–70. https://doi.org/10.1016/j.micromeso.2011.12.010

    Article  CAS  Google Scholar 

  115. Xue D-X, Cairns AJ, Belmabkhout Y, Wojtas L, Liu Y, Alkordi MH, Eddaoudi M (2013) Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. J Am Chem Soc 135(20):7660–7667. https://doi.org/10.1021/ja401429x

    Article  CAS  PubMed  Google Scholar 

  116. Schoedel A, Li M, Li D, O’Keeffe M, Yaghi OM (2016) Structures of metal–organic frameworks with rod secondary building units. Chem Rev 116(19):12466–12535. https://doi.org/10.1021/acs.chemrev.6b00346

    Article  CAS  PubMed  Google Scholar 

  117. Liu T-F, Feng D, Chen Y-P, Zou L, Bosch M, Yuan S, Wei Z, Fordham S, Wang K, Zhou H-C (2015) Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal–organic frameworks with high surface area. J Am Chem Soc 137(1):413–419. https://doi.org/10.1021/ja5111317

    Article  CAS  PubMed  Google Scholar 

  118. Wang TC, Bury W, Gómez-Gualdrón DA, Vermeulen NA, Mondloch JE, Deria P, Zhang K, Moghadam PZ, Sarjeant AA, Snurr RQ, Stoddart JF, Hupp JT, Farha OK (2015) Ultrahigh surface area zirconium mofs and insights into the applicability of the BET theory. J Am Chem Soc 137(10):3585–3591. https://doi.org/10.1021/ja512973b

    Article  CAS  PubMed  Google Scholar 

  119. Luebke R, Belmabkhout Y, Weseliński ŁJ, Cairns AJ, Alkordi M, Norton G, Wojtas Ł, Adil K, Eddaoudi M (2015) Versatile rare earth hexanuclear clusters for the design and synthesis of highly-connected ftw-MOFs. Chem Sci 6(7):4095–4102. https://doi.org/10.1039/c5sc00614g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jiang H, Jia J, Shkurenko A, Chen Z, Adil K, Belmabkhout Y, Weselinski LJ, Assen AH, Xue D-X, O’Keeffe M, Eddaoudi M (2018) Enriching the reticular chemistry repertoire: merged nets approach for the rational design of intricate mixed-linker metal–organic framework platforms. J Am Chem Soc 140(28):8858–8867. https://doi.org/10.1021/jacs.8b04745

    Article  CAS  PubMed  Google Scholar 

  121. Alezi D, Peedikakkal AMP, Weseliński ŁJ, Guillerm V, Belmabkhout Y, Cairns AJ, Chen Z, Wojtas Ł, Eddaoudi M (2015) Quest for highly connected metal–organic framework platforms: rare-earth polynuclear clusters versatility meets net topology needs. J Am Chem Soc 137(16):5421–5430. https://doi.org/10.1021/jacs.5b00450

    Article  CAS  PubMed  Google Scholar 

  122. Chen Z, Weseliński ŁJ, Adil K, Belmabkhout Y, Shkurenko A, Jiang H, Bhatt PM, Guillerm V, Dauzon E, Xue D-X, O’Keeffe M, Eddaoudi M (2017) Applying the power of reticular chemistry to finding the missing alb-MOF platform based on the (6,12)-coordinated edge-transitive net. J Am Chem Soc 139(8):3265–3274. https://doi.org/10.1021/jacs.7b00219

    Article  CAS  PubMed  Google Scholar 

  123. AbdulHalim RG, Bhatt PM, Belmabkhout Y, Shkurenko A, Adil K, Barbour LJ, Eddaoudi M (2017) A fine-tuned metal–organic framework for autonomous indoor moisture control. J Am Chem Soc 139(31):10715–10722. https://doi.org/10.1021/jacs.7b04132

    Article  CAS  PubMed  Google Scholar 

  124. Wang H, Dong X, Lin J, Teat SJ, Jensen S, Cure J, Alexandrov EV, Xia Q, Tan K, Wang Q, Olson DH, Proserpio DM, Chabal YJ, Thonhauser T, Sun J, Han Y, Li J (2018) Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nat Commun 9(1):1745. https://doi.org/10.1038/s41467-018-04152-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ahnfeldt T, Guillou N, Gunzelmann D, Margiolaki I, Loiseau T, Férey G, Senker J, Stock N (2009) [Al4(OH)2(OCH3)4(H2N-bdc)3]·xH2O: a 12-connected porous metal–organic framework with an unprecedented aluminum-containing brick. Angew Chem Int Ed 48(28):5163–5166. https://doi.org/10.1002/anie.200901409

    Article  CAS  Google Scholar 

  126. Dan-Hardi M, Serre C, Frot T, Rozes L, Maurin G, Sanchez C, Férey G (2009) A new photoactive crystalline highly porous titanium(IV) dicarboxylate. J Am Chem Soc 131(31):10857–10859. https://doi.org/10.1021/ja903726m

    Article  CAS  PubMed  Google Scholar 

  127. Zlotea C, Phanon D, Mazaj M, Heurtaux D, Guillerm V, Serre C, Horcajada P, Devic T, Magnier E, Cuevas F, Ferey G, Llewellyn PL, Latroche M (2011) Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs. Dalton Trans 40(18):4879–4881. https://doi.org/10.1039/C1DT10115C

    Article  CAS  PubMed  Google Scholar 

  128. Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X, Li Z (2012) An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Ed 51(14):3364–3367. https://doi.org/10.1002/anie.201108357

    Article  CAS  Google Scholar 

  129. Gándara F, Furukawa H, Lee S, Yaghi OM (2014) High methane storage capacity in aluminum metal–organic frameworks. J Am Chem Soc 136(14):5271–5274. https://doi.org/10.1021/ja501606h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sumida K, Hill MR, Horike S, Dailly A, Long JR (2009) Synthesis and hydrogen storage properties of Be12(OH)12(1,3,5-benzenetribenzoate)4. J Am Chem Soc 131(42):15120–15121. https://doi.org/10.1021/ja9072707

    Article  CAS  PubMed  Google Scholar 

  131. Lee S, Kapustin EA, Yaghi OM (2016) Coordinative alignment of molecules in chiral metal–organic frameworks. Science 353(6301):808. https://doi.org/10.1126/science.aaf9135

    Article  CAS  PubMed  Google Scholar 

  132. Kapustin EA, Lee S, Alshammari AS, Yaghi OM (2017) Molecular retrofitting adapts a metal–organic framework to extreme pressure. ACS Cent Sci 3(6):662–667. https://doi.org/10.1021/acscentsci.7b00169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Guillerm V, Weseliński Łukasz J, Belmabkhout Y, Cairns AJ, D’Elia V, WojtasŁukasz, Adil K, Eddaoudi M (2014) Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks. Nat Chem 6(8):673–680. https://doi.org/10.1038/nchem.1982. http://www.nature.com/nchem/journal/v6/n8/abs/nchem.1982.html#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  134. Yuan S, Chen Y-P, Qin J-S, Lu W, Zou L, Zhang Q, Wang X, Sun X, Zhou H-C (2016) Linker installation: engineering pore environment with precisely placed functionalities in zirconium MOFs. J Am Chem Soc 138(28):8912–8919. https://doi.org/10.1021/jacs.6b04501

    Article  CAS  PubMed  Google Scholar 

  135. Yuan S, Zou L, Li H, Chen Y-P, Qin J, Zhang Q, Lu W, Hall MB, Zhou H-C (2016) Flexible zirconium metal–organic frameworks as bioinspired switchable catalysts. Angew Chem Int Ed 55(36):10776–10780. https://doi.org/10.1002/anie.201604313

    Article  CAS  Google Scholar 

  136. Pang J, Yuan S, Qin J, Wu M, Lollar CT, Li J, Huang N, Li B, Zhang P, Zhou H-C (2018) Enhancing pore-environment complexity using a trapezoidal linker: toward stepwise assembly of multivariate quinary metal–organic frameworks. J Am Chem Soc 140(39):12328–12332. https://doi.org/10.1021/jacs.8b07411

    Article  CAS  PubMed  Google Scholar 

  137. Zhang X, Frey BL, Chen Y-S, Zhang J (2018) Topology-guided stepwise insertion of three secondary linkers in zirconium metal–organic frameworks. J Am Chem Soc 140(24):7710–7715. https://doi.org/10.1021/jacs.8b04277

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding of MOF research in the Schoedel group is supported by startup funds from the Florida Institute of Technology, United States. S. R. gratefully acknowledges financial assistance from University of Hail, Hail, Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Schoedel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Metal–Organic Framework: From Design to Applications”, edited by Xian-He Bu, Michael J. Zaworotko, and Zhenjie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoedel, A., Rajeh, S. Why Design Matters: From Decorated Metal Oxide Clusters to Functional Metal–Organic Frameworks. Top Curr Chem (Z) 378, 19 (2020). https://doi.org/10.1007/s41061-020-0281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-020-0281-0

Keywords

Navigation