Skip to main content

Advertisement

Log in

Asymmetric Reactions Enabled by Cooperative Enantioselective Amino- and Lewis Acid Catalysis

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Organocatalysis—the branch of catalysis featuring small organic molecules as the catalysts—has, in the last decade, become of central importance in the field of asymmetric catalysis, so much that it is now comparable to metal catalysis and biocatalysis. Organocatalysis is rationalized and classified by a number of so-called activation modes, based on the formation of a covalent or not-covalent intermediate between the organocatalyst and the organic substrate. Among all the organocatalytic activation modes, enamine and iminium catalysis are widely used for the practical preparation of valuable products and intermediates, both in academic and industrial contexts. In both cases, chiral amines are employed as catalysts. Enamine activation mode is generally employed in the reaction with electrophiles, while nucleophiles require the iminium activation mode. Commonly, in both modes, the reaction occurs through well-organized transitions states. A large variety of partners can react with enamines and iminium ions, due to their sufficient nucleophilicity and electrophilicity, respectively. However, despite the success, organocatalysis still suffers from narrow scopes and applications. Multicatalysis is a possible solution for these drawbacks because the two different catalysts can synergistically activate the substrates, with a simultaneous activation of the two different reaction partners. In particular, in this review we will summarize the reported processes featuring Lewis acid catalysis and organocatalytic activation modes synergically acting and not interfering with each other. We will focus our attention on the description of processes in which good results cannot be achieved independently by organocatalysis or Lewis acid catalysis. In these examples of cooperative dual catalysis, a number of new organic transformations have been developed. The review will focus on the possible strategies, the choice of the Lewis acid and the catalytic cycles involved in the effective reported combination. Additionally, some important key points regarding the rationale for the effective combinations will be also included. π-Activation of organic substrates by Lewis acids, via formation of electrophilic intermediates, and their reaction with enamines will be also discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24

Similar content being viewed by others

References

  1. Dalko P (2013) Comprehensive enantioselective organocatalysis: catalysts, reactions, and applications. Wiley, New York

    Google Scholar 

  2. Ahrendt KA, Borths CJ, MacMillan DWC (2000) New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels–Alder reaction. J Am Chem Soc 122(17):4243–4244

    CAS  Google Scholar 

  3. List B, Lerner R, Barbas CF (2000) Proline-catalyzed direct asymmetric aldol reactions. J Am Chem Soc 122(10):2395–2396

    CAS  Google Scholar 

  4. MacMillan DWC (2008) The advent and development of organocatalysis. Nature 455(7211):304–308

    CAS  PubMed  Google Scholar 

  5. Moyano A, Rios R (2013) Stereoselective organocatalysis. Wiley, New York

    Google Scholar 

  6. Mayr H (2015) Reactivity scales for quantifying polar organic reactivity: the benzhydrylium methodology. Tetrahedron 71(32):5095–5111

    CAS  Google Scholar 

  7. Mayr H, Ofial AR (2005) Kinetics of electrophile–nucleophile combinations: a general approach to polar organic reactivity. Pure Appl Chem 77(11):1807–1821

    CAS  Google Scholar 

  8. Mayr H, Kempf B, Ofial AR (2003) π-Nucleophilicity in carbon-carbon bond-forming reactions. Acc Chem Res 36(1):66–77

    CAS  PubMed  Google Scholar 

  9. Mayr H, Bug T, Gotta MF, Hering N, Irrgang B, Janker B, Kempf B, Loos R, Ofial AR, Remennikov G, Schimmel H (2001) Reference scales for the characterization of cationic electrophiles and neutral nucleophiles. J Am Chem Soc 123(39):9500–9512

    CAS  PubMed  Google Scholar 

  10. Lakhdar S, Baidya M, Mayr H (2012) Kinetics and mechanism of organocatalytic aza-Michael additions: direct observation of enamine intermediates. Chem Commun 48(37):4504–4506

    CAS  Google Scholar 

  11. Maji B, Lakhdar S, Mayr H (2012) Nucleophilicity parameters of enamides and their implications for organocatalytic transformations. Chem Eur J 18(18):5732–5740

    CAS  PubMed  Google Scholar 

  12. Lakhdar S, Ammer J, Mayr H (2011) Generation of α, β-unsaturated iminium ions by laser-flash photolysis. Angew Chem Int Ed 50(42):9953–9956

    CAS  Google Scholar 

  13. Lakhdar S, Ofial AR, Mayr H (2010) Reactivity parameters for rationalizing iminium-catalyzed reactions. J Phys Org Chem 23(10):886–892

    CAS  Google Scholar 

  14. An F, Paul S, Ammer J, Ofial AR, Mayer P, Lakhdar S, Mayr H (2014) Structures and reactivities of iminium ions derived from substituted cinnamaldehydes and various chiral imidazolidin-4-ones. Asian J Org Chem 3(4):550–555

    CAS  Google Scholar 

  15. Abbasov ME, Romo D (2014) The ever-expanding role of asymmetric covalent organocatalysis in scalable, natural product synthesis. Nat Prod Rep 31(10):1318–1327

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Timofeeva DS, Ofial AR, Mayr H (2008) Kinetics of electrophilic fluorinations of enamines and carbanions: comparison of the fluorinating power of N–F reagents. J Am Chem Soc 140(36):11474–11486

    Google Scholar 

  17. Timofeeva DS, Mayer RJ, Mayer P, Ofial AR, Mayr H (2018) Which factors control the nucleophilic reactivities of enamines? Chem Eur J 24(22):5901–5910

    CAS  PubMed  Google Scholar 

  18. Mayr H, Ofial AR (2016) Philicities, fugalities, and equilibrium constants. Acc Chem Res 49(5):952–965

    CAS  PubMed  Google Scholar 

  19. Mayr H, Gorath G (1995) Kinetics of the reactions of carboxonium ions and aldehyde boron trihalide complexes with alkenes and allylsilanes. J Am Chem Soc 117(30):7862–7868

    CAS  Google Scholar 

  20. Gualandi A, Cozzi PG (2013) Stereoselective organocatalytic alkylations with carbenium ions. Synlett 24(3):281–296

    CAS  Google Scholar 

  21. Adero PO, Amarasekara H, Wen P, Bohe L, Crich D (2018) The experimental evidence in support of glycosylation mechanisms at the s(n)1-s(n)2 interface. Chem Rev 118(17):8242–8284

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Appel R, Chelli S, Tokuyasu T, Troshin K, Mayr H (2013) Electrophilicities of benzaldehyde-derived iminium ions: quantification of the electrophilic activation of aldehydes by iminium formation. J Am Chem Soc 135(17):6579–6587

    CAS  PubMed  Google Scholar 

  23. Lee YS, Alam MM, Keri RS (2013) Enantioselective reactions of N-acyliminium ions using chiral organocatalysts. Chem Asian J 8(12):2906–2919

    CAS  PubMed  Google Scholar 

  24. Huang YY, Cai C, Yang X, Lv ZC, Schneider U (2016) Catalytic asymmetric reactions with N, O-aminals. ACS Catalysis 6(9):5747–5763

    CAS  Google Scholar 

  25. Yamamoto Y (2007) From σ- to π-electrophilic Lewis acids. Application to selective organic transformations. J Org Chem 72(21):7817–7831

    CAS  PubMed  Google Scholar 

  26. Alba AN, Viciano M, Rios R (2009) The Holy Grail of organocatalysis: intermolecular α-alkylation of aldehydes. Chem Cat Chem 1(4):437–439

    CAS  Google Scholar 

  27. List B, Čorić I, Grygorenko OO, Kaib PJS, Komarov I, Lee A, Leutzsch M, Pan SC, Tymtsunik AV, van Gemmeren M (2013) The catalytic asymmetric α-benzylation of aldehydes. Angew Chem Int Ed 53(1):282–285

    Google Scholar 

  28. Renzi P, Hioe J, Gschwind RM (2017) Enamine/dienamine and Brønsted acid catalysis: elusive intermediates, reaction mechanisms, and stereoinduction modes based on in situ NMR spectroscopy and computational studies. Acc Chem Res 50(12):2936–2948

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lakhdar S, Mayr H (2011) Counterion effects in iminium-activated electrophilic aromatic substitutions of pyrroles. Chem Commun 47(6):1866–1868

    CAS  Google Scholar 

  30. Kobayashi S, Manabe K (2005) Lewis acid catalysis in aqueous media in stimulating concept in chemistry. Wiley Prof Fritz Vögtle Prof J Fraser Stoddart Prof Masakatsu Shibasaki Eds, Wiley, New York

  31. Kobayashi S, Sugiura M, Kitagawa H, Lam WLW (2002) Rare-earth metal triflates in organic synthesis. Chem Rev 102(6):2227–2302

    CAS  PubMed  Google Scholar 

  32. Kobayashi S, Ogawa C (2006) New entries to water-compatible Lewis acids. Chem Eur J 12:5945–5960

    Google Scholar 

  33. Kobayashi S, Nagayama S, Busujima T (1998) Lewis acid catalysts stable in water. Correlation between catalytic activity in water and hydrolysis constants and exchange rate constants for substitution of inner-sphere water ligands. J Am Chem Soc 120(32):8287–8288

    CAS  Google Scholar 

  34. Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York

    Google Scholar 

  35. Ollevier T (2013) New trends in bismuth-catalyzed synthetic transformations. Org Biomol Chem 11:2740–2755

    CAS  PubMed  Google Scholar 

  36. Surya Prakash GK, Mathew T, Olah GA (2012) Gallium(III) triflate: an efficient and a sustainable Lewis acid catalyst for organic synthetic transformations. Acc Chem Res 45(4):565–577

    Google Scholar 

  37. Sameera WMC, Hatanaka M, Kitanosono T, Kobayashi S, Morokuma K (2015) The mechanism of iron(II)-catalyzed asymmetric Mukaiyama aldol reaction in aqueous media: density functional theory and artificial force-induced reaction study. J Am Chem Soc 137(34):11085–11094

    CAS  PubMed  Google Scholar 

  38. Donslund BS, Johansen TK, Poulsen PH, Halskov KS, Jørgensen KA (2015) The diarylprolinol silyl ethers: ten years after. Angew Chem Int Ed 54(47):13860–13874

    CAS  Google Scholar 

  39. Samulis L, Tomkinson NCO (2011) Preparation of the MacMillan imidazolidinones. Tetrahedron 67(23):4263–4267

    CAS  Google Scholar 

  40. Mahrwald R (2013) Chiral imidazolidinone (MacMillan’s) catalyst. In: Dalko PI (ed) Comprehensive enantioselective organocatalysis. Wiley-VCH, Weinheim

    Google Scholar 

  41. Austin JF, MacMillan DWC (2002) Enantioselective organocatalytic indole alkylations. Design of a new and highly effective chiral amine for iminium catalysis. J Am Chem Soc 124(7):1172–1173

    CAS  PubMed  Google Scholar 

  42. Nicewicz D, MacMillan DWC (2008) Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322(5898):77–80

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Da Gama Oliveira V, do Carmo Cardoso MF, da Silva Magalães Forezi (2018) Organocatalysis: a brief overview on its evolutions and applications. Catalysis 8(12):605–634

    Google Scholar 

  44. Giacalone F, Gruttadauria M, Agrigento P, Noto R (2012) Low-loading asymmetric organocatalysis. Chem Soc Rev 41(6):2406–2447

    CAS  PubMed  Google Scholar 

  45. Leonov AI, Timofeeva DS, Ofial AR, Mayr H (2019) Metal enolates—enamines—enol ethers: how do enolate equivalents differ in nucleophilic reactivity? Synthesis 51(5):1157–1170

    CAS  Google Scholar 

  46. Mayr H, Lakhdar S, Maji B, Ofial AR (2012) A quantitative approach to nucleophilic organocatalysis. Beilstein J Org Chem 8:1458–1478

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lakhdar S, Maji B, Mayr H (2012) Imidazolidinone-derived enamines: nucleophiles with low reactivity. Angew Chem Int Ed 51(23):5739–5742

    CAS  Google Scholar 

  48. Beeson TD, MacMillan DWC (2005) Enantioselective organocatalytic α-fluorination of aldehydes. J Am Chem Soc 127(24):8826–8828

    CAS  PubMed  Google Scholar 

  49. Brochu MP, Brown SP, MacMillan DWC (2004) Direct and enantioselective organocatalytic α-chlorination of aldehydes. J Am Chem Soc 126(13):4108–4109

    CAS  PubMed  Google Scholar 

  50. Kandasamy S, Notz W, Bui T, Barbas CF III (2001) Amino acid catalyzed direct asymmetric aldol reactions: a bioorganic approach to catalytic asymmetric carbon–carbon bond-forming reactions. J Am Chem Soc 123(22):5260–5267

    Google Scholar 

  51. Northrup AB, MacMillan DWC (2002) The first direct and enantioselective cross-aldol reaction of aldehydes. J Am Chem Soc 124(24):6798–6799

    CAS  PubMed  Google Scholar 

  52. Storer RI, MacMillan DWC (2004) Enantioselective organocatalytic aldehyde–aldehyde cross-aldolcouplings. The broad utility of a-thioacetal aldehydes. Tetrahedron 60(35):7705–7714

    CAS  Google Scholar 

  53. Darbre T, Machuqueiro M (2003) Zn-proline catalyzed direct aldol reaction in aqueous media. Chem Commun 0(9):1090–1091

  54. Fernandez-Lopez R, Kofoed J, Machuqueiro M (2005) Darbre T (2005) A selective direct aldol reaction in aqueous media catalyzed by zinc-proline. Eur J Org Chem 24:5268–5276

    Google Scholar 

  55. Kofoed J, Reymond JL, Darbre T (2005) Prebiotic carbohydrate synthesis: zinc-proline catalyzes direct aqueous aldol reactions of α-hydroxy aldehydes and ketones. Org Biomol Chem 3(10):1850–1855

    CAS  PubMed  Google Scholar 

  56. Kofoed J, Darbre T, Reymond JL (2006) Dual mechanism of zinc-proline catalyzed aldol reactions in water. Chem Commun 14:1482–1484

    Google Scholar 

  57. Paradowska J, Stodulski M, Mlynarski J (2007) Direct catalytic asymmetric aldol reactions assisted by zinc complex in the presence of water. Adv Synth Catal 349(7):1041–1046

    CAS  Google Scholar 

  58. Lu Z, Mei H, Han J, Pan Y (2010) The mimic of type II aldolases chemistry: asymmetric synthesis of b-hydroxy ketones by direct aldol reaction. Chem Bio Drug Design 76:181–186

    CAS  Google Scholar 

  59. Andreu C, Asensio G (2011) The role of Zn2+ in enhancing the rate and stereoselectivity of the aldol reactions catalyzed by the simple prolinamide model. Tetrahedron 67(37):7050–7056

    CAS  Google Scholar 

  60. Andreu C, Sanz F, Asensio G (2012) Counterion’s effect on the catalytic activity of Zn-prolinamide complexes in aldol condensations. Eur J Org Chem 22:4185–4191

    Google Scholar 

  61. Penhoat M, Barbry D, Rolando C (2011) Direct asymmetric aldol reaction co-catalyzed by l-proline and group 12 elements Lewis acids in the presence of water. Tetrahedron Lett 52(1):159–162

    CAS  Google Scholar 

  62. Lutz M, Bakker R (2003) Dichlorobis(DL-proline-kappaO)zinc(II). Acta Crystallogr., Sect. C (pt 1)59:m18–20

  63. Shibasaki M, Kanai M, Matsunaga S, Kumagai N (2009) Recent progress in asymmetric bifunctional catalysis using multimetallic systems. Acc Chem Res 42(8):1117–1127

    CAS  PubMed  Google Scholar 

  64. Akagawa K, Sakamoto S, Kudo K (2005) Direct asymmetric aldol reaction in aqueous media using polymer-supported peptide. Tetrahedron Lett 46(47):8185–8187

    CAS  Google Scholar 

  65. Xu Z, Daka P, Budik I, Wang H, Bai FQ, Zhang HX (2009) Enamine–metal Lewis acid bifunctional catalysis: application to direct asymmetric aldol reaction of ketones. Eur J Org Chem 27:4581–4585

    Google Scholar 

  66. Xu Z, Daka P, Wang H (2009) Primary amine-metal Lewis acid bifunctional catalysts: the application to asymmetric direct aldol reactions. Chem Commun 44(45):6825–6827

    Google Scholar 

  67. Karmakar A, Maji T, Wittmann S, Reiser O (2011) L-Proline/CoCl2-catalyzed highly diastereo- and enantioselective direct aldol reactions. Chem Eur J 17(39):11024–11029

    CAS  PubMed  Google Scholar 

  68. Daka P, Xu Z, Alexa A, Wang H (2011) Primary amine-metal Lewis acid bifunctional catalysts based on a simple bidentate ligand: direct asymmetric aldol reaction. Chem Commun 47(1):224–226

    CAS  Google Scholar 

  69. Chen G, Fu X, Li C, Wu C, Miao Q (2012) Highly efficient direct a larger-scale aldol reactions catalyzed by a flexible prolinamide based-metal Lewis acid bifunctional catalyst in the presence of water. J Organomet Chem 702:19–26

    CAS  Google Scholar 

  70. Wiedenhoeft D, Benoit AR, Porter JD, Wu Y, Virdi RS, Shanaa A, Dockendorff C (2016) Design and synthesis of oxazoline-based scaffolds for hybrid Lewis acid/Lewis base catalysis of carbon–carbon bond formation. Synlett 48(15):2413–2422

    CAS  Google Scholar 

  71. Desimoni G, Faita G, Jørgensen KA (2006) C2-Symmetric chiral bis(oxazoline) ligands in asymmetric catalysis. Chem Rev 106(9):3561–3651

    CAS  PubMed  Google Scholar 

  72. Arnold K, Batsanov AS, Davies B, Grosjean C, Schutz T, Whiting A, Zawatzkya K (2008) The first example of enamine-Lewis acid cooperative bifunctional catalysis: application to the asymmetric aldol reaction. Chem Commun 33:3879–3881

    Google Scholar 

  73. Georgiou I, Whiting A (2012) Mechanism and optimisation of the homoboroproline bifunctional catalytic asymmetric aldol reaction: Lewis acid tuning through in situ esterification. Org Biom Chem 10(12):2422–2430

    CAS  Google Scholar 

  74. Batsanov AS, Georgiou I, Girling PR, Pommier L, Shen HC, Whiting A (2014) Asymmetric synthesis and application of homologous pyrroline-2-alkylboronic acids: identification of the B-N distance for eliciting bifunctional catalysis of an asymmetric aldol reaction. Chem Asian J 3(1):470–479

    CAS  Google Scholar 

  75. Kimura E, Shiota T, Koike T, Shiro M, Kodama M (1990) A zinc(II) complex of 1,5,9-triazacyclododecane ([12]aneN3) as a model for carbonic anhydrase. J Am Chem Soc 112(15):5805–5811

    CAS  Google Scholar 

  76. Itoh S, Kitamura M, Yamada Y, Aoki S (2009) Chiral catalysts dually functionalized with amino acid and Zn2+ complexcomponents for enantioselective direct aldol reactions inspired by natural aldolases: design, synthesis, complexation properties, catalytic activities, and mechanistic study. Chem Eur J 15(40):10570–10584

    CAS  PubMed  Google Scholar 

  77. Zhang Q, Cui X, ZhangL Luo S, Wang H, Wu Y (2015) Redox tuning of a direct asymmetric aldol reaction. Angew Chem Int Ed 54(17):5210–5213

    CAS  Google Scholar 

  78. Gualandi A, Rodeghiero G, Cozzi PG (2018) Catalytic stereoselective SN1-type reactions promoted by chiral phosphoric acids as Brønsted acid catalysts. Asia J Org Chem 7(10):1957–1981

    CAS  Google Scholar 

  79. Gualandi A, Mengozzi L, Manoni E, Cozzi PG (2016) From QCA (quantum cellular automata) to organocatalytic reactions with stabilized carbenium ions. Chem Record 16(3):1228–1243

    CAS  Google Scholar 

  80. Gualandi A, Mengozzi L, Wilson MC, Cozzi PG (2014) Synergistic stereoselective organocatalysis with indium(III) salts. Synthesis 46(10):1321–1328

    Google Scholar 

  81. Gualandi A, Mengozzi L, Wilson CM (2014) Synergy, compatibility, and innovation: merging Lewis acids with stereoselective enamine catalysis. Asia J Org Chem 3:984–995

    Google Scholar 

  82. Kemp B, Hampel N, Ofial AR, Mayr H (2003) Structure-nucleophilicity relationships for enamines. Chem Eur J 9:2209–2218

    Google Scholar 

  83. Cozzi PG, Benfatti F, Zoli L (2009) Organocatalytic asymmetric alkylation of aldehydes by SN1-type reaction of alcohols. Angew Chem Int Ed 48:1313–1316

    CAS  Google Scholar 

  84. Guiteras Capdevila M, Benfatti F, Zoli L, Stenta M, Cozzi PG (2010) Merging organocatalysis with an indium(III)-mediated process: a stereoselective α-alkylation of aldehydes with allylic alcohols. Chem Eur J 16(37):11237–11241

    Google Scholar 

  85. Sinisi R, Vita MV, Gualandi A, Emer E, Cozzi PG (2011) SN1-type reactions in the presence of water: indium(III)-promoted highly enantioselective organocatalytic propargylation of aldehydes. Chem Eur J 17(27):7404–7408

    CAS  PubMed  Google Scholar 

  86. Motoyama K, Ikeda M, Miyake Y, Nishibayashi Y (2011) Cooperative catalytic reactions using Lewis acids and organocatalysts: enantioselective propargylic alkylation of propargylic alcohols bearing an internal alkyne with aldehydes. Eur J Org Chem 12:2239–2246

    Google Scholar 

  87. Guiteras Capdevila M, Emer E, Benfatti F, Gualandi A, Wilson CM, Cozzi PG (2012) Indium(III)-promoted organocatalytic enantioselective α-alkylation of aldehydes with benzylic and benzhydrylic alcohols. Asian J Org Chem 1(1):38–42

    Google Scholar 

  88. Xiao J (2012) Merging organocatalysis with transition metal catalysis: highly stereoselective α-alkylation of aldehydes. Org Lett 14(7):1716–1719

    CAS  PubMed  Google Scholar 

  89. Rueping M, Volla CMR, Atodiresei I (2012) Catalytic asymmetric addition of aldehydes to oxocarbenium ions: a dual catalytic system for the synthesis of chromenes. Org Lett 14(17):4642–4645

    CAS  PubMed  Google Scholar 

  90. Bentley KW (1965) The isoquinoline alkaloids, 1st edn. Pergamon, London, p 1965

    Google Scholar 

  91. Michael JP (1995) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 12(1):77–89

    CAS  Google Scholar 

  92. Frisch K, Landa A, Saaby S, Jørgensen KA (2005) Organocatalytic diastereo- and enantioselective annulation reactions—construction of optically active 1,2-dihydroisoquinoline and 1,2-dihydrophthalazine derivatives. Angew Chem Int Ed 44(37):6058–6063

    CAS  Google Scholar 

  93. Mengozzi L, Gualandi A, Cozzi PG (2014) A highly enantioselective acyl-Mannich reaction of isoquinolines with aldehydes promoted by proline derivatives: an approach to 13-alkyl-tetrahydroprotoberberine alkaloids. Chem Sci 5(10):3915–3921

    CAS  Google Scholar 

  94. Sun S, Mao Y, Lou H, Liu L (2015) Copper(II)/amine synergistically catalyzed enantioselective alkylation of cyclic N-acyl hemiaminals with aldehydes. Chem Commun 51(53):19691–19694

    Google Scholar 

  95. Berti F, Malossi F, Pineschi M (2015) A highly enantioselective Mannich reaction of aldehydes with cyclic N-acyliminium ions by synergistic catalysis. Chem Commun 51(71):13694–13697

    CAS  Google Scholar 

  96. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45(47):7896–7936

    Google Scholar 

  97. Fürstner A, Davies PW (2007) Catalytic carbophilic activation: catalysis by platinum and gold π-acids. Angew Chem Int Ed 46(19):3410–3449

    Google Scholar 

  98. Hashmi ASK (2007) Gold-catalyzed organic reactions. Chem Rev 107(7):3180–3211

    CAS  PubMed  Google Scholar 

  99. Jiménez-Núñez E, Echavarren AM (2008) Gold-catalyzed cycloisomerizations of enynes: a mechanistic perspective. Chem Rev 108(8):3326–3350

    PubMed  Google Scholar 

  100. Li ZG, Brouwer C, He C (2008) Gold-catalyzed organic transformations. Chem Rev 108(8):3239–3265

    CAS  PubMed  Google Scholar 

  101. Fürstner A (2009) Chem Soc Rev 38:3208–3221

    PubMed  Google Scholar 

  102. Binder JT, Crone B, Haug TT, Menz H, Kirsch SF (2008) Direct carbocyclization of aldehydes with alkynes: combining gold catalysis with aminocatalysis. Org Lett 10(5):1025–1028

    CAS  PubMed  Google Scholar 

  103. Jensen KL, Franke PT, Arrniz C, Kobbelgaard S, Jørgensen KA (2010) Enantioselective synthesis of cyclopentene carbaldehydes by a direct multicatalytic cascade sequence: carbocyclization of aldehydes with alkynes. Chem Eur J 16(6):1750–1753

    CAS  PubMed  Google Scholar 

  104. Vachan BS, Karuppasamy M, Vinoth P, Vivek Kumar S, Perumal S, Vellaisamy S, Menéndez JC (2019) Proline and its derivatives as organocatalysts for multicomponent reactions in aqueous media: synergic pathways to the green synthesis of heterocycles. Adv Synth Cat. https://doi.org/10.1002/adsc.201900558

    Article  Google Scholar 

  105. Marson CM (2012) Multicomponent and sequential organocatalytic reactions: diversity with atom-economy and enantiocontrol. Chem Soc Rev 41(23):7712–7722

    CAS  PubMed  Google Scholar 

  106. Herrera RP, Marqués-López E (2015) Multicomponent reactions: concepts and applications for design and synthesis. Wiley, New York

    Google Scholar 

  107. Chiarucci M, di Lillo M, Romaniello A, Cozzi PG, Cera G, Bandini M (2012) Gold meets enamine catalysis in the enantioselective α-allylic alkylation of aldehydes with alcohols. Chem Sci 3(9):2859–2863

    CAS  Google Scholar 

  108. Ballesteros A, Morán-Poladura P, Gonzáles JM (2016) Gold(I) operational in synergistic catalysis for the intermolecular α-addition reaction of aldehydes across allenamides. Chem Comm 52(14):2905–2908

    CAS  PubMed  Google Scholar 

  109. Fernández-Casado J, Nelson R, Mascareñas JL, López F (2016) Synergistic gold and enamine catalysis: intermolecular α-alkylation of aldehydes with allenamides. Chem Commun 52(14):2909–2912

    Google Scholar 

  110. Wang XS, Zhao H, Li YH, Xiong RG, You XZ (2005) Olefin-copper(I) complexes and their properties. Top Catal 35(1–2):43–61

    Google Scholar 

  111. Praveen C, Montaignac B, Vitale MR, Ratovelomanana-Vidal V, Michelet V (2013) Enantioselective merger of aminocatalysis with π-Lewis acid metal catalysis: asymmetric preparation of carbo- and heterocycles. ChemCatChem 5(8):2395–2404

    CAS  Google Scholar 

  112. Praveen C, Levêque S, Vitale MR, Michelet V, Ratovelomanana-Vidal V (2014) Synergistic iron-and-amine catalysis in carbocyclizations. Synthesis 46:1334–1338

    Google Scholar 

  113. De Graaf C, Rujters E, Orru RVA (2012) Recent developments in asymmetric multicomponent reactions. Chem Soc Rev 41(10):3969–4009

    Google Scholar 

  114. Xu Z, Liu L, Wheeler K, Wang H (2011) Asymmetric inverse-electron-demand hetero-Diels-Alder reaction of six-membered cyclic ketones: an enamine/metal Lewis acid bifunctional approach. Angew Chem Int Ed 50(15):3484–3488

    CAS  Google Scholar 

  115. Deng Y, Liu L, Sarkisian RG, Wheeler K, Wang H, Xu Z (2013) Arylamine-catalyzed enamine formation: cooperative catalysis with arylamines and acids. Angew Chem Int Ed 52(13):3663–3667

    CAS  Google Scholar 

  116. Cai YF, Yang HM, Li L, Jiang KZ, Lai GQ, Jiang JX (2010) Xu LW (2010) Cooperative and enantioselective NbCl5/primary amine catalyzed Biginelli reaction. Eur J Org Chem 26:4986–4990

    Google Scholar 

  117. Han B, Li JL, Ma C, Zhang SJ, Chen YC (2008) Organocatalytic asymmetric inverse-electron-demand aza-Diels-Alder reaction of N-sulfonyl-1-aza-1,3-butadienes and aldehydes. Angew Chem Int Ed 47(51):9971–9974

    CAS  Google Scholar 

  118. Mohammadi S, Heiran R, Herrera RP, Marques-Lopez E (2013) Isatin as a strategic motif for asymmetric catalysis. ChemCatChem 5(8):2131–2148

    CAS  Google Scholar 

  119. Liu L, Daka P, Sarkisian R, Deng Y, Wheeler K, Wang H (2014) Oxa-Diels-Alder reaction of isatins and acyclic α, β-unsaturated methyl ketones through cooperative dienamine and metal Lewis acid catalysis. Synthesis 46(10):1339–1347

    Google Scholar 

  120. Perlmutter P (1992) Conjugate addition in reactions in organic synthesis. In: Baldwin JE (ed) Tetrahedron organic chemistry series. Pergamon, Oxford

    Google Scholar 

  121. Allgäuer DS, Jangra H, Asahara H, Li Z, Chen Q, Zipse H, Ofial AR, Mayr H (2017) Quantification and theoretical analysis of the electrophilicities of Michael acceptors. J Am Chem Soc 139(38):13318–13329

    PubMed  Google Scholar 

  122. ErkkiläInkeri A, Majander I, Pihko PM (2007) Iminium catalysis. Chem Rev 107(12):5416–5470

    Google Scholar 

  123. Liu L, Sarkisian R, Xu Z, Wang H (2012) Asymmetric Michael addition of ketones to alkylidene malonates and allylidene malonates via enamine-metal Lewis acid bifunctional catalysis. J Org Chem 77(17):7693–7699

    CAS  PubMed  Google Scholar 

  124. Song L, Gong L, Meggers E (2016) Asymmetric dual catalysis via fragmentation of a single rhodium precursor complex. Chem Comm 52(49):7699–7702

    CAS  PubMed  Google Scholar 

  125. Gong J, Li K, Qurban S, Kang Q (2016) Rhodium(III)/amine synergistically catalyzed enantioselective alkylation of aldehydes with α, β-unsaturated 2-acyl imidazoles. Chin J Chem 34(12):1225–1235

    CAS  Google Scholar 

  126. Gong J, Wan Q, Kang Q (2018) Gold(I)/chiral Rh(III) Lewis acid relay catalysis enables asymmetric synthesis of spiroketals and spiroaminals. Adv Synth Catal 360(21):4031–4036

    CAS  Google Scholar 

  127. Meazza M, Tur F, Hammer N, Jørgensen KA (2017) Synergistic diastereo- and enantioselective functionalization of unactivated alkyl quinolines with α, β-unsaturated aldehydes. Angew Chem Int Ed 56(6):1634–1638

    CAS  Google Scholar 

  128. Ceban V, Putaj P, Meazza M, Pitak MB, Coles SJ, Vesely J, Rios R (2014) Synergistic catalysis: highly diastereoselective benzoxazole addition to Morita-Baylis-Hillman carbonates. Chem Commun 50(56):7447–7449

    CAS  Google Scholar 

  129. Quintard A, Rodriguez J (2015) Synergistic Cu-amine catalysis for the enantioselective synthesis of chiral cyclohexenones. Chem Commun 51(46):9523–9526

    CAS  Google Scholar 

  130. Prieto A, Baudoin O, Bouyssi D, Monteiro N (2016) Electrophilic trifluoromethylation of carbonyl compounds and their nitrogen derivatives under copper catalysis. Chem Commun 52(5):869–881

    CAS  Google Scholar 

  131. Allen AE, MacMillan DWC (2010) The productive merger of iodonium salts and organocatalysis: a non-photolytic approach to the enantioselective α-trifluoromethylation of aldehydes. J Am Chem Soc 132(14):4986–4987

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Simonovich P, Van Humbeck JF, MacMillan DWC (2012) A general approach to the enantioselective α-oxidation of aldehydes via synergistic catalysis. Chem Sci 3:58–61

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Van Humbeck JF, Simonovich SP, Knowles RR, MacMillan DWC (2010) Concerning the mechanism of the FeCL3-catalyzed α-oxyamination of aldehydes: evidence for a non-SOMO activation pathway. J Am Chem Soc 132(29):10012–10014

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors kindly thank Letizia Vanni d’Archirafi and Benedetta Gaggio for their suggestions to improve the readability of this review. The authors also want to thank the reviewers for their valuable advices to improve the scientific quality of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Giorgio Cozzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Asymmetric Organocatalysis Combined with Metal Catalysis”; edited by Bruce A. Arndtsen, Liu-Zhu Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cozzi, P.G., Gualandi, A., Potenti, S. et al. Asymmetric Reactions Enabled by Cooperative Enantioselective Amino- and Lewis Acid Catalysis. Top Curr Chem (Z) 378, 1 (2020). https://doi.org/10.1007/s41061-019-0261-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-019-0261-4

Keywords

Navigation