Aggregation-Induced Emission Fluorescent Gels: Current Trends and Future Perspectives

Abstract

The development of fluorescent gels, if not the current focus, is at the center of recent efforts devoted to the invention of a new generation of gels. Fluorescent gels have numerous properties that are intrinsic to the gel structure, with additional light-emitting properties making them attractive for different applications. This review focuses on current studies associated with the development of fluorescent gels using aggregation-induced emission fluorophores (AIEgens) to ultimately suggest new directions for future research. Here, we discuss major drawbacks of the methodologies used frequently for the fabrication of fluorescent gels using traditional fluorophores compared to those using AIEgens. The fabrication strategies to develop AIE-based fluorescent gels, including physical mixing, soaking, self-assembly, noncovalent interactions, and permanent chemical reactions, are discussed thoroughly. New and recent findings on developing AIE-active gels are explained. Specifically, physically prepared AIE-based gels including supramolecular, ionic, and chemically prepared AIE-based gels are discussed. In addition, the intrinsic fluorescent properties of natural gels, known as clustering-triggered fluorescent gel, and new and recent relevant findings published in peer-reviewed journals are explained. This review also revealed the biomedical applications of AIE-based fluorescent hydrogels including drug delivery, biosensors, bioimaging, and tissue engineering. In conclusion, the current research situation and future directions are identified.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Liu Z, Ran Y, Xi J, Wang J (2020) Polymeric hybrid aerogels and their biomedical applications. Soft Matter 250:20

    Google Scholar 

  2. 2.

    Cook MT, Brown MB (2018) Polymeric gels for intravaginal drug delivery. J Control Release 270:145–157

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Cao Z, Dobrynin AV (2016) Nanoparticles as adhesives for soft polymeric materials. Macromolecules 49(9):3586–3592

    CAS  Article  Google Scholar 

  4. 4.

    Panja S, Panja A, Ghosh K (2020) Supramolecular gels in cyanide sensing: a review. Mater Chem Front 20:20

    Google Scholar 

  5. 5.

    Appel EA, del Barrio J, Loh XJ, Scherman OA (2012) Supramolecular polymeric hydrogels. Chem Soc Rev 41(18):6195–6214

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Chivers PR, Smith DK (2019) Shaping and structuring supramolecular gels. Nat Rev Mater 4(7):463–478

    CAS  Article  Google Scholar 

  7. 7.

    Lim J, Lin Q, Xue K, Loh X (2019) Recent advances in supramolecular hydrogels for biomedical applications. Mater Today Adv 3:100021

    Article  Google Scholar 

  8. 8.

    Eelkema R, Pich A (2020) Pros and cons: supramolecular or macromolecular: what is best for functional hydrogels with advanced properties? Adv Mater 32(20):1906012

    CAS  Article  Google Scholar 

  9. 9.

    Erol O, Pantula A, Liu W, Gracias DH (2019) Transformer hydrogels: a review. Adv Mater Technol 4(4):1900043

    Article  CAS  Google Scholar 

  10. 10.

    Distler T, Boccaccini AR (2020) 3D printing of electrically conductive hydrogels for tissue engineering and biosensors—a review. Acta Biomater 101:1–13

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Merino S, Martín C, Kostarelos K, Prato M, Vázquez E (2015) Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano 9(5):4686–4697

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Tavakoli J, Tang Y (2017) Honey/PVA hybrid wound dressings with controlled release of antibiotics: structural, physico-mechanical and in-vitro biomedical studies. Mater Sci Eng C 77:318–325

    CAS  Article  Google Scholar 

  13. 13.

    Chuah C, Wang J, Tavakoli J, Tang Y (2018) Novel bacterial cellulose-poly (acrylic acid) hybrid hydrogels with controllable antimicrobial ability as dressings for chronic wounds. Polymers 10(12):1323

    PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Park SH, Park JY, Ji YB, Ju HJ, Min BH, Kim MS (2020) An injectable click-crosslinked hyaluronic acid hydrogel modified with a BMP-2 mimetic peptide as a bone tissue engineering scaffold. Acta Biomater 20:20

    Google Scholar 

  15. 15.

    Patel A, Zaky SH, Schoedel K, Li H, Sant V, Beniash E, Sfeir C, Stolz DB, Sant S (2020) Design and evaluation of collagen-inspired mineral-hydrogel nanocomposites for bone regeneration. Acta Biomater 112:262–273

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Mehrban N, Pineda Molina C, Quijano LM, Bowen J, Johnson SA, Bartolacci J, Chang JT, Scott DA, Woolfson DN, Birchall MA, Badylak SF (2020) Host macrophage response to injectable hydrogels derived from ECM and α-helical peptides. Acta Biomater 111:141–152

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Tavakoli J (2017) Tissue engineering of the intervertebral disc’s annulus fibrosus: a scaffold-based review study. Tissue Eng Regener Med 14(2):81–91

    CAS  Article  Google Scholar 

  18. 18.

    Basu S, Pacelli S, Paul A (2020) Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery. Acta Biomater 105:159–169

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Liu C, Guo X, Ruan C, Hu H, Jiang B-P, Liang H, Shen X-C (2019) An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy. Acta Biomater 96:281–294

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Chen S, Duan J, Tang Y, Zhang Qiao S (2013) Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chem A Eur J 19(22):7118–7124

    CAS  Article  Google Scholar 

  21. 21.

    Zeng Q, Qi X, Zhang M, Tong X, Jiang N, Pan W, Xiong W, Li Y, Xu J, Shen J (2020) Efficient decontamination of heavy metals from aqueous solution using pullulan/polydopamine hydrogels. Int J Biol Macromol 145:1049–1058

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Wahlström N, Steinhagen S, Toth G, Pavia H, Edlund U (2020) Ulvan dialdehyde-gelatin hydrogels for removal of heavy metals and methylene blue from aqueous solution. Carbohyd Polym 249:116841

    Article  CAS  Google Scholar 

  23. 23.

    Keshawy M, Mahmoud A-R, Abdel-Raouf ME-S (2020) Polystyrene-based magnetic hydrogels for elimination of some toxic metal cations from aqueous solutions. Environ Sci Pollut Res Int 20:20

    Google Scholar 

  24. 24.

    Gao Y, Gu S, Jia F, Wang Q, Gao G (2020) “All-in-one” hydrolyzed keratin protein-modified polyacrylamide composite hydrogel transducer. Chem Eng J 30:125555

    Article  CAS  Google Scholar 

  25. 25.

    Feng Q, Gao H, Wen H, Huang H, Li Q, Liang M, Liu Y, Dong H, Cao X (2020) Engineering the cellular mechanical microenvironment to regulate stem cell chondrogenesis: insights from a microgel model. Acta Biomater 113:393–406

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Dehbari N, Tavakoli J, Khatrao SS, Tang Y (2017) In situ polymerized hyperbranched polymer reinforced poly (acrylic acid) hydrogels. Mater Chem Front 1(10):1995–2004

    CAS  Article  Google Scholar 

  27. 27.

    Tavakoli J, Tang Y (2017) Hydrogel based sensors for biomedical applications: an updated review. Polymers 9(8):364

    PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Lei H, Dong L, Li Y, Zhang J, Chen H, Wu J, Zhang Y, Fan Q, Xue B, Qin M, Chen B, Cao Y, Wang W (2020) Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers. Nat Commun 11(1):4032

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Zhang Y, Le X, Jian Y, Lu W, Zhang J, Chen T (2019) 3D fluorescent hydrogel origami for multistage data security protection. Adv Func Mater 29(46):1905514

    CAS  Article  Google Scholar 

  30. 30.

    Pandey PK, Ulla H, Satyanarayan MN, Rawat K, Gaur A, Gawali S, Hassan PA, Bohidar HB (2020) Fluorescent MoS2 quantum dot–DNA nanocomposite hydrogels for organic light-emitting diodes. ACS Appl Nano Mater 3(2):1289–1297

    CAS  Article  Google Scholar 

  31. 31.

    Wei S, Li Z, Lu W, Liu H, Zhang J, Chen T, Tang BZ (2020) Multicolor fluorescent polymeric hydrogels: colorfulness is more shining than homochromy. Angew Chem Int Ed (online ahead of print). https://doi.org/10.1002/anie.202007506

  32. 32.

    Jiang H, Qin Z, Zheng Y, Liu L, Wang X (2019) Aggregation-induced electrochemiluminescence by metal-binding protein responsive hydrogel scaffolds. Small 15(18):1901170

    Article  CAS  Google Scholar 

  33. 33.

    Cengiz N (2020) Glutathione-responsive multifunctionalizable hydrogels via amine-epoxy “click” chemistry. Eur Polym J 123:109441

    CAS  Article  Google Scholar 

  34. 34.

    Khandai S, Siegel RA, Jena SS (2020) Probing the microenvironment of polyacrylamide hydrogel matrix using turbidity and fluorescence recovery after photobleaching: one versus two phases. Colloids Surf A 593:124618

    CAS  Article  Google Scholar 

  35. 35.

    Vanheusden M, Vitale R, Camacho R, Janssen KP, Acke A, Rocha S, Hofkens J (2020) Fluorescence photobleaching as an intrinsic tool to quantify the 3D expansion factor of biological samples in expansion microscopy. ACS Omega 5(12):6792–6799

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Zhang X, Ballem MA, Hu ZJ, Bergman P, Uvdal K (2011) Nanoscale light-harvesting metal-organic frameworks. Angew Chem 123(25):5847–5851

    Article  Google Scholar 

  37. 37.

    Zhang X, Ballem MA, Ahrén M, Suska A, Bergman P, Uvdal K (2010) Nanoscale Ln (III)-carboxylate coordination polymers (Ln= Gd, Eu, Yb): temperature-controlled guest encapsulation and light harvesting. J Am Chem Soc 132(30):10391–10397

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Shi J, Wang M, Sun Z, Liu Y, Guo J, Mao H, Yan F (2019) Aggregation-induced emission-based ionic liquids for bacterial killing, imaging, cell labeling, and bacterial detection in blood cells. Acta Biomater 97:247–259

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Chen Y, Lam JWY, Kwok RTK, Liu B, Tang BZ (2019) Aggregation-induced emission: fundamental understanding and future developments. Mater Horizons 6(3):428–433

    CAS  Article  Google Scholar 

  40. 40.

    Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40(11):5361–5388

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Zhu C, Kwok RTK, Lam JWY, Tang BZ (2018) Aggregation-induced emission: a trailblazing journey to the field of biomedicine. ACS Appl Bio Mater 1(6):1768–1786

    CAS  Article  Google Scholar 

  42. 42.

    Yang J, Chi Z, Zhu W, Tang BZ, Li Z (2019) Aggregation-induced emission: a coming-of-age ceremony at the age of eighteen. Sci China Chem 62(9):1090–1098

    CAS  Article  Google Scholar 

  43. 43.

    Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 26(31):5429–5479

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Jiang N, Shen T, Sun JZ, Tang BZ (2019) Aggregation-induced emission: right there shining. Sci China Mater 62(9):1227–1235

    Article  Google Scholar 

  45. 45.

    Guo F, Gai W-P, Hong Y, Tang BZ, Qin J, Tang Y (2015) Aggregation-induced emission fluorogens as biomarkers to assess the viability of microalgae in aquatic ecosystems. Chem Commun 51(97):17257–17260

    CAS  Article  Google Scholar 

  46. 46.

    Qin A, Jim CKW, Tang Y, Lam JWY, Liu J, Mahtab F, Gao P, Tang BZ (2008) Aggregation-enhanced emissions of intramolecular excimers in disubstituted polyacetylenes. J Phys Chem B 112(31):9281–9288

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Cheng X, Jiang J, Liang G (2020) Covalently conjugated hydrogelators for imaging and therapeutic applications. Bioconjug Chem 31(3):448–461

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Tang Y, Tang BZ (2018) Principles and applications of aggregation-induced emission. Springer, Berlin

    Google Scholar 

  49. 49.

    Tavakoli J, Zhang H-P, Tang BZ, Tang Y (2019) Aggregation-induced emission lights up the swelling process: a new technique for swelling characterisation of hydrogels. Mater Chem Front 3(4):664–667

    CAS  Article  Google Scholar 

  50. 50.

    Tavakoli J, Gascooke J, Xie N, Tang BZ, Tang Y (2019) Enlightening freeze-thaw process of physically cross-linked poly(vinyl alcohol) hydrogels by aggregation-induced emission fluorogens. ACS Appl Polym Mater 1(6):1390–1398

    CAS  Article  Google Scholar 

  51. 51.

    Lee CY, Farha OK, Hong BJ, Sarjeant AA, Nguyen ST, Hupp JT (2011) Light-harvesting metal–organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. J Am Chem Soc 133(40):15858–15861

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Haldar R, Rao KV, George SJ, Maji TK (2012) exciplex formation and energy transfer in a self-assembled metal–organic hybrid system. Chem A Eur J 18(19):5848–5852

    CAS  Article  Google Scholar 

  53. 53.

    Zeng X, Liang J, Wang C, Yu Z, Zhao X, Lu H, Wang Q (2020) Gelation process visualized by synchronous fluorescence enhancement of polyhydroxy benzoylhydrazone-based organogel. J Lumin 224:117259

    CAS  Article  Google Scholar 

  54. 54.

    Du X, Zhou J, Shi J, Xu B (2015) Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev 115(24):13165–13307

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Suzuki M, Hanabusa K (2010) Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem Soc Rev 39(2):455–463

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Li B, Zhang Y, Yan B, Xiao D, Zhou X, Dong J, Zhou Q (2020) A self-healing supramolecular hydrogel with temperature-responsive fluorescence based on an AIE luminogen. RSC Adv 10(12):7118–7124

    CAS  Article  Google Scholar 

  57. 57.

    Zhang C, Zhang T, Jin S, Xue X, Yang X, Gong N, Zhang J, Wang PC, Tian J-H, Xing J (2017) Virus-inspired self-assembled nanofibers with aggregation-induced emission for highly efficient and visible gene delivery. ACS Appl Mater Interfaces 9(5):4425–4432

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Sukul PK, Singh PK, Maji SK, Malik S (2013) Aggregation induced chirality in a self assembled perylene based hydrogel: application of the intracellular pH measurement. J Mater Chem B 1(2):153–156

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Wang J, Lin X, Shu T, Su L, Liang F, Zhang X (2019) Self-assembly of metal nanoclusters for aggregation-induced emission. Int J Mol Sci 20(8):1891

    CAS  PubMed Central  Article  Google Scholar 

  60. 60.

    Externbrink M, Riebe S, Schmuck C, Voskuhl J (2018) A dual pH-responsive supramolecular gelator with aggregation-induced emission properties. Soft Matter 14(30):6166–6170

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Gu L, Liu X, Dong S, Chen Z, Han R, He C, Wang D, Zheng Y (2020) Natural lignin nanoparticles: a promising nano-crosslinker for constructing fluorescent photoswitchable supramolecular hydrogels. Polym Chem 11(11):1871–1876

    CAS  Article  Google Scholar 

  62. 62.

    Feng H-T, Lam JWY, Tang BZ (2020) Self-assembly of AIEgens. Coord Chem Rev 406:213142

    CAS  Article  Google Scholar 

  63. 63.

    Tian Y, Wang Q, Wang K, Ke M, Hu Y, Shen L, Geng Q, Cheng J, Zhang J (2020) From biomass resources to functional materials: a fluorescent thermosetting material based on resveratrol via thiol-ene click chemistry. Eur Polymer J 123:109416

    CAS  Article  Google Scholar 

  64. 64.

    Wu J-L, Zhang C, Qin W, Quan D-P, Ge M-L, Liang G-D (2019) Thermoresponsive fluorescent semicrystalline polymers decorated with aggregation induced emission luminogens. Chin J Polym Sci 37(4):394–400

    CAS  Article  Google Scholar 

  65. 65.

    Li B, He T, Shen X, Tang D, Yin S (2019) Fluorescent supramolecular polymers with aggregation induced emission properties. Polym Chem 10(7):796–818

    CAS  Article  Google Scholar 

  66. 66.

    Lou X-Y, Yang Y-W (2018) Manipulating aggregation-induced emission with supramolecular macrocycles. Adv Opt Mater 6(22):1800668

    Article  CAS  Google Scholar 

  67. 67.

    Qin A, Lam JWY, Tang BZ (2012) Luminogenic polymers with aggregation-induced emission characteristics. Prog Polym Sci 37(1):182–209

    CAS  Article  Google Scholar 

  68. 68.

    Hu R, Qin A, Tang BZ (2020) AIE polymers: synthesis and applications. Prog Polym Sci 100:101176

    CAS  Article  Google Scholar 

  69. 69.

    Zhou Q, Wang Z, Dou X, Wang Y, Liu S, Zhang Y, Yuan WZ (2019) Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers. Mater Chem Front 3(2):257–264

    CAS  Article  Google Scholar 

  70. 70.

    Chen X, Luo W, Ma H, Peng Q, Yuan WZ, Zhang Y (2018) Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci China Chem 61(3):351–359

    CAS  Article  Google Scholar 

  71. 71.

    Dou X, Zhou Q, Chen X, Tan Y, He X, Lu P, Sui K, Tang BZ, Zhang Y, Yuan WZ (2018) Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate. Biomacromol 19(6):2014–2022

    CAS  Article  Google Scholar 

  72. 72.

    López D, García-Frutos EM (2015) Aggregation-induced emission of organogels based on self-assembled 5-(4-nonylphenyl)-7-azaindoles. Langmuir 31(31):8697–8702

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  73. 73.

    Bhattacharya S, Samanta SK (2012) Unusual salt-induced color modulation through aggregation-induced emission switching of a bis-cationic phenylenedivinylene-based π hydrogelator. Chem A Eur J 18(52):16632–16641

    CAS  Article  Google Scholar 

  74. 74.

    Zhao Z, Lam JW, Tang BZ (2013) Self-assembly of organic luminophores with gelation-enhanced emission characteristics. Soft Matter 9(18):4564–4579

    CAS  Article  Google Scholar 

  75. 75.

    Yang X, Liu Y, Li J, Wang Q, Yang M, Li C (2018) A novel aggregation-induced-emission-active supramolecular organogel for the detection of volatile acid vapors. New J Chem 42(21):17524–17532

    CAS  Article  Google Scholar 

  76. 76.

    Liu Y, Lam JW, Mahtab F, Kwok RT, Tang BZ (2010) Sterol-containing tetraphenylethenes: synthesis, aggregation-induced emission, and organogel formation. Front Chem China 5(3):325–330

    Article  Google Scholar 

  77. 77.

    Chen Q, Zhang D, Zhang G, Yang X, Feng Y, Fan Q, Zhu D (2010) Multicolor tunable emission from organogels containing tetraphenylethene, perylenediimide, and spiropyran derivatives. Adv Func Mater 20(19):3244–3251

    CAS  Article  Google Scholar 

  78. 78.

    Wang M, Zhang D, Zhang G, Zhu D (2009) Fluorescence enhancement upon gelation and thermally-driven fluorescence switches based on tetraphenylsilole-based organic gelators. Chem Phys Lett 475(1):64–67

    CAS  Article  Google Scholar 

  79. 79.

    Wan J-H, Mao L-Y, Li Y-B, Li Z-F, Qiu H-Y, Wang C, Lai G-Q (2010) Self-assembly of novel fluorescent silole derivatives into different supramolecular aggregates: fibre, liquid crystal and monolayer. Soft Matter 6(14):3195–3201

    CAS  Article  Google Scholar 

  80. 80.

    Sun P, Wang Z, Bi Y, Sun D, Zhao T, Zhao F, Wang W, Xin X (2020) Self-assembly-driven aggregation-induced emission of silver nanoclusters for light conversion and temperature sensing. ACS Appl Nano Mater 3(2):2038–2046

    CAS  Article  Google Scholar 

  81. 81.

    Yoon S-J, Kim JH, Chung JW, Park SY (2011) Exploring the minimal structure of a wholly aromatic organogelator: simply adding two β-cyano groups to distyrylbenzene. J Mater Chem 21(47):18971–18973

    CAS  Article  Google Scholar 

  82. 82.

    An B-K, Lee D-S, Lee J-S, Park Y-S, Song H-S, Park SY (2004) Strongly fluorescent organogel system comprising fibrillar self-assembly of a trifluoromethyl-based cyanostilbene derivative. J Am Chem Soc 126(33):10232–10233

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Seo J, Chung JW, Jo E-H, Park SY (2008) Highly fluorescent supramolecular gels with chirality transcription through hydrogen bonding. Chem Commun 24:2794–2796

    Article  CAS  Google Scholar 

  84. 84.

    Chung JW, An B-K, Park SY (2008) A thermoreversible and proton-induced Gel−Sol phase transition with remarkable fluorescence variation. Chem Mater 20(21):6750–6755

    CAS  Article  Google Scholar 

  85. 85.

    Zhang C, Liu C, Xue X, Zhang X, Huo S, Jiang Y, Chen W-Q, Zou G, Liang X-J (2014) Salt-responsive self-assembly of luminescent hydrogel with intrinsic gelation-enhanced emission. ACS Appl Mater Interfaces 6(2):757–762

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Zhang Y-M, Zhu W, Huang X-J, Qu W-J, He J-X, Fang H, Yao H, Wei T-B, Lin Q (2018) Supramolecular aggregation-induced emission gels based on pillar[5]arene for ultrasensitive detection and separation of multianalytes. ACS Sustain Chem Eng 6(12):16597–16606

    CAS  Article  Google Scholar 

  87. 87.

    Felip-León C, Galindo F, Miravet JF (2018) Insights into the aggregation-induced emission of 1,8-naphthalimide-based supramolecular hydrogels. Nanoscale 10(36):17060–17069

    PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Yao H, Wang J, Fan Y-Q, Zhou Q, Guan X-W, Kan X-T, Zhang Y-M, Lin Q, Wei T-B (2019) Supramolecular hydrogel-based AIEgen: construction and dual-channel recognition of negative charged dyes. Dyes Pigm 167:16–21

    CAS  Article  Google Scholar 

  89. 89.

    Wang H, Ji X, Li Y, Li Z, Tang G, Huang F (2018) An ATP/ATPase responsive supramolecular fluorescent hydrogel constructed via electrostatic interactions between poly(sodium p-styrenesulfonate) and a tetraphenylethene derivative. J Mater Chem B 6(18):2728–2733

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Xing P, Chen H, Xiang H, Zhao Y (2018) Selective coassembly of aromatic amino acids to fabricate hydrogels with light irradiation-induced emission for fluorescent imprint. Adv Mater 30(5):1705633

    Article  CAS  Google Scholar 

  91. 91.

    Cheng Q, Cao Z, Hao A, Zhao Y, Xing P (2020) Fluorescent imprintable hydrogels via organic/inorganic supramolecular coassembly. ACS Appl Mater Interfaces 12(13):15491–15499

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Kokado K, Nagai A, Chujo Y (2010) Poly(γ-glutamic acid) hydrogels with water-sensitive luminescence derived from aggregation-induced emission of o-carborane. Macromolecules 43(15):6463–6468

    CAS  Article  Google Scholar 

  93. 93.

    Jiang Y, Yang X, Ma C, Wang C, Chen Y, Dong F, Yang B, Yu K, Lin Q (2014) Interfacing a tetraphenylethene derivative and a smart hydrogel for temperature-dependent photoluminescence with sensitive thermoresponse. ACS Appl Mater Interfaces 6(7):4650–4657

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Zhou H, Liu F, Wang X, Yan H, Song J, Ye Q, Tang BZ, Xu J (2015) Aggregation induced emission based fluorescence pH and temperature sensors: probing polymer interactions in poly(N-isopropyl acrylamide-co-tetra(phenyl)ethene acrylate)/poly(methacrylic acid) interpenetrating polymer networks. J Mater Chem C 3(21):5490–5498

    CAS  Article  Google Scholar 

  95. 95.

    Tang L, Jin JK, Qin A, Yuan WZ, Mao Y, Mei J, Sun JZ, Tang BZ (2009) A fluorescent thermometer operating in aggregation-induced emission mechanism: probing thermal transitions of PNIPAM in water. Chem Commun 33:4974–4976

    Article  CAS  Google Scholar 

  96. 96.

    Wang X, Xu K, Yao H, Chang L, Wang Y, Li W, Zhao Y, Qin J (2018) Temperature-regulated aggregation-induced emissive self-healable hydrogels for controlled drug delivery. Polym Chem 9(40):5002–5013

    CAS  Article  Google Scholar 

  97. 97.

    Galindo JM, Leganés J, Patiño J, Rodríguez AM, Herrero MA, Díez-Barra E, Merino S, Sánchez-Migallón AM, Vázquez E (2019) Physically cross-linked hydrogel based on phenyl-1,3,5-triazine: soft scaffold with aggregation-induced emission. ACS Macro Lett 8(10):1391–1395

    CAS  Article  Google Scholar 

  98. 98.

    Zhang C, Li Y, Xue X, Chu P, Liu C, Yang K, Jiang Y, Chen W-Q, Zou G, Liang X-J (2015) A smart pH-switchable luminescent hydrogel. Chem Commun 51(20):4168–4171

    CAS  Article  Google Scholar 

  99. 99.

    Liu H, Wei S, Qiu H, Zhan B, Liu Q, Lu W, Zhang J, Ngai T, Chen T (2020) Naphthalimide-based aggregation-induced emissive polymeric hydrogels for fluorescent pattern switch and biomimetic actuators. Macromol Rapid Commun 20:2000123

    Article  CAS  Google Scholar 

  100. 100.

    Hou F, Xi B, Wang X, Yang Y, Zhao H, Li W, Qin J, He Y (2019) Self-healing hydrogel with cross-linking induced thermo-response regulated light emission property. Colloids Surf B 183:110441

    CAS  Article  Google Scholar 

  101. 101.

    Li Z, Liu P, Ji X, Gong J, Hu Y, Wu W, Wang X, Peng H-Q, Kwok RTK, Lam JWY, Lu J, Tang BZ (2020) Bioinspired simultaneous changes in fluorescence color, brightness, and shape of hydrogels enabled by AIEgens. Adv Mater 32(11):1906493

    CAS  Article  Google Scholar 

  102. 102.

    Zhang M, Wang Z, Huang P, Jiang G, Xu C, Zhang W, Guo R, Li W, Zhang X (2020) Real-time and noninvasive tracking of injectable hydrogel degradation using functionalized AIE nanoparticles. Nanophotonics 9(7):2063

    CAS  Article  Google Scholar 

  103. 103.

    Ji X, Li Z, Hu Y, Xie H, Wu W, Song F, Liu H, Wang J, Jiang M, Lam JW (2020) Bioinspired hydrogels with muscle-like structure for AIEgen-guided selective self-healing. CCS Chem 20:1146–1156

    Article  Google Scholar 

  104. 104.

    Li P, Zhang D, Zhang Y, Lu W, Zhang J, Wang W, He Q, Théato P, Chen T (2019) Aggregation-caused quenching-type naphthalimide fluorophores grafted and ionized in a 3D polymeric hydrogel network for highly fluorescent and locally tunable emission. ACS Macro Lett 8(8):937–942

    CAS  Article  Google Scholar 

  105. 105.

    Dang D, Zhang H, Xu Y, Xu R, Wang Z, Kwok RTK, Lam JWY, Zhang L, Meng L, Tang BZ (2019) Super-resolution visualization of self-assembling helical fibers using aggregation-induced emission luminogens in stimulated emission depletion nanoscopy. ACS Nano 13(10):11863–11873

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Wang Z, Chen S, Lam JWY, Qin W, Kwok RTK, Xie N, Hu Q, Tang BZ (2013) Long-term fluorescent cellular tracing by the aggregates of AIE bioconjugates. J Am Chem Soc 135(22):8238–8245

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Jia J, Wang Z, Lu W, Yang L, Wu Q, Qin W, Hu Q, Tang BZ (2014) Monitoring layer-by-layer self-assembly process of natural polyelectrolytes by fluorescent bioconjugate with aggregation-induced emission characteristic. J Mater Chem B 2(47):8406–8411

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108.

    Wang Z, Nie J, Qin W, Hu Q, Tang BZ (2016) Gelation process visualized by aggregation-induced emission fluorogens. Nat Commun 7(1):12033

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. 109.

    Lin Y, Li C, Song G, He C, Dong YQ, Wang H (2015) Freezing-induced multi-colour emissions of AIE luminogen di(4-propoxyphenyl) dibenzofulvene. J Mater Chem C 3(11):2677–2685

    CAS  Article  Google Scholar 

  110. 110.

    Zheng H, Li C, He C, Dong YQ, Liu Q, Qin P, Zeng C, Wang H (2014) Luminescent hydrogels based on di(4-propoxyphenyl)-dibenzofulvene exhibiting four emission colours and organic solvents/thermal dual-responsive properties. J Mater Chem C 2(29):5829–5835

    CAS  Article  Google Scholar 

  111. 111.

    Gao M, Li Y, Chen X, Li S, Ren L, Tang BZ (2018) Aggregation-induced emission probe for light-up and in situ detection of calcium ions at high concentration. ACS Appl Mater Interfaces 10(17):14410–14417

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Tavakoli J, Raston CL, Tang Y (2020) Tuning surface morphology of fluorescent hydrogels using a vortex fluidic device. Molecules 25(15):3445

    CAS  PubMed Central  Article  Google Scholar 

  113. 113.

    Tavakoli J, Laisak E, Gao M, Tang Y (2019) AIEgen quantitatively monitoring the release of Ca2+ during swelling and degradation process in alginate hydrogels. Mater Sci Eng C 104:109951

    CAS  Article  Google Scholar 

  114. 114.

    Tavakoli J, Raston CL, Ma Y, Tang Y (2020) Vortex fluidic mediated one-step fabrication of polyvinyl alcohol hydrogel films with tunable surface morphologies and enhanced self-healing properties. Sci China Mater 63(7):1310–1317

    CAS  Article  Google Scholar 

  115. 115.

    Tavakoli J, Joseph N, Chuah C, Raston CL, Tang Y (2020) Vortex fluidic enabling and significantly boosting light intensity of graphene oxide with aggregation induced emission luminogen. Mater Chem Front 20:20

    Google Scholar 

  116. 116.

    Tavakoli J, Joseph N, Raston CL, Tang Y (2020) A hyper-branched polymer tunes the size and enhances the fluorescent properties of aggregation-induced emission nanoparticles. Nanosc Adv 2(2):633–641

    CAS  Article  Google Scholar 

  117. 117.

    Tavakoli J, Pye S, Reza AM, Xie N, Qin J, Raston CL, Tang BZ, Tang Y (2020) Tuning aggregation-induced emission nanoparticle properties under thin film formation. Mater Chem Front 4(2):537–545

    CAS  Article  Google Scholar 

  118. 118.

    Wei P, Li Z, Zhang J-X, Zhao Z, Xing H, Tu Y, Gong J, Cheung TS, Hu S, Sung HHY, Williams ID, Kwok RTK, Lam JWY, Tang BZ (2019) Molecular transmission: visible and rate-controllable photoreactivity and synergy of aggregation-induced emission and host-guest assembly. Chem Mater 31(3):1092–1100

    CAS  Article  Google Scholar 

  119. 119.

    Liu Y, Zhou M, Liu Y, Han X, Zhang X, Liu S (2020) Host–guest interaction-mediated fabrication of aggregation-induced emission supramolecular hydrogel for use as aqueous light-harvesting systems. Supramol Chem 32(8):445–451

    CAS  Article  Google Scholar 

  120. 120.

    Zhao Q, Dai X-Y, Yao H, Zhang Y-M, Qu W-J, Lin Q, Wei T-B (2020) Stimuli-responsive supramolecular hydrogel with white AIE effect for ultrasensitive detection of Fe3+ and as rewritable fluorescent materials. Dyes Pigm 20:108875

    Google Scholar 

  121. 121.

    Yang H-L, Zhang Q-P, Zhang Y-M, Gong G-F, Chen Y-Y, Qi Z, Yao H, Wei T-B, Lin Q (2019) A novel strong AIE bi-component hydrogel as a multi-functional supramolecular fluorescent material. Dyes Pigm 171:107745

    CAS  Article  Google Scholar 

  122. 122.

    Zhang Y-M, Zhu W, Zhao Q, Qu W-J, Yao H, Wei T-B, Lin Q (2020) Th4+ tuned aggregation-induced emission: a novel strategy for sequential ultrasensitive detection and separation of Th4+ and Hg2+. Spectrochim Acta Part A Mol Biomol Spectrosc 229:117926

    CAS  Article  Google Scholar 

  123. 123.

    Fan Y-Q, Liu J, Chen Y-Y, Guan X-W, Wang J, Yao H, Zhang Y-M, Wei T-B, Lin Q (2018) An easy-to-make strong white AIE supramolecular polymer as a colour tunable photoluminescence material. J Mater Chem C 6(48):13331–13335

    CAS  Article  Google Scholar 

  124. 124.

    Zhu CN, Bai T, Wang H, Bai W, Ling J, Sun JZ, Huang F, Wu ZL, Zheng Q (2018) Single chromophore-based white-light-emitting hydrogel with tunable fluorescence and patternability. ACS Appl Mater Interfaces 10(45):39343–39352

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Aschmann D, Riebe S, Neumann T, Killa D, Ostwaldt J-E, Wölper C, Schmuck C, Voskuhl J (2019) A stimuli responsive two component supramolecular hydrogelator with aggregation-induced emission properties. Soft Matter 15(36):7117–7121

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    Zhao Y, Pang B, Chen J, Xiao L, Liu H, Lian W, Sun T, Jiang Y, Lin Q (2020) Polystyrene@poly(ar-vinylbenzyl)trimethylammonium-co-acrylic acid core/shell pH-responsive nanoparticles for active targeting and imaging of cancer cell based on aggregation induced emission. Microchim Acta 187(3):166

    CAS  Article  Google Scholar 

  127. 127.

    Gong Y, Tan Y, Mei J, Zhang Y, Yuan W, Zhang Y, Sun J, Tang BZ (2013) Room temperature phosphorescence from natural products: crystallization matters. Sci China Chem 56(9):1178–1182

    CAS  Article  Google Scholar 

  128. 128.

    Zhou Q, Cao B, Zhu C, Xu S, Gong Y, Yuan WZ, Zhang Y (2016) Clustering-triggered emission of nonconjugated polyacrylonitrile. Small 12(47):6586–6592

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Zhang Yuan W, Zhang Y (2017) Nonconventional macromolecular luminogens with aggregation-induced emission characteristics. J Polym Sci Part A Polym Chem 55(4):560–574

    Article  CAS  Google Scholar 

  130. 130.

    Jiang N, Li G-F, Zhang B-H, Zhu D-X, Su Z-M, Bryce MR (2018) Aggregation-induced long-lived phosphorescence in nonconjugated polyurethane derivatives at 77 K. Macromolecules 51(11):4178–4184

    CAS  Article  Google Scholar 

  131. 131.

    Li Y, Young DJ, Loh XJ (2019) Fluorescent gels: a review of synthesis, properties, applications and challenges. Mater Chem Front 3(8):1489–1502

    CAS  Article  Google Scholar 

  132. 132.

    Li B, Lin C, Lu C, Zhang J, He T, Qiu H, Yin S (2020) A rapid and reversible thermochromic supramolecular polymer hydrogel and its application in protected quick response codes. Mater Chem Front 4(3):869–874

    Article  Google Scholar 

  133. 133.

    Zhang Z, Du P, Pu G, Wei L, Wu Y, Guo J, Lu X (2019) Utilization and prospects of electrochemiluminescence for characterization, sensing, imaging and devices. Mater Chem Front 3(11):2246–2257

    CAS  Article  Google Scholar 

  134. 134.

    Zhang Y, Qi Y, Ulrich S, Barboiu M, Ramström O (2020) Dynamic covalent polymers for biomedical applications. Mater Chem Front 4(2):489–506

    CAS  Article  Google Scholar 

  135. 135.

    Chen X, Li J (2020) Bioinspired by cell membranes: functional polymeric materials for biomedical applications. Mater Chem Front 4(3):750–774

    CAS  Article  Google Scholar 

  136. 136.

    Wan Q, Huang Q, Liu M, Xu D, Huang H, Zhang X, Wei Y (2017) Aggregation-induced emission active luminescent polymeric nanoparticles: non-covalent fabrication methodologies and biomedical applications. Appl Mater Today 9:145–160

    Article  Google Scholar 

  137. 137.

    Wang Y, Nie J, Fang W, Yang L, Hu Q, Wang Z, Sun JZ, Tang BZ (2020) Sugar-based aggregation-induced emission luminogens: design. Struct Appl Chem Rev 120(10):4534–4577

    CAS  Google Scholar 

  138. 138.

    Liow SS, Dou Q, Kai D, Li Z, Sugiarto S, Yu CYY, Kwok RTK, Chen X, Wu Y-L, Ong ST, Kizhakeyil A, Verma NK, Tang BZ, Loh XJ (2017) Long-term real-time in vivo drug release monitoring with AIE thermogelling polymer. Small 13(7):1603404

    Article  CAS  Google Scholar 

  139. 139.

    Lai W-F (2020) Non-conjugated polymers with intrinsic luminescence for drug delivery. J Drug Deliv Sci Technol 59:101916

    CAS  Article  Google Scholar 

  140. 140.

    Kim S, Ohulchanskyy TY, Pudavar HE, Pandey RK, Prasad PN (2007) Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc 129(9):2669–2675

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. 141.

    Ikeda M, Tanida T, Yoshii T, Hamachi I (2011) Rational molecular design of stimulus-responsive supramolecular hydrogels based on dipeptides. Adv Mater 23(25):2819–2822

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  142. 142.

    Wang D, Lee MMS, Xu W, Kwok RTK, Lam JWY, Tang BZ (2018) Theranostics based on AIEgens. Theranostics 8(18):4925–4956

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143.

    Li T, Pan S, Zhuang H, Gao S, Xu H (2020) Selenium-containing carrier-free assemblies with aggregation-induced emission property combine cancer radiotherapy with chemotherapy. ACS Appl Bio Mater 3(2):1283–1292

    CAS  Article  Google Scholar 

  144. 144.

    Zhao J, Pan X, Zhu J, Zhu X (2020) Novel AIEgen-functionalized diselenide-crosslinked polymer gels as fluorescent probes and drug release carriers. Polymers 12(3):551

    CAS  PubMed Central  Article  Google Scholar 

  145. 145.

    Jiang X, Wang H, Yuan R, Chai Y (2018) Functional three-dimensional porous conductive polymer hydrogels for sensitive electrochemiluminescence in situ detection of H(2)O(2) released from live cells. Anal Chem 90(14):8462–8469

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  146. 146.

    Gao W, Muzyka K, Ma X, Lou B, Xu G (2018) A single-electrode electrochemical system for multiplex electrochemiluminescence analysis based on a resistance induced potential difference. Chem Sci 9(16):3911–3916

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. 147.

    Heo YJ, Shibata H, Okitsu T, Kawanishi T, Takeuchi S (2011) Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc Natl Acad Sci USA 108(33):13399–13403

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  148. 148.

    Shibata H, Heo YJ, Okitsu T, Matsunaga Y, Kawanishi T, Takeuchi S (2010) Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proc Natl Acad Sci USA 107(42):17894–17898

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  149. 149.

    Zhang Z, Liu G, Li X, Zhang S, Lü X, Wang Y (2020) Design and synthesis of fluorescent nanocelluloses for sensing and bioimaging applications. ChemPlusChem 85(3):487–502

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  150. 150.

    Xu Z, Liu Y, Qian C, Wu L, Wu Z, Zhang J, Cheng J, Miao M, Zhang D (2020) Tuning the morphology of melamine-induced tetraphenylethene self-assemblies for melamine detecting. Org Electron 76:105476

    CAS  Article  Google Scholar 

  151. 151.

    Hsu S-M, Wu F-Y, Cheng H, Huang Y-T, Hsieh Y-R, Tseng DT-H, Yeh M-Y, Hung S-C, Lin H-C (2016) Functional supramolecular polymers: a fluorescent microfibrous network in a supramolecular hydrogel for high-contrast live cell-material imaging in 3D environments. Adv Healthc Mater 5(18):2406–2412

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  152. 152.

    Wu C, Bull B, Szymanski C, Christensen K, McNeill J (2008) Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2(11):2415–2423

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. 153.

    Ding D, Li K, Qin W, Zhan R, Hu Y, Liu J, Tang BZ, Liu B (2013) Conjugated polymer amplified far-red/near-infrared fluorescence from nanoparticles with aggregation-induced emission characteristics for targeted in vivo imaging. Adv Healthc Mater 2(3):500–507

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  154. 154.

    Mandal K, Jana D, Ghorai BK, Jana NR (2018) Functionalized chitosan with self-assembly induced and subcellular localization-dependent fluorescence ‘switch on’ property. New J Chem 42(8):5774–5784

    CAS  Article  Google Scholar 

  155. 155.

    Li M, Hong Y, Wang Z, Chen S, Gao M, Kwok RT, Qin W, Lam JW, Zheng Q, Tang BZ (2013) Fabrication of chitosan nanoparticles with aggregation-induced emission characteristics and their applications in long-term live cell imaging. Macromol Rapid Commun 34(9):767–771

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  156. 156.

    Zhang X, Zhang X, Yang B, Liu M, Liu W, Chen Y, Wei Y (2013) Facile fabrication and cell imaging applications of aggregation-induced emission dye-based fluorescent organic nanoparticles. Polym Chem 4(16):4317–4321

    CAS  Article  Google Scholar 

  157. 157.

    Lim C-K, Kim S, Kwon IC, Ahn C-H, Park SY (2009) Dye-condensed biopolymeric hybrids: chromophoric aggregation and self-assembly toward fluorescent bionanoparticles for near infrared bioimaging. Chem Mater 21(24):5819–5825

    CAS  Article  Google Scholar 

  158. 158.

    Wang Z, Liu Y, Jia J, Chen S, Qin W, Hu Q, Tang BZ (2016) Fabrication of hybridized nanoparticles with aggregation-induced emission characteristics and application for cell imaging. J Mater Chem B 4(31):5265–5271

    CAS  PubMed  Article  Google Scholar 

  159. 159.

    Mehwish N, Dou X, Zhao Y, Feng C-L (2019) Supramolecular fluorescent hydrogelators as bio-imaging probes. Mater Horizons 6(1):14–44

    CAS  Article  Google Scholar 

  160. 160.

    Grafahrend D, Heffels K-H, Beer MV, Gasteier P, Möller M, Boehm G, Dalton PD, Groll J (2011) Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat Mater 10(1):67–73

    CAS  PubMed  Article  Google Scholar 

  161. 161.

    Kong J, Zhang J, Wang Y, Qi W, Huang M, Su R, He Z (2020) Bioinspired fluorescent peptidyl nanoparticles with rainbow colors. ACS Appl Mater Interfaces 12(28):31830–31841

    CAS  PubMed  Article  Google Scholar 

  162. 162.

    Mitra M, Mahapatra M, Dutta A, Deb M, Dutta S, Chattopadhyay PK, Roy S, Banerjee S, Sil PC, Singha NR (2020) Fluorescent guar gum-g-terpolymer via in situ acrylamido-acid fluorophore-monomer in cell imaging, Pb(II) sensor, and security ink. ACS Appl Bio Mater 3(4):1995–2006

    CAS  Article  Google Scholar 

  163. 163.

    Huang J, Wang Y-L, Yu X-D, Zhou Y-N, Chu L-Q (2020) Enhanced fluorescence of carboxymethyl chitosan via metal ion complexation in both solution and hydrogel states. Int J Biol Macromol 152:50–56

    CAS  PubMed  Article  Google Scholar 

  164. 164.

    Talloj SK, Mohammed M, Lin H-C (2020) Construction of self-assembled nanostructure-based tetraphenylethylene dipeptides: supramolecular nanobelts as biomimetic hydrogels for cell adhesion and proliferation. J Mater Chem B 8(33):7483–7493

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  165. 165.

    Chu C, Xiang Z, Wang J, Xie H, Xiang T, Zhou S (2020) A near-infrared light-triggered shape-memory polymer for long-time fluorescence imaging in deep tissues. J Mater Chem B 8(35):8061–8070

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  166. 166.

    Ma H, Zhang A, Zhang X, Zhao H, Cui Z, Fu P, Liu M, Zhou S, Pang X, Qiao X (2020) Novel platform for visualization monitoring of hydrolytic degradation of bio-degradable polymers based on aggregation-induced emission (AIE) technique. Sens Actuators B Chem 304:127342

    CAS  Article  Google Scholar 

  167. 167.

    Wang J, Gao M, Cui Z-K, Jia Y-G, Liu S, Chen K-F, Chen X, Zhang Y, Fang Z, Chen Y, Wang K, Zhang H, Wang L, Ren L (2020) One-pot quaternization of dual-responsive poly(vinyl alcohol) with AIEgens for pH-switchable imaging and killing of bacteria. Mater Chem Front 4(9):2635–2645

    CAS  Article  Google Scholar 

  168. 168.

    Liu J, Liu L, Li S, Kang Q, Zhang R, Zhu Z (2021) Self-assembled nanogels of luminescent thiolated silver nanoclusters and chitosan as bactericidal agent and bacterial sensor. Mater Sci Eng C 118:111520

    CAS  Article  Google Scholar 

  169. 169.

    Tang Y, Huang H, Xue W, Chang Y, Li Y, Guo X, Zhong C (2020) Rigidifying induced fluorescence enhancement in 2D porous covalent triazine framework nanosheets for the simultaneously luminous detection and adsorption removal of antibiotics. Chem Eng J 384:123382

    CAS  Article  Google Scholar 

  170. 170.

    An H, Yang H, Bo H, Ma X, Wang Y, Liu L, Wang H, He Y, Qin J (2021) Fabrication of self-healing hydrogel from quaternized N-[3(dimethylamino)propyl]methacrylamide copolymer for antimicrobial and drug release applications. J Biomed Mater Res Part A 109:42–53

  171. 171.

    Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, Khademhosseini A (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  172. 172.

    Skardal A, Zhang J, Prestwich GD (2010) Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31(24):6173–6181

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  173. 173.

    Unagolla JM, Jayasuriya AC (2020) Hydrogel-based 3D bioprinting: a comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl Mater Today 18:100479

    PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgment

Javad Tavakoli is grateful for the support of the University of Technology Sydney (UTS) with a Chancellor's Postdoctoral Research Fellowship (CPDRF) for the research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Youhong Tang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Aggregation Induced Emission”; edited by Youhong Tang and Ben Zhong Tang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, J., Ghahfarokhi, A.J. & Tang, Y. Aggregation-Induced Emission Fluorescent Gels: Current Trends and Future Perspectives. Top Curr Chem (Z) 379, 9 (2021). https://doi.org/10.1007/s41061-020-00322-6

Download citation

Keywords

  • Fluorescent gels
  • Hydrogels
  • Aggregation-induced emission
  • AIE polymers
  • Biomedical applications