Abstract
The development of fluorescent gels, if not the current focus, is at the center of recent efforts devoted to the invention of a new generation of gels. Fluorescent gels have numerous properties that are intrinsic to the gel structure, with additional light-emitting properties making them attractive for different applications. This review focuses on current studies associated with the development of fluorescent gels using aggregation-induced emission fluorophores (AIEgens) to ultimately suggest new directions for future research. Here, we discuss major drawbacks of the methodologies used frequently for the fabrication of fluorescent gels using traditional fluorophores compared to those using AIEgens. The fabrication strategies to develop AIE-based fluorescent gels, including physical mixing, soaking, self-assembly, noncovalent interactions, and permanent chemical reactions, are discussed thoroughly. New and recent findings on developing AIE-active gels are explained. Specifically, physically prepared AIE-based gels including supramolecular, ionic, and chemically prepared AIE-based gels are discussed. In addition, the intrinsic fluorescent properties of natural gels, known as clustering-triggered fluorescent gel, and new and recent relevant findings published in peer-reviewed journals are explained. This review also revealed the biomedical applications of AIE-based fluorescent hydrogels including drug delivery, biosensors, bioimaging, and tissue engineering. In conclusion, the current research situation and future directions are identified.
This is a preview of subscription content, access via your institution.











References
- 1.
Liu Z, Ran Y, Xi J, Wang J (2020) Polymeric hybrid aerogels and their biomedical applications. Soft Matter 250:20
- 2.
Cook MT, Brown MB (2018) Polymeric gels for intravaginal drug delivery. J Control Release 270:145–157
- 3.
Cao Z, Dobrynin AV (2016) Nanoparticles as adhesives for soft polymeric materials. Macromolecules 49(9):3586–3592
- 4.
Panja S, Panja A, Ghosh K (2020) Supramolecular gels in cyanide sensing: a review. Mater Chem Front 20:20
- 5.
Appel EA, del Barrio J, Loh XJ, Scherman OA (2012) Supramolecular polymeric hydrogels. Chem Soc Rev 41(18):6195–6214
- 6.
Chivers PR, Smith DK (2019) Shaping and structuring supramolecular gels. Nat Rev Mater 4(7):463–478
- 7.
Lim J, Lin Q, Xue K, Loh X (2019) Recent advances in supramolecular hydrogels for biomedical applications. Mater Today Adv 3:100021
- 8.
Eelkema R, Pich A (2020) Pros and cons: supramolecular or macromolecular: what is best for functional hydrogels with advanced properties? Adv Mater 32(20):1906012
- 9.
Erol O, Pantula A, Liu W, Gracias DH (2019) Transformer hydrogels: a review. Adv Mater Technol 4(4):1900043
- 10.
Distler T, Boccaccini AR (2020) 3D printing of electrically conductive hydrogels for tissue engineering and biosensors—a review. Acta Biomater 101:1–13
- 11.
Merino S, Martín C, Kostarelos K, Prato M, Vázquez E (2015) Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano 9(5):4686–4697
- 12.
Tavakoli J, Tang Y (2017) Honey/PVA hybrid wound dressings with controlled release of antibiotics: structural, physico-mechanical and in-vitro biomedical studies. Mater Sci Eng C 77:318–325
- 13.
Chuah C, Wang J, Tavakoli J, Tang Y (2018) Novel bacterial cellulose-poly (acrylic acid) hybrid hydrogels with controllable antimicrobial ability as dressings for chronic wounds. Polymers 10(12):1323
- 14.
Park SH, Park JY, Ji YB, Ju HJ, Min BH, Kim MS (2020) An injectable click-crosslinked hyaluronic acid hydrogel modified with a BMP-2 mimetic peptide as a bone tissue engineering scaffold. Acta Biomater 20:20
- 15.
Patel A, Zaky SH, Schoedel K, Li H, Sant V, Beniash E, Sfeir C, Stolz DB, Sant S (2020) Design and evaluation of collagen-inspired mineral-hydrogel nanocomposites for bone regeneration. Acta Biomater 112:262–273
- 16.
Mehrban N, Pineda Molina C, Quijano LM, Bowen J, Johnson SA, Bartolacci J, Chang JT, Scott DA, Woolfson DN, Birchall MA, Badylak SF (2020) Host macrophage response to injectable hydrogels derived from ECM and α-helical peptides. Acta Biomater 111:141–152
- 17.
Tavakoli J (2017) Tissue engineering of the intervertebral disc’s annulus fibrosus: a scaffold-based review study. Tissue Eng Regener Med 14(2):81–91
- 18.
Basu S, Pacelli S, Paul A (2020) Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery. Acta Biomater 105:159–169
- 19.
Liu C, Guo X, Ruan C, Hu H, Jiang B-P, Liang H, Shen X-C (2019) An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy. Acta Biomater 96:281–294
- 20.
Chen S, Duan J, Tang Y, Zhang Qiao S (2013) Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chem A Eur J 19(22):7118–7124
- 21.
Zeng Q, Qi X, Zhang M, Tong X, Jiang N, Pan W, Xiong W, Li Y, Xu J, Shen J (2020) Efficient decontamination of heavy metals from aqueous solution using pullulan/polydopamine hydrogels. Int J Biol Macromol 145:1049–1058
- 22.
Wahlström N, Steinhagen S, Toth G, Pavia H, Edlund U (2020) Ulvan dialdehyde-gelatin hydrogels for removal of heavy metals and methylene blue from aqueous solution. Carbohyd Polym 249:116841
- 23.
Keshawy M, Mahmoud A-R, Abdel-Raouf ME-S (2020) Polystyrene-based magnetic hydrogels for elimination of some toxic metal cations from aqueous solutions. Environ Sci Pollut Res Int 20:20
- 24.
Gao Y, Gu S, Jia F, Wang Q, Gao G (2020) “All-in-one” hydrolyzed keratin protein-modified polyacrylamide composite hydrogel transducer. Chem Eng J 30:125555
- 25.
Feng Q, Gao H, Wen H, Huang H, Li Q, Liang M, Liu Y, Dong H, Cao X (2020) Engineering the cellular mechanical microenvironment to regulate stem cell chondrogenesis: insights from a microgel model. Acta Biomater 113:393–406
- 26.
Dehbari N, Tavakoli J, Khatrao SS, Tang Y (2017) In situ polymerized hyperbranched polymer reinforced poly (acrylic acid) hydrogels. Mater Chem Front 1(10):1995–2004
- 27.
Tavakoli J, Tang Y (2017) Hydrogel based sensors for biomedical applications: an updated review. Polymers 9(8):364
- 28.
Lei H, Dong L, Li Y, Zhang J, Chen H, Wu J, Zhang Y, Fan Q, Xue B, Qin M, Chen B, Cao Y, Wang W (2020) Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers. Nat Commun 11(1):4032
- 29.
Zhang Y, Le X, Jian Y, Lu W, Zhang J, Chen T (2019) 3D fluorescent hydrogel origami for multistage data security protection. Adv Func Mater 29(46):1905514
- 30.
Pandey PK, Ulla H, Satyanarayan MN, Rawat K, Gaur A, Gawali S, Hassan PA, Bohidar HB (2020) Fluorescent MoS2 quantum dot–DNA nanocomposite hydrogels for organic light-emitting diodes. ACS Appl Nano Mater 3(2):1289–1297
- 31.
Wei S, Li Z, Lu W, Liu H, Zhang J, Chen T, Tang BZ (2020) Multicolor fluorescent polymeric hydrogels: colorfulness is more shining than homochromy. Angew Chem Int Ed (online ahead of print). https://doi.org/10.1002/anie.202007506
- 32.
Jiang H, Qin Z, Zheng Y, Liu L, Wang X (2019) Aggregation-induced electrochemiluminescence by metal-binding protein responsive hydrogel scaffolds. Small 15(18):1901170
- 33.
Cengiz N (2020) Glutathione-responsive multifunctionalizable hydrogels via amine-epoxy “click” chemistry. Eur Polym J 123:109441
- 34.
Khandai S, Siegel RA, Jena SS (2020) Probing the microenvironment of polyacrylamide hydrogel matrix using turbidity and fluorescence recovery after photobleaching: one versus two phases. Colloids Surf A 593:124618
- 35.
Vanheusden M, Vitale R, Camacho R, Janssen KP, Acke A, Rocha S, Hofkens J (2020) Fluorescence photobleaching as an intrinsic tool to quantify the 3D expansion factor of biological samples in expansion microscopy. ACS Omega 5(12):6792–6799
- 36.
Zhang X, Ballem MA, Hu ZJ, Bergman P, Uvdal K (2011) Nanoscale light-harvesting metal-organic frameworks. Angew Chem 123(25):5847–5851
- 37.
Zhang X, Ballem MA, Ahrén M, Suska A, Bergman P, Uvdal K (2010) Nanoscale Ln (III)-carboxylate coordination polymers (Ln= Gd, Eu, Yb): temperature-controlled guest encapsulation and light harvesting. J Am Chem Soc 132(30):10391–10397
- 38.
Shi J, Wang M, Sun Z, Liu Y, Guo J, Mao H, Yan F (2019) Aggregation-induced emission-based ionic liquids for bacterial killing, imaging, cell labeling, and bacterial detection in blood cells. Acta Biomater 97:247–259
- 39.
Chen Y, Lam JWY, Kwok RTK, Liu B, Tang BZ (2019) Aggregation-induced emission: fundamental understanding and future developments. Mater Horizons 6(3):428–433
- 40.
Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40(11):5361–5388
- 41.
Zhu C, Kwok RTK, Lam JWY, Tang BZ (2018) Aggregation-induced emission: a trailblazing journey to the field of biomedicine. ACS Appl Bio Mater 1(6):1768–1786
- 42.
Yang J, Chi Z, Zhu W, Tang BZ, Li Z (2019) Aggregation-induced emission: a coming-of-age ceremony at the age of eighteen. Sci China Chem 62(9):1090–1098
- 43.
Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 26(31):5429–5479
- 44.
Jiang N, Shen T, Sun JZ, Tang BZ (2019) Aggregation-induced emission: right there shining. Sci China Mater 62(9):1227–1235
- 45.
Guo F, Gai W-P, Hong Y, Tang BZ, Qin J, Tang Y (2015) Aggregation-induced emission fluorogens as biomarkers to assess the viability of microalgae in aquatic ecosystems. Chem Commun 51(97):17257–17260
- 46.
Qin A, Jim CKW, Tang Y, Lam JWY, Liu J, Mahtab F, Gao P, Tang BZ (2008) Aggregation-enhanced emissions of intramolecular excimers in disubstituted polyacetylenes. J Phys Chem B 112(31):9281–9288
- 47.
Cheng X, Jiang J, Liang G (2020) Covalently conjugated hydrogelators for imaging and therapeutic applications. Bioconjug Chem 31(3):448–461
- 48.
Tang Y, Tang BZ (2018) Principles and applications of aggregation-induced emission. Springer, Berlin
- 49.
Tavakoli J, Zhang H-P, Tang BZ, Tang Y (2019) Aggregation-induced emission lights up the swelling process: a new technique for swelling characterisation of hydrogels. Mater Chem Front 3(4):664–667
- 50.
Tavakoli J, Gascooke J, Xie N, Tang BZ, Tang Y (2019) Enlightening freeze-thaw process of physically cross-linked poly(vinyl alcohol) hydrogels by aggregation-induced emission fluorogens. ACS Appl Polym Mater 1(6):1390–1398
- 51.
Lee CY, Farha OK, Hong BJ, Sarjeant AA, Nguyen ST, Hupp JT (2011) Light-harvesting metal–organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. J Am Chem Soc 133(40):15858–15861
- 52.
Haldar R, Rao KV, George SJ, Maji TK (2012) exciplex formation and energy transfer in a self-assembled metal–organic hybrid system. Chem A Eur J 18(19):5848–5852
- 53.
Zeng X, Liang J, Wang C, Yu Z, Zhao X, Lu H, Wang Q (2020) Gelation process visualized by synchronous fluorescence enhancement of polyhydroxy benzoylhydrazone-based organogel. J Lumin 224:117259
- 54.
Du X, Zhou J, Shi J, Xu B (2015) Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev 115(24):13165–13307
- 55.
Suzuki M, Hanabusa K (2010) Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem Soc Rev 39(2):455–463
- 56.
Li B, Zhang Y, Yan B, Xiao D, Zhou X, Dong J, Zhou Q (2020) A self-healing supramolecular hydrogel with temperature-responsive fluorescence based on an AIE luminogen. RSC Adv 10(12):7118–7124
- 57.
Zhang C, Zhang T, Jin S, Xue X, Yang X, Gong N, Zhang J, Wang PC, Tian J-H, Xing J (2017) Virus-inspired self-assembled nanofibers with aggregation-induced emission for highly efficient and visible gene delivery. ACS Appl Mater Interfaces 9(5):4425–4432
- 58.
Sukul PK, Singh PK, Maji SK, Malik S (2013) Aggregation induced chirality in a self assembled perylene based hydrogel: application of the intracellular pH measurement. J Mater Chem B 1(2):153–156
- 59.
Wang J, Lin X, Shu T, Su L, Liang F, Zhang X (2019) Self-assembly of metal nanoclusters for aggregation-induced emission. Int J Mol Sci 20(8):1891
- 60.
Externbrink M, Riebe S, Schmuck C, Voskuhl J (2018) A dual pH-responsive supramolecular gelator with aggregation-induced emission properties. Soft Matter 14(30):6166–6170
- 61.
Gu L, Liu X, Dong S, Chen Z, Han R, He C, Wang D, Zheng Y (2020) Natural lignin nanoparticles: a promising nano-crosslinker for constructing fluorescent photoswitchable supramolecular hydrogels. Polym Chem 11(11):1871–1876
- 62.
Feng H-T, Lam JWY, Tang BZ (2020) Self-assembly of AIEgens. Coord Chem Rev 406:213142
- 63.
Tian Y, Wang Q, Wang K, Ke M, Hu Y, Shen L, Geng Q, Cheng J, Zhang J (2020) From biomass resources to functional materials: a fluorescent thermosetting material based on resveratrol via thiol-ene click chemistry. Eur Polymer J 123:109416
- 64.
Wu J-L, Zhang C, Qin W, Quan D-P, Ge M-L, Liang G-D (2019) Thermoresponsive fluorescent semicrystalline polymers decorated with aggregation induced emission luminogens. Chin J Polym Sci 37(4):394–400
- 65.
Li B, He T, Shen X, Tang D, Yin S (2019) Fluorescent supramolecular polymers with aggregation induced emission properties. Polym Chem 10(7):796–818
- 66.
Lou X-Y, Yang Y-W (2018) Manipulating aggregation-induced emission with supramolecular macrocycles. Adv Opt Mater 6(22):1800668
- 67.
Qin A, Lam JWY, Tang BZ (2012) Luminogenic polymers with aggregation-induced emission characteristics. Prog Polym Sci 37(1):182–209
- 68.
Hu R, Qin A, Tang BZ (2020) AIE polymers: synthesis and applications. Prog Polym Sci 100:101176
- 69.
Zhou Q, Wang Z, Dou X, Wang Y, Liu S, Zhang Y, Yuan WZ (2019) Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers. Mater Chem Front 3(2):257–264
- 70.
Chen X, Luo W, Ma H, Peng Q, Yuan WZ, Zhang Y (2018) Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci China Chem 61(3):351–359
- 71.
Dou X, Zhou Q, Chen X, Tan Y, He X, Lu P, Sui K, Tang BZ, Zhang Y, Yuan WZ (2018) Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate. Biomacromol 19(6):2014–2022
- 72.
López D, García-Frutos EM (2015) Aggregation-induced emission of organogels based on self-assembled 5-(4-nonylphenyl)-7-azaindoles. Langmuir 31(31):8697–8702
- 73.
Bhattacharya S, Samanta SK (2012) Unusual salt-induced color modulation through aggregation-induced emission switching of a bis-cationic phenylenedivinylene-based π hydrogelator. Chem A Eur J 18(52):16632–16641
- 74.
Zhao Z, Lam JW, Tang BZ (2013) Self-assembly of organic luminophores with gelation-enhanced emission characteristics. Soft Matter 9(18):4564–4579
- 75.
Yang X, Liu Y, Li J, Wang Q, Yang M, Li C (2018) A novel aggregation-induced-emission-active supramolecular organogel for the detection of volatile acid vapors. New J Chem 42(21):17524–17532
- 76.
Liu Y, Lam JW, Mahtab F, Kwok RT, Tang BZ (2010) Sterol-containing tetraphenylethenes: synthesis, aggregation-induced emission, and organogel formation. Front Chem China 5(3):325–330
- 77.
Chen Q, Zhang D, Zhang G, Yang X, Feng Y, Fan Q, Zhu D (2010) Multicolor tunable emission from organogels containing tetraphenylethene, perylenediimide, and spiropyran derivatives. Adv Func Mater 20(19):3244–3251
- 78.
Wang M, Zhang D, Zhang G, Zhu D (2009) Fluorescence enhancement upon gelation and thermally-driven fluorescence switches based on tetraphenylsilole-based organic gelators. Chem Phys Lett 475(1):64–67
- 79.
Wan J-H, Mao L-Y, Li Y-B, Li Z-F, Qiu H-Y, Wang C, Lai G-Q (2010) Self-assembly of novel fluorescent silole derivatives into different supramolecular aggregates: fibre, liquid crystal and monolayer. Soft Matter 6(14):3195–3201
- 80.
Sun P, Wang Z, Bi Y, Sun D, Zhao T, Zhao F, Wang W, Xin X (2020) Self-assembly-driven aggregation-induced emission of silver nanoclusters for light conversion and temperature sensing. ACS Appl Nano Mater 3(2):2038–2046
- 81.
Yoon S-J, Kim JH, Chung JW, Park SY (2011) Exploring the minimal structure of a wholly aromatic organogelator: simply adding two β-cyano groups to distyrylbenzene. J Mater Chem 21(47):18971–18973
- 82.
An B-K, Lee D-S, Lee J-S, Park Y-S, Song H-S, Park SY (2004) Strongly fluorescent organogel system comprising fibrillar self-assembly of a trifluoromethyl-based cyanostilbene derivative. J Am Chem Soc 126(33):10232–10233
- 83.
Seo J, Chung JW, Jo E-H, Park SY (2008) Highly fluorescent supramolecular gels with chirality transcription through hydrogen bonding. Chem Commun 24:2794–2796
- 84.
Chung JW, An B-K, Park SY (2008) A thermoreversible and proton-induced Gel−Sol phase transition with remarkable fluorescence variation. Chem Mater 20(21):6750–6755
- 85.
Zhang C, Liu C, Xue X, Zhang X, Huo S, Jiang Y, Chen W-Q, Zou G, Liang X-J (2014) Salt-responsive self-assembly of luminescent hydrogel with intrinsic gelation-enhanced emission. ACS Appl Mater Interfaces 6(2):757–762
- 86.
Zhang Y-M, Zhu W, Huang X-J, Qu W-J, He J-X, Fang H, Yao H, Wei T-B, Lin Q (2018) Supramolecular aggregation-induced emission gels based on pillar[5]arene for ultrasensitive detection and separation of multianalytes. ACS Sustain Chem Eng 6(12):16597–16606
- 87.
Felip-León C, Galindo F, Miravet JF (2018) Insights into the aggregation-induced emission of 1,8-naphthalimide-based supramolecular hydrogels. Nanoscale 10(36):17060–17069
- 88.
Yao H, Wang J, Fan Y-Q, Zhou Q, Guan X-W, Kan X-T, Zhang Y-M, Lin Q, Wei T-B (2019) Supramolecular hydrogel-based AIEgen: construction and dual-channel recognition of negative charged dyes. Dyes Pigm 167:16–21
- 89.
Wang H, Ji X, Li Y, Li Z, Tang G, Huang F (2018) An ATP/ATPase responsive supramolecular fluorescent hydrogel constructed via electrostatic interactions between poly(sodium p-styrenesulfonate) and a tetraphenylethene derivative. J Mater Chem B 6(18):2728–2733
- 90.
Xing P, Chen H, Xiang H, Zhao Y (2018) Selective coassembly of aromatic amino acids to fabricate hydrogels with light irradiation-induced emission for fluorescent imprint. Adv Mater 30(5):1705633
- 91.
Cheng Q, Cao Z, Hao A, Zhao Y, Xing P (2020) Fluorescent imprintable hydrogels via organic/inorganic supramolecular coassembly. ACS Appl Mater Interfaces 12(13):15491–15499
- 92.
Kokado K, Nagai A, Chujo Y (2010) Poly(γ-glutamic acid) hydrogels with water-sensitive luminescence derived from aggregation-induced emission of o-carborane. Macromolecules 43(15):6463–6468
- 93.
Jiang Y, Yang X, Ma C, Wang C, Chen Y, Dong F, Yang B, Yu K, Lin Q (2014) Interfacing a tetraphenylethene derivative and a smart hydrogel for temperature-dependent photoluminescence with sensitive thermoresponse. ACS Appl Mater Interfaces 6(7):4650–4657
- 94.
Zhou H, Liu F, Wang X, Yan H, Song J, Ye Q, Tang BZ, Xu J (2015) Aggregation induced emission based fluorescence pH and temperature sensors: probing polymer interactions in poly(N-isopropyl acrylamide-co-tetra(phenyl)ethene acrylate)/poly(methacrylic acid) interpenetrating polymer networks. J Mater Chem C 3(21):5490–5498
- 95.
Tang L, Jin JK, Qin A, Yuan WZ, Mao Y, Mei J, Sun JZ, Tang BZ (2009) A fluorescent thermometer operating in aggregation-induced emission mechanism: probing thermal transitions of PNIPAM in water. Chem Commun 33:4974–4976
- 96.
Wang X, Xu K, Yao H, Chang L, Wang Y, Li W, Zhao Y, Qin J (2018) Temperature-regulated aggregation-induced emissive self-healable hydrogels for controlled drug delivery. Polym Chem 9(40):5002–5013
- 97.
Galindo JM, Leganés J, Patiño J, Rodríguez AM, Herrero MA, Díez-Barra E, Merino S, Sánchez-Migallón AM, Vázquez E (2019) Physically cross-linked hydrogel based on phenyl-1,3,5-triazine: soft scaffold with aggregation-induced emission. ACS Macro Lett 8(10):1391–1395
- 98.
Zhang C, Li Y, Xue X, Chu P, Liu C, Yang K, Jiang Y, Chen W-Q, Zou G, Liang X-J (2015) A smart pH-switchable luminescent hydrogel. Chem Commun 51(20):4168–4171
- 99.
Liu H, Wei S, Qiu H, Zhan B, Liu Q, Lu W, Zhang J, Ngai T, Chen T (2020) Naphthalimide-based aggregation-induced emissive polymeric hydrogels for fluorescent pattern switch and biomimetic actuators. Macromol Rapid Commun 20:2000123
- 100.
Hou F, Xi B, Wang X, Yang Y, Zhao H, Li W, Qin J, He Y (2019) Self-healing hydrogel with cross-linking induced thermo-response regulated light emission property. Colloids Surf B 183:110441
- 101.
Li Z, Liu P, Ji X, Gong J, Hu Y, Wu W, Wang X, Peng H-Q, Kwok RTK, Lam JWY, Lu J, Tang BZ (2020) Bioinspired simultaneous changes in fluorescence color, brightness, and shape of hydrogels enabled by AIEgens. Adv Mater 32(11):1906493
- 102.
Zhang M, Wang Z, Huang P, Jiang G, Xu C, Zhang W, Guo R, Li W, Zhang X (2020) Real-time and noninvasive tracking of injectable hydrogel degradation using functionalized AIE nanoparticles. Nanophotonics 9(7):2063
- 103.
Ji X, Li Z, Hu Y, Xie H, Wu W, Song F, Liu H, Wang J, Jiang M, Lam JW (2020) Bioinspired hydrogels with muscle-like structure for AIEgen-guided selective self-healing. CCS Chem 20:1146–1156
- 104.
Li P, Zhang D, Zhang Y, Lu W, Zhang J, Wang W, He Q, Théato P, Chen T (2019) Aggregation-caused quenching-type naphthalimide fluorophores grafted and ionized in a 3D polymeric hydrogel network for highly fluorescent and locally tunable emission. ACS Macro Lett 8(8):937–942
- 105.
Dang D, Zhang H, Xu Y, Xu R, Wang Z, Kwok RTK, Lam JWY, Zhang L, Meng L, Tang BZ (2019) Super-resolution visualization of self-assembling helical fibers using aggregation-induced emission luminogens in stimulated emission depletion nanoscopy. ACS Nano 13(10):11863–11873
- 106.
Wang Z, Chen S, Lam JWY, Qin W, Kwok RTK, Xie N, Hu Q, Tang BZ (2013) Long-term fluorescent cellular tracing by the aggregates of AIE bioconjugates. J Am Chem Soc 135(22):8238–8245
- 107.
Jia J, Wang Z, Lu W, Yang L, Wu Q, Qin W, Hu Q, Tang BZ (2014) Monitoring layer-by-layer self-assembly process of natural polyelectrolytes by fluorescent bioconjugate with aggregation-induced emission characteristic. J Mater Chem B 2(47):8406–8411
- 108.
Wang Z, Nie J, Qin W, Hu Q, Tang BZ (2016) Gelation process visualized by aggregation-induced emission fluorogens. Nat Commun 7(1):12033
- 109.
Lin Y, Li C, Song G, He C, Dong YQ, Wang H (2015) Freezing-induced multi-colour emissions of AIE luminogen di(4-propoxyphenyl) dibenzofulvene. J Mater Chem C 3(11):2677–2685
- 110.
Zheng H, Li C, He C, Dong YQ, Liu Q, Qin P, Zeng C, Wang H (2014) Luminescent hydrogels based on di(4-propoxyphenyl)-dibenzofulvene exhibiting four emission colours and organic solvents/thermal dual-responsive properties. J Mater Chem C 2(29):5829–5835
- 111.
Gao M, Li Y, Chen X, Li S, Ren L, Tang BZ (2018) Aggregation-induced emission probe for light-up and in situ detection of calcium ions at high concentration. ACS Appl Mater Interfaces 10(17):14410–14417
- 112.
Tavakoli J, Raston CL, Tang Y (2020) Tuning surface morphology of fluorescent hydrogels using a vortex fluidic device. Molecules 25(15):3445
- 113.
Tavakoli J, Laisak E, Gao M, Tang Y (2019) AIEgen quantitatively monitoring the release of Ca2+ during swelling and degradation process in alginate hydrogels. Mater Sci Eng C 104:109951
- 114.
Tavakoli J, Raston CL, Ma Y, Tang Y (2020) Vortex fluidic mediated one-step fabrication of polyvinyl alcohol hydrogel films with tunable surface morphologies and enhanced self-healing properties. Sci China Mater 63(7):1310–1317
- 115.
Tavakoli J, Joseph N, Chuah C, Raston CL, Tang Y (2020) Vortex fluidic enabling and significantly boosting light intensity of graphene oxide with aggregation induced emission luminogen. Mater Chem Front 20:20
- 116.
Tavakoli J, Joseph N, Raston CL, Tang Y (2020) A hyper-branched polymer tunes the size and enhances the fluorescent properties of aggregation-induced emission nanoparticles. Nanosc Adv 2(2):633–641
- 117.
Tavakoli J, Pye S, Reza AM, Xie N, Qin J, Raston CL, Tang BZ, Tang Y (2020) Tuning aggregation-induced emission nanoparticle properties under thin film formation. Mater Chem Front 4(2):537–545
- 118.
Wei P, Li Z, Zhang J-X, Zhao Z, Xing H, Tu Y, Gong J, Cheung TS, Hu S, Sung HHY, Williams ID, Kwok RTK, Lam JWY, Tang BZ (2019) Molecular transmission: visible and rate-controllable photoreactivity and synergy of aggregation-induced emission and host-guest assembly. Chem Mater 31(3):1092–1100
- 119.
Liu Y, Zhou M, Liu Y, Han X, Zhang X, Liu S (2020) Host–guest interaction-mediated fabrication of aggregation-induced emission supramolecular hydrogel for use as aqueous light-harvesting systems. Supramol Chem 32(8):445–451
- 120.
Zhao Q, Dai X-Y, Yao H, Zhang Y-M, Qu W-J, Lin Q, Wei T-B (2020) Stimuli-responsive supramolecular hydrogel with white AIE effect for ultrasensitive detection of Fe3+ and as rewritable fluorescent materials. Dyes Pigm 20:108875
- 121.
Yang H-L, Zhang Q-P, Zhang Y-M, Gong G-F, Chen Y-Y, Qi Z, Yao H, Wei T-B, Lin Q (2019) A novel strong AIE bi-component hydrogel as a multi-functional supramolecular fluorescent material. Dyes Pigm 171:107745
- 122.
Zhang Y-M, Zhu W, Zhao Q, Qu W-J, Yao H, Wei T-B, Lin Q (2020) Th4+ tuned aggregation-induced emission: a novel strategy for sequential ultrasensitive detection and separation of Th4+ and Hg2+. Spectrochim Acta Part A Mol Biomol Spectrosc 229:117926
- 123.
Fan Y-Q, Liu J, Chen Y-Y, Guan X-W, Wang J, Yao H, Zhang Y-M, Wei T-B, Lin Q (2018) An easy-to-make strong white AIE supramolecular polymer as a colour tunable photoluminescence material. J Mater Chem C 6(48):13331–13335
- 124.
Zhu CN, Bai T, Wang H, Bai W, Ling J, Sun JZ, Huang F, Wu ZL, Zheng Q (2018) Single chromophore-based white-light-emitting hydrogel with tunable fluorescence and patternability. ACS Appl Mater Interfaces 10(45):39343–39352
- 125.
Aschmann D, Riebe S, Neumann T, Killa D, Ostwaldt J-E, Wölper C, Schmuck C, Voskuhl J (2019) A stimuli responsive two component supramolecular hydrogelator with aggregation-induced emission properties. Soft Matter 15(36):7117–7121
- 126.
Zhao Y, Pang B, Chen J, Xiao L, Liu H, Lian W, Sun T, Jiang Y, Lin Q (2020) Polystyrene@poly(ar-vinylbenzyl)trimethylammonium-co-acrylic acid core/shell pH-responsive nanoparticles for active targeting and imaging of cancer cell based on aggregation induced emission. Microchim Acta 187(3):166
- 127.
Gong Y, Tan Y, Mei J, Zhang Y, Yuan W, Zhang Y, Sun J, Tang BZ (2013) Room temperature phosphorescence from natural products: crystallization matters. Sci China Chem 56(9):1178–1182
- 128.
Zhou Q, Cao B, Zhu C, Xu S, Gong Y, Yuan WZ, Zhang Y (2016) Clustering-triggered emission of nonconjugated polyacrylonitrile. Small 12(47):6586–6592
- 129.
Zhang Yuan W, Zhang Y (2017) Nonconventional macromolecular luminogens with aggregation-induced emission characteristics. J Polym Sci Part A Polym Chem 55(4):560–574
- 130.
Jiang N, Li G-F, Zhang B-H, Zhu D-X, Su Z-M, Bryce MR (2018) Aggregation-induced long-lived phosphorescence in nonconjugated polyurethane derivatives at 77 K. Macromolecules 51(11):4178–4184
- 131.
Li Y, Young DJ, Loh XJ (2019) Fluorescent gels: a review of synthesis, properties, applications and challenges. Mater Chem Front 3(8):1489–1502
- 132.
Li B, Lin C, Lu C, Zhang J, He T, Qiu H, Yin S (2020) A rapid and reversible thermochromic supramolecular polymer hydrogel and its application in protected quick response codes. Mater Chem Front 4(3):869–874
- 133.
Zhang Z, Du P, Pu G, Wei L, Wu Y, Guo J, Lu X (2019) Utilization and prospects of electrochemiluminescence for characterization, sensing, imaging and devices. Mater Chem Front 3(11):2246–2257
- 134.
Zhang Y, Qi Y, Ulrich S, Barboiu M, Ramström O (2020) Dynamic covalent polymers for biomedical applications. Mater Chem Front 4(2):489–506
- 135.
Chen X, Li J (2020) Bioinspired by cell membranes: functional polymeric materials for biomedical applications. Mater Chem Front 4(3):750–774
- 136.
Wan Q, Huang Q, Liu M, Xu D, Huang H, Zhang X, Wei Y (2017) Aggregation-induced emission active luminescent polymeric nanoparticles: non-covalent fabrication methodologies and biomedical applications. Appl Mater Today 9:145–160
- 137.
Wang Y, Nie J, Fang W, Yang L, Hu Q, Wang Z, Sun JZ, Tang BZ (2020) Sugar-based aggregation-induced emission luminogens: design. Struct Appl Chem Rev 120(10):4534–4577
- 138.
Liow SS, Dou Q, Kai D, Li Z, Sugiarto S, Yu CYY, Kwok RTK, Chen X, Wu Y-L, Ong ST, Kizhakeyil A, Verma NK, Tang BZ, Loh XJ (2017) Long-term real-time in vivo drug release monitoring with AIE thermogelling polymer. Small 13(7):1603404
- 139.
Lai W-F (2020) Non-conjugated polymers with intrinsic luminescence for drug delivery. J Drug Deliv Sci Technol 59:101916
- 140.
Kim S, Ohulchanskyy TY, Pudavar HE, Pandey RK, Prasad PN (2007) Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc 129(9):2669–2675
- 141.
Ikeda M, Tanida T, Yoshii T, Hamachi I (2011) Rational molecular design of stimulus-responsive supramolecular hydrogels based on dipeptides. Adv Mater 23(25):2819–2822
- 142.
Wang D, Lee MMS, Xu W, Kwok RTK, Lam JWY, Tang BZ (2018) Theranostics based on AIEgens. Theranostics 8(18):4925–4956
- 143.
Li T, Pan S, Zhuang H, Gao S, Xu H (2020) Selenium-containing carrier-free assemblies with aggregation-induced emission property combine cancer radiotherapy with chemotherapy. ACS Appl Bio Mater 3(2):1283–1292
- 144.
Zhao J, Pan X, Zhu J, Zhu X (2020) Novel AIEgen-functionalized diselenide-crosslinked polymer gels as fluorescent probes and drug release carriers. Polymers 12(3):551
- 145.
Jiang X, Wang H, Yuan R, Chai Y (2018) Functional three-dimensional porous conductive polymer hydrogels for sensitive electrochemiluminescence in situ detection of H(2)O(2) released from live cells. Anal Chem 90(14):8462–8469
- 146.
Gao W, Muzyka K, Ma X, Lou B, Xu G (2018) A single-electrode electrochemical system for multiplex electrochemiluminescence analysis based on a resistance induced potential difference. Chem Sci 9(16):3911–3916
- 147.
Heo YJ, Shibata H, Okitsu T, Kawanishi T, Takeuchi S (2011) Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc Natl Acad Sci USA 108(33):13399–13403
- 148.
Shibata H, Heo YJ, Okitsu T, Matsunaga Y, Kawanishi T, Takeuchi S (2010) Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proc Natl Acad Sci USA 107(42):17894–17898
- 149.
Zhang Z, Liu G, Li X, Zhang S, Lü X, Wang Y (2020) Design and synthesis of fluorescent nanocelluloses for sensing and bioimaging applications. ChemPlusChem 85(3):487–502
- 150.
Xu Z, Liu Y, Qian C, Wu L, Wu Z, Zhang J, Cheng J, Miao M, Zhang D (2020) Tuning the morphology of melamine-induced tetraphenylethene self-assemblies for melamine detecting. Org Electron 76:105476
- 151.
Hsu S-M, Wu F-Y, Cheng H, Huang Y-T, Hsieh Y-R, Tseng DT-H, Yeh M-Y, Hung S-C, Lin H-C (2016) Functional supramolecular polymers: a fluorescent microfibrous network in a supramolecular hydrogel for high-contrast live cell-material imaging in 3D environments. Adv Healthc Mater 5(18):2406–2412
- 152.
Wu C, Bull B, Szymanski C, Christensen K, McNeill J (2008) Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2(11):2415–2423
- 153.
Ding D, Li K, Qin W, Zhan R, Hu Y, Liu J, Tang BZ, Liu B (2013) Conjugated polymer amplified far-red/near-infrared fluorescence from nanoparticles with aggregation-induced emission characteristics for targeted in vivo imaging. Adv Healthc Mater 2(3):500–507
- 154.
Mandal K, Jana D, Ghorai BK, Jana NR (2018) Functionalized chitosan with self-assembly induced and subcellular localization-dependent fluorescence ‘switch on’ property. New J Chem 42(8):5774–5784
- 155.
Li M, Hong Y, Wang Z, Chen S, Gao M, Kwok RT, Qin W, Lam JW, Zheng Q, Tang BZ (2013) Fabrication of chitosan nanoparticles with aggregation-induced emission characteristics and their applications in long-term live cell imaging. Macromol Rapid Commun 34(9):767–771
- 156.
Zhang X, Zhang X, Yang B, Liu M, Liu W, Chen Y, Wei Y (2013) Facile fabrication and cell imaging applications of aggregation-induced emission dye-based fluorescent organic nanoparticles. Polym Chem 4(16):4317–4321
- 157.
Lim C-K, Kim S, Kwon IC, Ahn C-H, Park SY (2009) Dye-condensed biopolymeric hybrids: chromophoric aggregation and self-assembly toward fluorescent bionanoparticles for near infrared bioimaging. Chem Mater 21(24):5819–5825
- 158.
Wang Z, Liu Y, Jia J, Chen S, Qin W, Hu Q, Tang BZ (2016) Fabrication of hybridized nanoparticles with aggregation-induced emission characteristics and application for cell imaging. J Mater Chem B 4(31):5265–5271
- 159.
Mehwish N, Dou X, Zhao Y, Feng C-L (2019) Supramolecular fluorescent hydrogelators as bio-imaging probes. Mater Horizons 6(1):14–44
- 160.
Grafahrend D, Heffels K-H, Beer MV, Gasteier P, Möller M, Boehm G, Dalton PD, Groll J (2011) Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat Mater 10(1):67–73
- 161.
Kong J, Zhang J, Wang Y, Qi W, Huang M, Su R, He Z (2020) Bioinspired fluorescent peptidyl nanoparticles with rainbow colors. ACS Appl Mater Interfaces 12(28):31830–31841
- 162.
Mitra M, Mahapatra M, Dutta A, Deb M, Dutta S, Chattopadhyay PK, Roy S, Banerjee S, Sil PC, Singha NR (2020) Fluorescent guar gum-g-terpolymer via in situ acrylamido-acid fluorophore-monomer in cell imaging, Pb(II) sensor, and security ink. ACS Appl Bio Mater 3(4):1995–2006
- 163.
Huang J, Wang Y-L, Yu X-D, Zhou Y-N, Chu L-Q (2020) Enhanced fluorescence of carboxymethyl chitosan via metal ion complexation in both solution and hydrogel states. Int J Biol Macromol 152:50–56
- 164.
Talloj SK, Mohammed M, Lin H-C (2020) Construction of self-assembled nanostructure-based tetraphenylethylene dipeptides: supramolecular nanobelts as biomimetic hydrogels for cell adhesion and proliferation. J Mater Chem B 8(33):7483–7493
- 165.
Chu C, Xiang Z, Wang J, Xie H, Xiang T, Zhou S (2020) A near-infrared light-triggered shape-memory polymer for long-time fluorescence imaging in deep tissues. J Mater Chem B 8(35):8061–8070
- 166.
Ma H, Zhang A, Zhang X, Zhao H, Cui Z, Fu P, Liu M, Zhou S, Pang X, Qiao X (2020) Novel platform for visualization monitoring of hydrolytic degradation of bio-degradable polymers based on aggregation-induced emission (AIE) technique. Sens Actuators B Chem 304:127342
- 167.
Wang J, Gao M, Cui Z-K, Jia Y-G, Liu S, Chen K-F, Chen X, Zhang Y, Fang Z, Chen Y, Wang K, Zhang H, Wang L, Ren L (2020) One-pot quaternization of dual-responsive poly(vinyl alcohol) with AIEgens for pH-switchable imaging and killing of bacteria. Mater Chem Front 4(9):2635–2645
- 168.
Liu J, Liu L, Li S, Kang Q, Zhang R, Zhu Z (2021) Self-assembled nanogels of luminescent thiolated silver nanoclusters and chitosan as bactericidal agent and bacterial sensor. Mater Sci Eng C 118:111520
- 169.
Tang Y, Huang H, Xue W, Chang Y, Li Y, Guo X, Zhong C (2020) Rigidifying induced fluorescence enhancement in 2D porous covalent triazine framework nanosheets for the simultaneously luminous detection and adsorption removal of antibiotics. Chem Eng J 384:123382
- 170.
An H, Yang H, Bo H, Ma X, Wang Y, Liu L, Wang H, He Y, Qin J (2021) Fabrication of self-healing hydrogel from quaternized N-[3(dimethylamino)propyl]methacrylamide copolymer for antimicrobial and drug release applications. J Biomed Mater Res Part A 109:42–53
- 171.
Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, Khademhosseini A (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68
- 172.
Skardal A, Zhang J, Prestwich GD (2010) Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31(24):6173–6181
- 173.
Unagolla JM, Jayasuriya AC (2020) Hydrogel-based 3D bioprinting: a comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl Mater Today 18:100479
Acknowledgment
Javad Tavakoli is grateful for the support of the University of Technology Sydney (UTS) with a Chancellor's Postdoctoral Research Fellowship (CPDRF) for the research work.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection “Aggregation Induced Emission”; edited by Youhong Tang and Ben Zhong Tang.
Rights and permissions
About this article
Cite this article
Tavakoli, J., Ghahfarokhi, A.J. & Tang, Y. Aggregation-Induced Emission Fluorescent Gels: Current Trends and Future Perspectives. Top Curr Chem (Z) 379, 9 (2021). https://doi.org/10.1007/s41061-020-00322-6
Received:
Accepted:
Published:
Keywords
- Fluorescent gels
- Hydrogels
- Aggregation-induced emission
- AIE polymers
- Biomedical applications