Skip to main content
Log in

Tertiary Amine Lewis Base Catalysis in Combination with Transition Metal Catalysis

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

The cooperation between two orthogonal catalytic events during the formation of carbon–carbon and carbon–heteroatom bonds has emerged as an effective strategy for enantioselective chemical synthesis. In recent years, a number of pioneering investigations have described useful chemical synthesis methods whereby the reactivity or nucleophile–electrophile combinations can be fine-tuned or extended far beyond the effect and influence of a single catalyst. The recognition of this has had profound implications for the development cooperative catalysis as a field and has provided a foundation for the development of broadly useful chemical synthesis methods. This chapter focuses on the combination of tertiary amine Lewis base and transition metal catalysts, which the authors hope will simulate further developments and advances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35

Similar content being viewed by others

References

  1. Beller M, Bolm C (2004) Transition metals for organic synthesis: building blocks and fine chemicals. Wiley, Weinheim

    Book  Google Scholar 

  2. Peters R (2015) Cooperative catalysis: designing efficient catalysts for synthesis. Wiley, Weinheim

    Book  Google Scholar 

  3. Chauhan P, Mahajan S, Enders D (2017) Acc Chem Res 50:2809–2821

    Article  CAS  Google Scholar 

  4. Song J, Chen D-F, Gong L-Z (2017) Nat Sci Rev 4:381–396

    Article  CAS  Google Scholar 

  5. Park YJ, Park J-W, Jun C-H (2008) Acc Chem Res 41:222–234

    Article  CAS  Google Scholar 

  6. Du Z, Shao Z (2013) Chem Soc Rev 42:1337–1378

    Article  CAS  Google Scholar 

  7. Afewerki S, Córdova A (2016) Chem Rev 116:13512–13570

    Article  CAS  Google Scholar 

  8. France S, Wack H, Hafez AM, Taggi AE, Witsil DR, Lectka T (2002) Org Lett 4:1603–1605

    Article  CAS  Google Scholar 

  9. France S, Shah MH, Weatherwax A, Wack H, Roth JP, Lectka T (2005) J Am Chem Soc 127:1206–1215

    Article  CAS  Google Scholar 

  10. Calter MA, Tretyak OA, Flaschenriem C (2005) Org Lett 7:1809–1812

    Article  CAS  Google Scholar 

  11. Huang Y, Calter MA (2007) Tet Lett 48:1657–1659

    Article  CAS  Google Scholar 

  12. Wang Y, Calter MA (2015) Tet Lett 56:3334–3336

    Article  CAS  Google Scholar 

  13. Paull DH, Alden-Danforth E, Wolfer J, Dogo-Isonagie C, Abraham CJ, Lectka T (2007) J Org Chem 72:5380–5382

    Article  CAS  Google Scholar 

  14. Abraham CJ, Paull DH, Bekele T, Scerba MT, Dudding T, Lectka T (2008) J Am Chem Soc 130:17085–17094

    Article  CAS  Google Scholar 

  15. Paull DH, Scerba MT, Alden-Danforth E, Widger LR, Lectka T (2008) J Am Chem Soc 130:17260–17261

    Article  CAS  Google Scholar 

  16. Erb J, Alden-Danforth E, Kopf N, Scerba MT, Lectka T (2009) J Org Chem 75:969–971

    Article  Google Scholar 

  17. Erb J, Paull DH, Dudding T, Belding L, Lectka T (2011) J Am Chem Soc 133:7536–7546

    Article  CAS  Google Scholar 

  18. Koch FM, Peters R (2007) Angew Chem Int Ed 46:2685–2689

    Article  CAS  Google Scholar 

  19. Koch FM, Peters R (2011) Chem Eur J 17:3679–3692

    Article  CAS  Google Scholar 

  20. Lundgren S, Wingstrand E, Penhoat M, Moberg C (2005) J Am Chem Soc 127:11592–11593

    Article  CAS  Google Scholar 

  21. Lundgren S, Wingstrand E, Moberg C (2007) No article tile. Adv Synth Catal 349:364–372

    Article  CAS  Google Scholar 

  22. Ceban V, Putaj P, Meazza M, Pitak MB, Coles SJ, Vesely J, Rios R (2014) Chem Commun 50:7447–7450

    Article  CAS  Google Scholar 

  23. West TH, Daniels DSB, Slawin AMZ, Smith AD (2015) J Am Chem Soc 136:4476–4479

    Article  Google Scholar 

  24. Spoehrle SSM, West TH, Taylor JE, Slawin AMZ, Smith AD (2017) J Am Chem Soc 139:11895–11902

    Article  CAS  Google Scholar 

  25. Schwarz KJ, Amos JL, Klein JC, Do DT, Snaddon TN (2016) J Am Chem Soc 138:5214–5217

    Article  CAS  Google Scholar 

  26. Bruno NC, Tudge MT, Buchwald SL (2013) Chem Sci 4:916–920

    Article  CAS  Google Scholar 

  27. Schwarz KJ, Pearson CM, Cintron-Rosado GA, Liu P, Snaddon TS (2018) Angew Chem Int Ed 57:7800–7803

    Article  CAS  Google Scholar 

  28. Fyfe JWB, Kabia OM, Pearson CM, Snaddon TN (2018) Tetrahedron 74:5383–5391

    Article  CAS  Google Scholar 

  29. Scaggs WR, Snaddon TN (2018) Chem Eur J 24:14378–14381

    Article  CAS  Google Scholar 

  30. Schwarz KJ, Yang C, Fyfe JWB, Snaddon TN (2018) Angew Chem Int Ed 57:12102–12105

    Article  CAS  Google Scholar 

  31. Hutchings-Goetz L, Yang C, Snaddon TN (2018) ACS Catal 8:10537–10544

    Article  CAS  Google Scholar 

  32. Scaggs WR, Scaggs TD, Snaddon TN (2019) Org Biomol Chem 17:1787–1790

    Article  Google Scholar 

  33. Pearson CM, Fyfe JWB, Snaddon TN (2019) Angew Chem Int Ed 58:10521–10527

    Article  CAS  Google Scholar 

  34. Li LL, Ding D, Song J, Han Z-Y, Gong L-Z (2019) Angew Chem Int Ed 58:7647–7651

    Article  CAS  Google Scholar 

  35. Jiang X, Beiger JJ, Hartwig JF (2017) J Am Chem Soc 139:87–90

    Article  CAS  Google Scholar 

  36. Krautwald S, Carreira EM (2017) J Am Chem Soc 139:5627–5639

    Article  CAS  Google Scholar 

  37. Chen Z-C, Chen Z, Yang Z-H, Guo L, Du W, Chen Y-C (2019) Angew Chem Int Ed 58:15021–15025

    Article  CAS  Google Scholar 

  38. Song J, Zhang Z-J, Gong L-Z (2017) Angew Chem Int Ed 56:5212–5216

    Article  CAS  Google Scholar 

  39. Lu X, Ge L, Cheng C, Chen J, Cao W, Wu X (2017) Chem Eur J 23:7689–7693

    Article  CAS  Google Scholar 

  40. Song J, Zhang Z-J, Chen S-S, Fan T, Gong L-Z (2018) J Am Chem Soc 140:3177–3180

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas N. Snaddon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Asymmetric Organocatalysis Combined with Metal Catalysis”; edited by Bruce A. Arndtsen, Liu-Zhu Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knox, G.J., Hutchings-Goetz, L.S., Pearson, C.M. et al. Tertiary Amine Lewis Base Catalysis in Combination with Transition Metal Catalysis. Top Curr Chem (Z) 378, 16 (2020). https://doi.org/10.1007/s41061-020-0279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-020-0279-7

Keywords

Navigation