Skip to main content
Log in

Metal–Organic Frameworks Towards Desulfurization of Fuels

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Petroleum is an essential source of energy for our daily life. However, crude oil contains various kinds of sulfur-containing compounds that will form sulfur oxides upon combustion and cause severe environmental problems. To reduce the environmental impact of petroleum energy, the desulfurization of fuels is necessary. Metal–organic frameworks (MOFs), an emerging class of porous materials, have shown great potential in a variety of applications. In this review, we summarize the use of MOFs in the desulfurization of fuels. The scope of this review includes MOFs and MOF-derived materials that have been applied in oxidative desulfurization and adsorptive desulfurization processes. We aim to provide an overview of the progress of MOFs in fuel desulfurization as well as shed light on the development of superior MOF-based materials in the field of desulfurization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted with permission from Ref. [30] Copyright (2015) American Chemical Society

Fig. 4

Adapted with permission from Ref. [31] Copyright (2015) American Chemical Society

Fig. 5

Adapted from Ref. [33] Copyright (2017), with permission from Elsevier

Fig. 6

Adapted with permission from Ref. [34] Copyright (2017) American Chemical Society

Fig. 7

Adapted from Ref. [35] Copyright (2019), with permission from Elsevier

Fig. 8

Adapted with permission from Ref. [36] Copyright (2019) American Chemical Society

Fig. 9

Adapted and modified from Ref. [48] Copyright (2017), with permission from RSC publishing

Fig. 10

Adapted from Ref. [53] Copyright (2017), with permission from Wiley

Fig. 11

Adapted with permission from Ref. [54] Copyright (2017) American Chemical Society

Fig. 12

Adapted from Ref. [56] Copyright (2016), with permission from RSC publishing

Fig. 13

Adapted from Ref. [76] Copyright (2016), with permission from RSC publishing

Fig. 14

Adapted from Ref. [77] Copyright (2017), with permission from Elsevier

Fig. 15

Adapted from Ref. [83] Copyright (2016), with permission from RSC publishing

Similar content being viewed by others

References

  1. Chandra Srivastava V (2012) RSC Adv 2:759–783

    CAS  Google Scholar 

  2. Environmental Protection Agency (EPA) (2014) Fed Regist 79(81):23414–23886

    Google Scholar 

  3. Ali MF, Al-Malki A, El-Ali B, Martinie G, Siddiqui MN (2006) Fuel 85:1354–1363

    CAS  Google Scholar 

  4. Otsuki S, Nonaka T, Takashima N, Qian W, Ishihara A, Imai T, Kabe T (2000) Energy Fuels 14:1232–1239

    CAS  Google Scholar 

  5. Kumar S, Srivastava VC, Badoni RP (2012) Fuel Process Technol 93:18–25

    CAS  Google Scholar 

  6. García-Gutiérrez JL, Fuentes GA, Hernández-Terán ME, García P, Murrieta-Guevara F, Jiménez-Cruz F (2008) Appl Catal A 334:366–373

    Google Scholar 

  7. Cedeño-Caero L, Gomez-Bernal H, Fraustro-Cuevas A, Guerra-Gomez HD, Cuevas-Garcia R (2008) Catal Today 133–135:244–254

    Google Scholar 

  8. Ania CO, Parra JB, Arenillas A, Rubiera F, Bandosz TJ, Pis JJ (2007) Appl Surf Sci 253:5899–5903

    CAS  Google Scholar 

  9. Ngamcharussrivichai C, Chatratananon C, Nuntang S, Prasassarakich P (2008) Fuel 87:2347–2351

    CAS  Google Scholar 

  10. Park JG, Ko CH, Yi KB, Park J-H, Han S-S, Cho S-H, Kim J-N (2008) Appl Catal B 81:244–250

    CAS  Google Scholar 

  11. Bezverkhyy I, Ryzhikov A, Gadacz G, Bellat J-P (2008) Catal Today 130:199–205

    CAS  Google Scholar 

  12. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2012) Chem Rev 112:724–781

    CAS  PubMed  Google Scholar 

  13. Zhao Y (2016) Chem Mater 28:8079–8081

    CAS  Google Scholar 

  14. Bai Y, Dou Y, Xie L-H, Rutledge W, Li J-R, Zhou H-C (2016) Chem Soc Rev 45:2327–2367

    CAS  PubMed  Google Scholar 

  15. Huang J, Yung KC, Li G, Wei Z, Meng Z (2019) IEEE Magn Lett 10:1–3

    Google Scholar 

  16. Gándara F, Perles J, Snejko N, Iglesias M, Gómez-Lor B, Gutiérrez-Puebla E, Monge MÁ (2006) Angew Chem Int Ed 45:7998–8001

    Google Scholar 

  17. Gándara F, Puebla EG, Iglesias M, Proserpio DM, Snejko N, Monge MÁ (2009) Chem Mater 21:655–661

    Google Scholar 

  18. Larabi C, Nielsen PK, Helveg S, Thieuleux C, Johansson FB, Brorson M, Quadrelli EA (2012) ACS Catal 2:695–700

    CAS  Google Scholar 

  19. Liu D, Zhu H, Zhao J, Pan L, Dai P, Gu X, Li L, Liu Y, Zhao X (2018) Materials 11:1067

    PubMed Central  Google Scholar 

  20. Te M, Fairbridge C, Ring Z (2001) Appl Catal A 219:267–280

    CAS  Google Scholar 

  21. Wu N, Li B, Liu Z, Han C (2014) Catal Commun 46:156–160

    CAS  Google Scholar 

  22. Xiao J, Wu L, Wu Y, Liu B, Dai L, Li Z, Xia Q, Xi H (2014) Appl Energy 113:78–85

    CAS  Google Scholar 

  23. Marx S, Kleist W, Baiker A (2011) J Catal 281:76–87

    CAS  Google Scholar 

  24. Manna K, Ji P, Greene FX, Lin W (2016) J Am Chem Soc 138:7488–7491

    CAS  PubMed  Google Scholar 

  25. Zhao M, Yuan K, Wang Y, Li G, Guo J, Gu L, Hu W, Zhao H, Tang Z (2016) Nature 539:76–80

    CAS  Google Scholar 

  26. Bernales V, Ortuño MA, Truhlar DG, Cramer CJ, Gagliardi L (2017) ACS Cent Sci 4:5–19

    PubMed  PubMed Central  Google Scholar 

  27. Yang D, Gates BC (2019) ACS Catal 9:1779–1798

    CAS  Google Scholar 

  28. Kim S-N, Kim J, Kim H-Y, Cho H-Y, Ahn W-S (2013) Catal Today 204:85–93

    CAS  Google Scholar 

  29. McNamara ND, Neumann GT, Masko ET, Urban JA, Hicks JC (2013) J Catal 305:217–226

    CAS  Google Scholar 

  30. McNamara ND, Hicks JC (2015) ACS Appl Mater Interfaces 7:5338–5346

    CAS  PubMed  Google Scholar 

  31. Masoomi MY, Bagheri M, Morsali A (2015) Inorg Chem 54:11269–11275

    CAS  PubMed  Google Scholar 

  32. Granadeiro CM, Ribeiro SO, Karmaoui M, Valença R, Ribeiro JC, de Castro B, Cunha-Silva L, Balula SS (2015) Chem Commun 51:13818–13821

    CAS  Google Scholar 

  33. Zhang X, Huang P, Liu A, Zhu M (2017) Fuel 209:417–423

    CAS  Google Scholar 

  34. Ye G, Zhang D, Li X, Leng K, Zhang W, Ma J, Sun Y, Xu W, Ma S (2017) ACS Appl Mater Interfaces 9:34937–34943

    CAS  PubMed  Google Scholar 

  35. Hao L, Hurlock MJ, Li X, Ding G, Kriegsman KW, Guo X, Zhang Q (2019) Catal Today. https://doi.org/10.1016/j.cattod.2019.04.012

    Article  Google Scholar 

  36. Zheng HQ, Zeng YN, Chen J, Lin RG, Zhuang WE, Cao R, Lin ZJ (2019) Inorg Chem 58:6983–6992

    CAS  PubMed  Google Scholar 

  37. Hu X, Lu Y, Dai F, Liu C, Liu Y (2013) Microporous Mesoporous Mater 170:36–44

    CAS  Google Scholar 

  38. Ribeiro S, Barbosa ADS, Gomes AC, Pillinger M, Gonçalves IS, Cunha-Silva L, Balula SS (2013) Fuel Process Technol 116:350–357

    CAS  Google Scholar 

  39. Ribeiro S, Granadeiro CM, Silva P, Almeida Paz FA, de Biani FF, Cunha-Silva L, Balula SS (2013) Catal Sci Technol 3:2404–2414

    CAS  Google Scholar 

  40. Granadeiro CM, Barbosa ADS, Ribeiro S, Santos ICMS, de Castro B, Cunha-Silva L, Balula SS (2014) Catal Sci Technol 4:1416–1425

    CAS  Google Scholar 

  41. Julião D, Gomes AC, Pillinger M, Cunha-Silva L, de Castro B, Gonçalves IS, Balula SS (2015) Fuel Process Technol 131:78–86

    Google Scholar 

  42. Granadeiro CM, Nogueira LS, Julião D, Mirante F, Ananias D, Balula SS, Cunha-Silva L (2016) Catal Sci Technol 6:1515–1522

    CAS  Google Scholar 

  43. Julião D, Gomes AC, Pillinger M, Valença R, Ribeiro JC, de Castro B, Gonçalves IS, Cunha Silva L, Balula SS (2016) Eur J Inorg Chem 2016:5114–5122

    Google Scholar 

  44. Wang X-S, Huang Y-B, Lin Z-J, Cao R (2014) Dalton Trans 43:11950–11958

    CAS  PubMed  Google Scholar 

  45. Hao X-L, Ma Y-Y, Zang H-Y, Wang Y-H, Li Y-G, Wang E-B (2015) Chem Eur J 21:3778–3784

    CAS  PubMed  Google Scholar 

  46. Rafiee E, Nobakht N (2015) J Mol Catal A Chem 398:17–25

    CAS  Google Scholar 

  47. Zhang L, Wu S, Liu Y, Wang F, Han X, Shang H (2016) Appl Organomet Chem 30:684–690

    CAS  Google Scholar 

  48. Wang X-S, Li L, Liang J, Huang Y-B, Cao R (2017) ChemCatChem 9:971–979

    CAS  Google Scholar 

  49. Lin Z-J, Zheng H-Q, Chen J, Zhuang W-E, Lin Y-X, Su J-W, Huang Y-B, Cao R (2018) Inorg Chem 58:6983–6992

    Google Scholar 

  50. Peng Y-L, Liu J, Zhang H-F, Luo D, Li D (2018) Inorg Chem Front 5:1563–1569

    CAS  Google Scholar 

  51. Fazaeli R, Aliyan H, Moghadam M, Masoudinia M (2013) J Mol Catal A Chem 374–375:46–52

    Google Scholar 

  52. Wu J, Gao Y, Zhang W, Tan Y, Tang A, Men Y, Tang B (2015) Appl Organomet Chem 29:96–100

    CAS  Google Scholar 

  53. Ye G, Qi H, Li X, Leng K, Sun Y, Xu W (2017) ChemPhysChem 18:1903–1908

    CAS  PubMed  Google Scholar 

  54. Bhadra BN, Song JY, Khan NA, Jhung SH (2017) ACS Appl Mater Interfaces 9:31192–31202

    CAS  PubMed  Google Scholar 

  55. Lü H, Zhang Y, Jiang Z, Li C (2010) Green Chem 12:1954–1958

    Google Scholar 

  56. Gómez-Paricio A, Santiago-Portillo A, Navalón S, Concepción P, Alvaro M, Garcia H (2016) Green Chem 18:508–515

    Google Scholar 

  57. Cho K-B, Kang H, Woo J, Park YJ, Seo MS, Cho J, Nam W (2014) Inorg Chem 53:645–652

    CAS  PubMed  Google Scholar 

  58. Ansari A, Jayapal P, Rajaraman G (2015) Angew Chem Int Ed 127:574–578

    Google Scholar 

  59. Cho J, Woo J, Nam W (2010) J Am Chem Soc 132:5958–5959

    CAS  PubMed  Google Scholar 

  60. Liu Y, Liu S, Liu S, Liang D, Li S, Tang Q, Wang X, Miao J, Shi Z, Zheng Z (2013) ChemCatChem 5:3086–3091

    CAS  Google Scholar 

  61. Ding J-W, Wang R (2016) Chin Chem Lett 27:655–658

    CAS  Google Scholar 

  62. Li S-W, Gao R-M, Zhang R-L, Zhao J-S (2016) Fuel 184:18–27

    CAS  Google Scholar 

  63. Li S-W, Li J-R, Gao Y, Liang L-L, Zhang R-L, Zhao J-S (2017) Fuel 197:551–561

    CAS  Google Scholar 

  64. Tan P, Jiang Y, Sun L-B, Liu X-Q, AlBahily K, Ravon U, Vinu A (2018) J Mater Chem A 6:23978–24012

    CAS  Google Scholar 

  65. Tan P, Xue DM, Zhu J, Jiang Y, He QX, Hou Z, Liu XQ, Sun LB (2018) AIChE J 64:3786–3793

    CAS  Google Scholar 

  66. Shan J-H, Liu X-Q, Sun L-B, Cui R (2008) Energy Fuels 22:3955–3959

    CAS  Google Scholar 

  67. Shan J-H, Chen L, Sun L-B, Liu X-Q (2011) Energy Fuels 25:3093–3099

    CAS  Google Scholar 

  68. Wu L, Xiao J, Wu Y, Xian S, Miao G, Wang H, Li Z (2014) Langmuir 30:1080–1088

    CAS  PubMed  Google Scholar 

  69. Li Y-X, Jiang W-J, Tan P, Liu X-Q, Zhang D-Y, Sun L-B (2015) J Phys Chem C 119:21969–21977

    CAS  Google Scholar 

  70. Van de Voorde B, Hezinová M, Lannoeye J, Vandekerkhove A, Marszalek B, Gil B, Beurroies I, Nachtigall P, De Vos D (2015) Phys Chem Chem Phys 17:10759–10766

    PubMed  Google Scholar 

  71. Ahmed I, Jhung SH (2016) J Hazard Mater 301:259–276

    CAS  PubMed  Google Scholar 

  72. Li Y, Wang L-J, Fan H-L, Shangguan J, Wang H, Mi J (2015) Energy Fuels 29:298–304

    CAS  Google Scholar 

  73. Tian F, Fu Z, Zhang H, Zhang J, Chen Y, Jia C (2015) Fuel 158:200–206

    CAS  Google Scholar 

  74. Wang T, Li X, Dai W, Fang Y, Huang H (2015) J Mater Chem A 3:21044–21050

    CAS  Google Scholar 

  75. Tang W, Gu J, Huang H, Liu D, Zhong C (2016) AIChE J 62:4491–4496

    CAS  Google Scholar 

  76. Xu W, Li G, Li W, Zhang H (2016) RSC Adv 6:37530–37534

    CAS  Google Scholar 

  77. Tan P, Xie X-Y, Liu X-Q, Pan T, Gu C, Chen P-F, Zhou J-Y, Pan Y, Sun L-B (2017) J Hazard Mater 321:344–352

    CAS  PubMed  Google Scholar 

  78. Ban S, Long K, Xie J, Sun H, Zhou H (2018) Ind Eng Chem Res 57:2956–2966

    CAS  Google Scholar 

  79. Bhadra BN, Cho KH, Khan NA, Hong D-Y, Jhung SH (2015) J Phys Chem C 119:26620–26627

    CAS  Google Scholar 

  80. Khan NA, Hasan Z, Jhung SH (2014) Chem Eur J 20:376–380

    CAS  PubMed  Google Scholar 

  81. Liu B, Peng Y, Chen Q (2016) Energy Fuels 30:5593–5600

    CAS  Google Scholar 

  82. Huang M, Chang G, Su Y, Xing H, Zhang Z, Yang Y, Ren Q, Bao Z, Chen B (2015) Chem Commun 51:12205–12207

    CAS  Google Scholar 

  83. Qin J-X, Tan P, Jiang Y, Liu X-Q, He Q-X, Sun L-B (2016) Green Chem 18:3210–3215

    CAS  Google Scholar 

  84. Aslam S, Subhan F, Yan Z, Etim UJ, Zeng J (2017) Chem Eng J 315:469–480

    CAS  Google Scholar 

  85. Liu X, Wang J, Li Q, Jiang S, Zhang T, Ji S (2014) J Rare Earths 32:189–194

    CAS  Google Scholar 

  86. Habimana F, Huo Y, Jiang S, Ji S (2016) Adsorption 22:1147–1155

    CAS  Google Scholar 

  87. Peralta D, Chaplais G, Simon-Masseron A, Barthelet K, Pirngruber GD (2012) Energy Fuels 26:4953–4960

    CAS  Google Scholar 

  88. Khan NA, Jhung SH (2015) Inorg Chem 54:11498–11504

    CAS  PubMed  Google Scholar 

  89. Liu Y, Guo F, Hu J, Zhao S, Liu H, Hu Y (2015) Chem Eng Sci 137:170–177

    CAS  Google Scholar 

  90. Chen Z, Ling L, Wang B, Fan H, Shangguan J, Mi J (2016) Appl Surf Sci 387:483–490

    CAS  Google Scholar 

  91. Khan NA, Jun JW, Jeong JH, Jhung SH (2011) Chem Commun 47:1306–1308

    CAS  Google Scholar 

  92. Shi Y, Zhang X, Wang L, Liu G (2014) AIChE J 60:2747–2751

    CAS  Google Scholar 

  93. Khan NA, Bhadra BN, Jhung SH (2018) Chem Eng J 334:2215–2221

    CAS  Google Scholar 

  94. He W-W, Yang G-S, Tang Y-J, Li S-L, Zhang S-R, Su Z-M, Lan Y-Q (2015) Chem Eur J 21:9784–9789

    CAS  PubMed  Google Scholar 

  95. Schnobrich JK, Lebel O, Cychosz KA, Dailly A, Wong-Foy AG, Matzger AJ (2010) J Am Chem Soc 132:13941–13948

    CAS  PubMed  Google Scholar 

  96. Maes M, Trekels M, Boulhout M, Schouteden S, Vermoortele F, Alaerts L, Heurtaux D, Seo Y-K, Hwang YK, Chang J-S, Beurroies I, Denoyel R, Temst K, Vantomme A, Horcajada P, Serre C, De-Vos DE (2011) Angew Chem Int Ed 50:4210–4214

    CAS  Google Scholar 

  97. Pilloni M, Padella F, Ennas G, Lai S, Bellusci M, Rombi E, Sini F, Pentimalli M, Delitala C, Scano A, Cabras V, Ferino I (2015) Microporous Mesoporous Mater 213:14–21

    CAS  Google Scholar 

  98. Khan NA, Yoon JW, Chang J-S, Jhung SH (2016) Chem Commun 52:8667–8670

    CAS  Google Scholar 

  99. Samokhvalov A (2018) Coord Chem Rev 374:236–253

    CAS  Google Scholar 

  100. Tian F, Ru Q, Qiao C, Sun X, Jia C, Wang Y, Zhang Y (2018) J Energy Chem 32:8–14

    Google Scholar 

  101. Bagheri M, Masoomi MY, Morsali A (2017) J Hazard Mater 331:142–149

    CAS  PubMed  Google Scholar 

  102. Zhang X-F, Wang Z, Feng Y, Zhong Y, Liao J, Wang Y, Yao J (2018) Fuel 234:256–262

    CAS  Google Scholar 

Download references

Funding

Funding was provided by Washington State University “Startup”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Metal-Organic Framework: From Design to Applications”; edited by Xian-He Bu, Michael J. Zaworotko, and Zhenjie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, L., Hurlock, M.J., Ding, G. et al. Metal–Organic Frameworks Towards Desulfurization of Fuels. Top Curr Chem (Z) 378, 17 (2020). https://doi.org/10.1007/s41061-020-0280-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-020-0280-1

Keywords

Navigation