Topics in Current Chemistry

, 375:89 | Cite as

Integration of Waste Valorization for Sustainable Production of Chemicals and Materials via Algal Cultivation

  • Yong Chen
  • Li-ping Sun
  • Zhi-hui Liu
  • Greg Martin
  • Zheng Sun
Part of the following topical collections:
  1. Chemistry and Chemical Technologies in Waste Valorization


Managing waste is an increasing problem globally. Microalgae have the potential to help remove contaminants from a range of waste streams and convert them into useful biomass. This article presents a critical review of recent technological developments in the production of chemicals and other materials from microalgae grown using different types of waste. A range of novel approaches are examined for efficiently capturing CO2 in flue gas via photosynthetic microalgal cultivation. Strategies for using microalgae to assimilate nitrogen, organic carbon, phosphorus, and metal ions from wastewater are considered in relation to modes of production. Generally, more economical open cultivation systems such as raceway ponds are better suited for waste conversion than more expensive closed photobioreactor systems, which might have use for higher-value products. The effect of cultivation methods and the properties of the waste streams on the composition the microalgal biomass is discussed relative to its utilization. Possibilities include the production of biodiesel via lipid extraction, biocrude from hydrothermal liquefaction, and bioethanol or biogas from microbial conversion. Microalgal biomass produced from wastes may also find use in higher-value applications including protein feeds or for the production of bioactive compounds such as astaxanthin or omega-3 fatty acids. However, for some waste streams, further consideration of how to manage potential microbial and chemical contaminants is needed for food or health applications. The use of microalgae for waste valorization holds promise. Widespread implementation of the available technologies will likely follow from further improvements to reduce costs, as well as the increasing pressure to effectively manage waste.


Biomass utilization Metabolic pathways Culture systems Bioenergy By-products 



The authors acknowledge financial support from the National Natural Science Foundation of China (31501493) and “Young Eastern Scholar program” at Shanghai Institutions of Higher Learning (QD2015047).

Compliance with ethical standards

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Yong Chen, Li-ping Sun, Zhi-hui Liu, Greg Martin, and Zheng Sun approved the manuscript.

Conflict of Interest

Yong Chen, Li-ping Sun, Zhi-hui Liu, Greg Martin, and Zheng Sun declare that they have no conflict of interest.


  1. 1.
    Razzak SA, Ali SAM, Hossain MM, Delasa H (2017) Biological CO2 fixation with production of microalgae in wastewater—a review. Renew Sustain Energy Rev 76:379–390CrossRefGoogle Scholar
  2. 2.
    Siegenthaler U, Stocker TF, Monnin E, Lüthi D, Schwander J, Stauffer B, Raynaud D, Barnola JM, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle-climate relationship during the Late Pleistocene. Science 310(5752):1313–1317CrossRefGoogle Scholar
  3. 3.
    Chang EH, Yang SS (2003) Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Bot Bull Acad Sinica 44(1):43–52Google Scholar
  4. 4.
    Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27:261–266CrossRefGoogle Scholar
  5. 5.
    Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ (2009) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol 43(1):12–19CrossRefGoogle Scholar
  6. 6.
    Odnr ODH (2010) State actions for water quality improvement at Grand Lake, Saint Marys.
  7. 7.
    Karmee SK (2016) Liquid biofuels from food waste: current trends, prospect and limitation. Renew Sustain Energy Rev 53:945–953CrossRefGoogle Scholar
  8. 8.
    Hartmann H, Ahring BK (2006) Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview. Water Sci Technol 53(8):7–22CrossRefGoogle Scholar
  9. 9.
    El-Fadel M, Findikakis AN, Leckie JO (1997) Environmental impacts of solid waste landfilling. J Environ Manag 50:1–25CrossRefGoogle Scholar
  10. 10.
    Zhou WG, Min M, Li YC, Hu B, Ma XC, Cheng YL (2012) A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Biores Technol 110(1):448–455CrossRefGoogle Scholar
  11. 11.
    Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH (2012) Scenario analysis of nutrient removal from municipal wastewater by microalgal biofilms. Water 4(2):460–473CrossRefGoogle Scholar
  12. 12.
    Oswald WJ (2003) My sixty years in applied algology. J Appl Phycol 15:99–106CrossRefGoogle Scholar
  13. 13.
    Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng 6(2):87–102CrossRefGoogle Scholar
  14. 14.
    Foley PM, Beach ES, Zimmerman JB (2011) Algae as a source of renewable chemicals: opportunities and challenges. Green Chem 13:1399–1405CrossRefGoogle Scholar
  15. 15.
    Fogassy G, Ke P, Figueras F, Cassagnau P, Rouzeau S, Courault V, Gelbard G, Pinel C (2011) Catalyzed ring opening of epoxides: application to bioplasticizers synthesis. Appl Catal 393:1–8CrossRefGoogle Scholar
  16. 16.
    Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558CrossRefGoogle Scholar
  17. 17.
    Deshpande M, Daniels L (1995) Evaluation of sophorolipid biosurfactant production by Candida bombicola using animal fat. Biores Technol 54:143–150CrossRefGoogle Scholar
  18. 18.
    Lu Y, Larock RC (2010) Aqueous cationic polyurethane dispersions from vegetable oils. Chem Sus Chem 3:329–333CrossRefGoogle Scholar
  19. 19.
    Venus J, Richter K (2010) Production of lactic acid from barley: strain selection, phenotypic and medium optimization. Eng Life Sci 6(5):492–500CrossRefGoogle Scholar
  20. 20.
    Blanc B, Bourrel A, Gallezot P, Haas T, Taylor P (2000) Starch-derived polyols for polymer technologies: preparation by hydrogenolysis on metal catalysts. Green Chem 2:89–91CrossRefGoogle Scholar
  21. 21.
    Benemann JR (1993) Utilization of carbon dioxide from fossil fuel-burning power plants with biological systems. Energy Convers Manage 34(9):999–1004CrossRefGoogle Scholar
  22. 22.
    Larsson M, Lindblom J (2011) Algal flue gas sequestration and wastewater treatment: an industrial experiment. Master of Science Thesis Stockholm, SwedenGoogle Scholar
  23. 23.
    Raven and Beardall (2003) In: Govindjee, Sharkey, Thomas D (ed) Advances in Photosynthesis and Respiration, Springer Dordrecht Heidelberg, New YorkGoogle Scholar
  24. 24.
    Singh V, Tiwari A, Das M (2016) Phyco-remediation of industrial waste-water and flue gases with algal-diesel engenderment from micro-algae: a review. Fuel 173:90–97CrossRefGoogle Scholar
  25. 25.
    Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56(1):99–131CrossRefGoogle Scholar
  26. 26.
    Almashhadani MKH, Bandulasena HCH, Zimmerman WB (2012) CO2 mass transfer induced through an airlift loop by a microbubble cloud generated by fluidic oscillation. Ind Eng Chem Res 51(4):1864–1877CrossRefGoogle Scholar
  27. 27.
    Fan LH, Zhang YT, Cheng LH, Zhang L, Tang DS, Chen HL (2010) Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane-photobioreactor. Chem Eng Technol 30(8):1094–1099CrossRefGoogle Scholar
  28. 28.
    Kim HW, Marcus AK, Shin JH, Rittmann BE (2011) Advanced control for photoautotrophic growth and CO2-utilization efficiency using a membrane carbonation photobioreactor. Environ Sci Technol 45(11):5032–5038CrossRefGoogle Scholar
  29. 29.
    Noel JD, Koros WJ, Mccool BA, Chance RR (2012) Membrane-mediated delivery of carbon dioxide for consumption by photoautotrophs: eliminating thermal regeneration in carbon capture. Ind Eng Chem Res 51(12):4673–4681CrossRefGoogle Scholar
  30. 30.
    Zheng Q, Martin G, Kentish S (2016) Energy efficient transfer of carbon dioxide from flue gases to microalgal systems. Energy Environ Sci 9(3):1074–1082CrossRefGoogle Scholar
  31. 31.
    Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Biores Technol 102(3):3071–3076CrossRefGoogle Scholar
  32. 32.
    Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Biores Technol 101(1):S71–S74CrossRefGoogle Scholar
  33. 33.
    Hauck JT, Scierka SJ, Perry MB (1996) Effects of simulated flue gas on growth of microalgae. Preprints Papers Am Chem Soc Div Fuel Chem 41(4):1391–1396Google Scholar
  34. 34.
    Mortensen LM, Gislerod HR (2014) The effect on growth of Chlamydomonas reinhardtii of the fuel gas from a power plant based on waste combustion. AMB Express 4(1):1–9CrossRefGoogle Scholar
  35. 35.
    Lee JS, Lee JP (2003) Review of advances in biological CO2, mitigation technology. Biotechnol Bioprocess Eng 8(6):354–359CrossRefGoogle Scholar
  36. 36.
    Malhotra SS, Hocking D (2010) Biochemical and cytological effects of sulphur dioxide on plant metabolism. New Phytol 76(2):227–237CrossRefGoogle Scholar
  37. 37.
    Nagase H, Yoshihara K, Eguchi K, Okamoto Y, Murasaki S, Yamashita R, Hirata K, Miyamoto K (2001) Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae. Biochem Eng J 7:241–246CrossRefGoogle Scholar
  38. 38.
    Van Den Hende S, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities. Biotechnol Adv 30(6):1405–1424CrossRefGoogle Scholar
  39. 39.
    Colombo A, Marzorati S, Lucchini G, Cristiani P, Pant D, Schievano A (2017) Assisting cultivation of photosynthetic microorganisms by microbial fuel cells to enhance nutrients recovery from wastewater. Biores Technol 237:240–248CrossRefGoogle Scholar
  40. 40.
    Tsolcha ON, Tekerlekopoulou AG, Akratos CS, Aggelis G, Genitsaris S, Moustaka-Gouni M (2017) Biotreatment of raisin and winery wastewaters and simultaneous biodiesel production using a leptolyngbya-based microbial consortium. J Clean Prod 148:185–193CrossRefGoogle Scholar
  41. 41.
    Mata TM, Melo AC, Simões M, Caetano NS (2012) Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Biores Technol 107(1):151–158CrossRefGoogle Scholar
  42. 42.
    Bond R, Straub C (1974) In: Co CR, Straub CP, Bond RG (eds) Handbook of Environmental Control, Chemical Rubber CompanyGoogle Scholar
  43. 43.
    Choi HJ, Lee SM (2015) Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater. Bioprocess Biosyst Eng 38(4):761–766CrossRefGoogle Scholar
  44. 44.
    Garcia GG, Woolley E, Rahimifard S (2017) Optimising industrial food waste management. Procedia Manuf 8:432–439CrossRefGoogle Scholar
  45. 45.
    Lv J, Guo J, Feng J, Liu Q, Xie S (2017) Effect of sulfate ions on growth and pollutants removal of self-flocculating microalga Chlorococcum sp. GD in synthetic municipal wastewater. Biores Technol 234:289–296CrossRefGoogle Scholar
  46. 46.
    Liu H, Lu Q, Wang Q, Liu W, Wei Q, Ren H, Ming C, Min M, Chen P, Ruan R (2017) Isolation of a bacterial strain, Acinetobacter sp. from centrate wastewater and study of its cooperation with algae in nutrients removal. Biores Technol 235:59–69CrossRefGoogle Scholar
  47. 47.
    Mujtaba G, Lee K (2017) Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris, and suspended activated sludge. Water Res 120:174–184CrossRefGoogle Scholar
  48. 48.
    Cheng TY, Zhang W, Zhang WL, Yuan GH, Wang H, Liu TZ (2017) An oleaginous filamentous microalgae Tribonema minus exhibits high removing potential of industrial phenol contaminants. Biores Technol 238:749–754CrossRefGoogle Scholar
  49. 49.
    Maity JP, Hou CP, Majumder D, Bundschuh J, Kulp TR, Chen CY (2014) The production of biofuel and bioelectricity associated with wastewater treatment by green algae. Energy 78:94–103CrossRefGoogle Scholar
  50. 50.
    Christou A, Karaolia P, Hapeshi E, Michael C, Fattakassinos D (2017) Long-term wastewater irrigation of vegetables in real agricultural systems: concentration of pharmaceuticals in soil, uptake and bioaccumulation in tomato fruits and human health risk assessment. Water Res 109:24–34CrossRefGoogle Scholar
  51. 51.
    Sibrell PL, Montgomery GA, Ritenour KL, Tucker TW (2009) Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge. Water Res 43(8):2240–2250CrossRefGoogle Scholar
  52. 52.
    Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306(5693):79–86CrossRefGoogle Scholar
  53. 53.
    Ganuza E, Anderson AJ, Ratledge C (2008) High-cell-density cultivation of Schizochytrium sp. in an ammonium/pH-auxostat fed-batch system. Biotech Lett 30(9):1559–1664CrossRefGoogle Scholar
  54. 54.
    Wilhelm C, Büchel C, Fisahn J, Goss R, Jakob T, Laroche J (2006) The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Protist 157(2):91–124CrossRefGoogle Scholar
  55. 55.
    Perez-Garcia O, Escalante FME, De-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36CrossRefGoogle Scholar
  56. 56.
    Fernandez E, Galvan A (2007) Inorganic nitrogen assimilation in Chlamydomonas. J Exp Bot 58(9):2279–2287CrossRefGoogle Scholar
  57. 57.
    Lu B, Yuan Y, Zhang C, Ou J, Zhou W, Lin Q (2005) Modulation of key enzymes involved in ammonium assimilation and carbon metabolism by low temperature in rice (Oryza sativa L.) roots. Plant Sci 169(2):295–302CrossRefGoogle Scholar
  58. 58.
    Vanoni MA, Curti B (2005) Structure-function studies on the iron-sulfur flavoenzyme glutamate synthase: an unexpectedly complex self-regulated enzyme. Arch Biochem Biophys 433(1):193–211CrossRefGoogle Scholar
  59. 59.
    Inokuchi R, Kuma KI, Miyata T, Okada M (2002) Nitrogen-assimilating enzymes in land plants and algae: phylogenic and physiological perspectives. Physiol Plant 116(1):1–11CrossRefGoogle Scholar
  60. 60.
    Mehta SK, Gaur JP (2001) Concurrent sorption of Ni and Cu by Chlorella vulgaris from a binary metal solution. Appl Microbiol Biotechnol 55(3):379–382CrossRefGoogle Scholar
  61. 61.
    Deng L, Zhu X, Wang X, Su Y, Su H (2007) Biosorption of Copper from aqueous solutions by green alga Cladophora fascicularis. Biodegradation 18(4):393–402CrossRefGoogle Scholar
  62. 62.
    Chen JP, Yang L (2006) Study of a heavy metal biosorption onto raw and chemically modified Sargassum sp. via spectroscopic and modeling analysis. Langmuir Acs J Surf Coll 22(21):8906–8914CrossRefGoogle Scholar
  63. 63.
    Arica YM, Tüzün I, Yalçin E, Ince Ö, Bayramoğlu G (2005) Utilisation of native, heat and acid-treated microalgae Chlamydomonas reinhardtii, preparations for biosorption of Cr ions. Process Biochem 40(7):2351–2358CrossRefGoogle Scholar
  64. 64.
    Lei Y, Paul CJ (2008) Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp. Biores Technol 99(2):297–307CrossRefGoogle Scholar
  65. 65.
    Gupta VK, Rastogi A (2008) Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J Hazard Mater 152(1):407–414CrossRefGoogle Scholar
  66. 66.
    Gong R, Ding Y, Liu H, Chen Q, Liu Z (2005) Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass. Chemosphere 58(1):125–130CrossRefGoogle Scholar
  67. 67.
    And EF, Volesky B (1995) Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ Sci Technol 30(1):277–282Google Scholar
  68. 68.
    Chojnacka K, Chojnacki A, Górecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59(1):75–84CrossRefGoogle Scholar
  69. 69.
    Kumar YP, King P, Prasad VSRK (2007) Adsorption of Zinc from aqueous solution using marine green algae—Ulva fasciata sp. Chem Eng 129:161–166CrossRefGoogle Scholar
  70. 70.
    Sari T (2009) Kinetic and equilibrium studies of biosorption of Pb2+ and Cd2+ from aqueous solution by macrofungus (Amanita rubescens) biomass. Master 164:973–979Google Scholar
  71. 71.
    Mehta SK, Gaur JP (2001) Concurrent sorption of Ni and Cu by Chlorella vulgaris from a binary metal solution. Appl Microbiol Biotechnol 55(3):379–382CrossRefGoogle Scholar
  72. 72.
    Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37(18):4311–4330CrossRefGoogle Scholar
  73. 73.
    Bashan LED, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Biores Technol 101(6):1611–1627CrossRefGoogle Scholar
  74. 74.
    Becker EW (2008) Microalgae: biotechnology and microbiology. Cambridge studies in microbiology. Cambridge University Press, CambridgeGoogle Scholar
  75. 75.
    Douskova J, Doucha J, Livansky K, Machat J (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185CrossRefGoogle Scholar
  76. 76.
    Muñoz R, Alvarez MT, Muñoz A, Terrazas E, Guieysse B, Mattiasson B (2006) Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium. Chemosphere 63(6):903–911CrossRefGoogle Scholar
  77. 77.
    Kwan TH, Pleissner D, Lau KY, Venus J, Pommeret A, Lin CSK (2015) Techno-economic analysis of a food waste valorization process via microalgae cultivation and co-production of plasticizer, lactic acid and animal feed from algal biomass and food waste. Biores Technol 198:292–299CrossRefGoogle Scholar
  78. 78.
    Zhang AYZ, Sun Z, Leung CCJ, Han W, Lau KY, Li MJ, Lin CSK (2013) Valorisation of bakery waste for succinic acid production. Green Chem 15(3):690–695CrossRefGoogle Scholar
  79. 79.
    Leung CCJ, Cheung ASY, Zhang AYZ, Lam KF, Lin CSK (2012) Utilisation of waste bread for fermentative succinic acid production. Biochem Eng 65(25):10–15CrossRefGoogle Scholar
  80. 80.
    Pleissner D, Lin CSK (2013) Valorisation of food waste in biotechnological processes. Sustainable Chemical Processes 1(1):1–6CrossRefGoogle Scholar
  81. 81.
    Han W, Ye M, Zhu AJ, Zhao HT, Li YF (2015) Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production. Biores Technol 191:24–29CrossRefGoogle Scholar
  82. 82.
    Han W, Liu DN, Shi YW, Tang JH, Li YF, Ren NQ (2015) Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors. Biores Technol 180:54–58CrossRefGoogle Scholar
  83. 83.
    Han W, Wang XN, Ye L, Huang JG, Tang JH, Li YF, Ren NQ (2015) Fermentative hydrogen production using wheat flour hydrolysate by mixed culture. Int J Hydrogen Energy 40(13):4474–4480CrossRefGoogle Scholar
  84. 84.
    Han W, Liu DN, Li YF, Zhao HT, Ren NQ (2015) Utilization of wheat for biohydrogen production by a combination of solid-state fermentation and batch fermentation. Int J Hydrogen Energy 40(17):5849–5855CrossRefGoogle Scholar
  85. 85.
    Han W, Liu ZX, Fang J, Huang JG, Zhao HT, Li YF (2016) Techno-economic analysis of dark fermentative hydrogen production from molasses in a continuous mixed immobilized sludge reactor. J Cleaner Prod 127:567–572CrossRefGoogle Scholar
  86. 86.
    Gao C, Yan Z, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87(3):756–761CrossRefGoogle Scholar
  87. 87.
    Li P, Miao X, Li R, Zhong J (2011) In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotechnol. Google Scholar
  88. 88.
    Venkata Mohan S, Rohit MV, Chiranjeevi P, Chandra R, Navaneeth B (2015) Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: progress and perspectives. Biores Technol 184:169–178CrossRefGoogle Scholar
  89. 89.
    Hong SJ, Lee CG (2007) Evaluation of central metabolism based on a genomic database of Synechocystis PCC6803. Biotechnol Bioprocess Eng 12(2):165–173CrossRefGoogle Scholar
  90. 90.
    Yang C, Hua Q, Shimizu K (2002) Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in synechocystis. Appl Microbiol Biotechnol 58(6):813–822CrossRefGoogle Scholar
  91. 91.
    Hamouri BE, Jellal J, Outabiht H, Nebri B, Khallayoune K, Benkerroum A, Hajli A, Firadi R (1995) The performance of a high-rate algal pond in the Moroccan climate. Water Sci Technol 31(12):67–74Google Scholar
  92. 92.
    Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals Int J Role Metal Ions Biol Biochem Med 15(4):377–390CrossRefGoogle Scholar
  93. 93.
    Hu HY, Li X, Yang J (2009) Coupling of wastewater deep purification and high quality biomass production based on microalgae cultivation. Ecol Environ Sci 18(3):1122–1127Google Scholar
  94. 94.
    Fu XN, Yao G (2011) The review of microalgae coupling technology of waste water treatment with biomass energy. J Green Sci Technol 11:100–104Google Scholar
  95. 95.
    Kröger M, Müllerlanger F (2012) Review on possible algal-biofuel production processes. Biofuels 3(3):333–349CrossRefGoogle Scholar
  96. 96.
    Richardson JW, Johnson MD, Outlaw JL (2012) Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Res 1:93–100CrossRefGoogle Scholar
  97. 97.
    Passos F, Hernández-Mariné M, García J, Ferrer I (2014) Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Res 49:351–359CrossRefGoogle Scholar
  98. 98.
    Norvill ZN, Toledo-Cervantes A, Blanco S, Shilton A, Guieysse B, Muñoz R (2017) Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds. Biores Technol 232:35–43CrossRefGoogle Scholar
  99. 99.
    Posadas E, Morales MDM, Gomez C, Acién FG, Muñoz R (2015) Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chem Eng J 265:239–248CrossRefGoogle Scholar
  100. 100.
    Lee CS, Lee SA, Ko SR, Oh HM, Ahn CY (2015) Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Water Res 68:680–691CrossRefGoogle Scholar
  101. 101.
    Wen S, Liu HY, He HJ, Luo L, Li X, Zeng GM, Zhou ZL, Lou W, Yang CP (2016) Treatment of anaerobically digested swine wastewater by Rhodobacter blasticus and Rhodobacter capsulatus. Biores Technol 222:33–38CrossRefGoogle Scholar
  102. 102.
    Shen T, Li JR (2011) Research advances on microalgae culture for sewage treatment. Modern Agric Sci Technol 11:266–268Google Scholar
  103. 103.
    Venteris ER, Skaggs RL, Wigmosta MS, Coleman AM (2014) Regional algal biofuel production potential in the coterminous United States as affected by resource availability trade-offs. Algal Res 5:215–225CrossRefGoogle Scholar
  104. 104.
    Benemann JR (1997) CO2 mitigation with microalgae systems. Energy Convers Manag 38(1):S475–S479CrossRefGoogle Scholar
  105. 105.
    Koller M, Salerno A, Tuffner P, Koinigg M, Böchzelt H, Schober S, Pieber S, Schnitzer H, Mittelbach M, Braunegg G (2012) Characteristics and potential of microalgal cultivation strategies: a review. J. Clean Prod 37:377–388CrossRefGoogle Scholar
  106. 106.
    Satyanarayana KG, Mariano AB, Vargas JVC (2011) A review on microalgae, a versatile source for sustainable energy and materials. Int J Energy Res 10:291–311CrossRefGoogle Scholar
  107. 107.
    Ras M, Lardon L, Sialve B, Bernet N, Steyer JP (2011) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Biores Technol 102:200–206CrossRefGoogle Scholar
  108. 108.
    Samson R, LeDuy A (1983) Influence of mechanical and thermochemical pretreatments on anaerobic digestion of Spirulina maxima algal biomass. Biotechnol Lett 5:671–676CrossRefGoogle Scholar
  109. 109.
    Zamalloa C, Boon N, Verstraete W (2012) Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl Energy 92:733–738CrossRefGoogle Scholar
  110. 110.
    Saharan BS, Sharma D, Sahu R, Sahin O, Warren A (2013) Towards algal biofuel production: a concept of green bioenergy development. Innov Rom Food Biotechnol 12:1–21Google Scholar
  111. 111.
    Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43CrossRefGoogle Scholar
  112. 112.
    Mirón AS, Gómez AC, Camacho FG, Grima EM, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70(1–3):249–270CrossRefGoogle Scholar
  113. 113.
    Hu HY, Li X (2010) Analysis of key techniques and production potential of biodiesel production based on microalgae with wastewater as resources. Ecol Environ Sci 19(3):739–744Google Scholar
  114. 114.
    Singh A, Singh PN, Murphy JD (2011) Mechanism and challenges in commercialization of algal biofuels. Biores Technol 102:26–34CrossRefGoogle Scholar
  115. 115.
    Hom-Diaz A, Jaén-Gil A, Bello-Laserna I, Rodríguez-Mozaz S, Vicent T, Barceló D, Blánquez P (2017) Performance of a microalgal photobioreactor treating toilet wastewater: pharmaceutically active compound removal and biomass harvesting. Sci Total Environ 592:1–11CrossRefGoogle Scholar
  116. 116.
    García D, Alcántara C, Blanco S, Pérez R, Bolado S, Muñoz R (2016) Enhanced Carbon, Nitrogen and Phosphorus removal from domestic wastewater in a novel anoxic-aerobic photobioreactor coupled with biogas upgrading. Chem Eng J 313:424–434CrossRefGoogle Scholar
  117. 117.
    Kuang QJ, Tan YY (2001) Study on the removal of nitrogen, phosphorus and organics by activated algae system. China Environ Sci 21(3):23–29Google Scholar
  118. 118.
    Cheng J, Ye Q, Xu J, Yang ZB, Zhou JH, Cen KF (2016) Improving pollutants removal by microalgae Chlorella PY-ZU1, with 15% CO2, from undiluted anaerobic digestion effluent of food wastes with ozonation pretreatment. Biores Technol 216:273–279CrossRefGoogle Scholar
  119. 119.
    Han W, Yan YT, Gu JJ, Shi YW, Tang JH, Li YF (2016) Techno-economic analysis of a novel bioprocess combining solid state fermentation and dark fermentation for H2 production from food waste. Int J Hydrogen Energy 41:22619–22625CrossRefGoogle Scholar
  120. 120.
    Ji M, Yun H, Park S, Lee H, Park Y, Bae S, Ham J, Choi J (2015) Effect of food wastewater on biomass production by a green microalga Scenedesmus obliquus for bioenergy generation. Biores Technol 179:624–628CrossRefGoogle Scholar
  121. 121.
    Heo S, Ryu B, Nam K, Kim W, Yang J (2015) Simultaneous treatment of foodwaste recycling wastewater and cultivation of Tetraselmis suecica for biodiesel production. Bioproc Biosyst Eng 38:1393–1398CrossRefGoogle Scholar
  122. 122.
    Shin DY, Cho HU, Utomo JC, Choi Y, Xu X, Park JM (2015) Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent. Biores Technol 184:215–221CrossRefGoogle Scholar
  123. 123.
    Singh M, Reynolds DL, Das KC (2011) Microalgal system for treatment of effluent from poultry litter anaerobic digestion. Biores Technol 102:10841–10848CrossRefGoogle Scholar
  124. 124.
    Cai T, Ge X, Park SY, Li Y (2013) Comparison of Synechocystis sp. PCC6803 and Nannochloropsis salina for lipid production using artificial seawater and nutrients from anaerobic digestion effluent. Biores Technol 144:255–260CrossRefGoogle Scholar
  125. 125.
    Han W, Ye M, Zhu AJ, Huang JG, Zhao HT, Li YF (2015) A combined bioprocess based on solid-state fermentation for dark fermentative hydrogen production from food waste. J Clean Prod 112:3744–3749CrossRefGoogle Scholar
  126. 126.
    Alberto VF, Gisela V, Nelson A, Velasco A (2008) Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioenerg 32(4):338–344CrossRefGoogle Scholar
  127. 127.
    Li Y, Zhou W, Zhang X, Sun L (2011) Effect of microalgae culture on treatment of wastewater from anaerobic digested swine manure. Trans Chin Soc Agric Eng 27(13):101–104Google Scholar
  128. 128.
    Xu F, Li XY (2013) Research on biogas production technology of anaerobic digestion with blue-green algae. Environ Sci Manag 38(1):90–94Google Scholar
  129. 129.
    Passos F, Ferrer I (2014) Microalgae conversion to biogas: thermal pretreatment contribution on net energy production. Environ Sci Technol 48:7171–7178CrossRefGoogle Scholar
  130. 130.
    Perazzoli S, Steinmetz RLR, Mezzari MP, Nunes EO, da Silva MLB (2013) Biogas production from microalgae biomass III. Simposio Internacional Sobre Gerenciamento De Residuos Agropecu Ários E Agroindustriais, 12 a 14 de marco de. São Pedro-Sp 2013Google Scholar
  131. 131.
    Lee K, Chantrasakdakul P, Kim D, Kong M, Park KY (2013) Ultrasound pretreatment for enhanced biogas production of waste algal biomass the 1st IWWG-ARB symposium. Hokkaido University, JapanGoogle Scholar
  132. 132.
    Ehimen EA, Holm-Nielsen JB, Poulsen M, Boelsmand JE (2013) Influence of different pre-treatment routs on the anaerobic digestion of a filamentous algae. Renew Energy 50:476–480CrossRefGoogle Scholar
  133. 133.
    Park KY, Kweon J, Chantrasakdakul P, Lee K, Cha HY (2013) Anaerobic digestion of microalgal biomass with ultrasonic disintegration. Int Biodeterior Biodegrad 85:598–602CrossRefGoogle Scholar
  134. 134.
    Kinnunen V, Craggs R, Rintala J (2014) Influence of temperature and pretreatments on the anaerobic digestion of wastewater grown microalgae in laboratory-scale accumulating-volume reactor. Water Res 57:247–257CrossRefGoogle Scholar
  135. 135.
    Passos F, Solé M, Garcia J, Ferrer I (2013) Biogas production from microalgae grown in wastewater: effect of microwave pretreatment. Appl Energy 108:168–175CrossRefGoogle Scholar
  136. 136.
    Chen PH, Oswald WJ (1998) Thermochemical treatment for algal fermentation. Environ Int 24(8):889–897CrossRefGoogle Scholar
  137. 137.
    Jankowska E, Sahu AK, Oleskowicz-Popiel P (2016) Biogas from microalgae: review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renew Sustain Energy Rev 75:692–709CrossRefGoogle Scholar
  138. 138.
    Martin GJO (2016) Energy requirements for wet solvent extraction of lipids from microalgal biomass. Biores Technol 205:40–47CrossRefGoogle Scholar
  139. 139.
    González-Fernández C, Sialve B, Bernet N, Steyer JP (2012) Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenergy 40:105–111CrossRefGoogle Scholar
  140. 140.
    Mendez L, Mahdy A, Demuez M, Ballesteros M, Gonález-Fernández C (2014) Effect of high thermal pretreatment on Chlorella vulgaris biomass: organic matter solubilisation and biochemical methane potential. Fuel 117:674–679CrossRefGoogle Scholar
  141. 141.
    Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgae biodiesel sustainable. Biotechnol Adv 27:409–416CrossRefGoogle Scholar
  142. 142.
    González LE, Canizares RO, Baena S (1997) Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Biores Technol 60:259–262CrossRefGoogle Scholar
  143. 143.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  144. 144.
    Diltz R, Pullammanappallil P (2013) Biofuels from algae liquid. Gaseous Solid Biofuels Convers Tech 14:432–449Google Scholar
  145. 145.
    Olguin EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91CrossRefGoogle Scholar
  146. 146.
    Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–1047CrossRefGoogle Scholar
  147. 147.
    Kushwaha JP, Srivastava VC, Mall ID (2011) An overview of various technologies for the treatment of dairy wastewaters. Crit Rev Food Sci Nutr 51(5):442–452CrossRefGoogle Scholar
  148. 148.
    Labbé JI, Ramos-Suárez JL, Hernández-Pérez A, Baeza A, Hansen F (2017) Microalgae growth in polluted effluents from the dairy industry for biomass production and phytoremediation. J Environ Chem Eng 5(1):635–643CrossRefGoogle Scholar
  149. 149.
    Torres EM, Hess D, Mcneil BT, Guy T, Quinn JC (2017) Impact of inorganic contaminants on microalgae productivity and bioremediation potential. Ecotoxicol Environ Saf 139:367–376CrossRefGoogle Scholar
  150. 150.
    Cai ZP, Duan SS, Zhu HH (2012) Recent advance on sewage-microalga-biofuel coupling technology. Ecol Environ Sci 21(7):1380–1386Google Scholar
  151. 151.
    Sturm BSM, Lamer SL (2011) An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energy 88(10):3499–3506CrossRefGoogle Scholar
  152. 152.
    Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Biores Technol 101:2623–2628CrossRefGoogle Scholar
  153. 153.
    Cheng J, Xu J, Huang Y, Li Y, Zhou J, Cen K (2015) Growth optimisation of microalga mutant at high CO2 concentration to purify undiluted anaerobic digestion effluent of swine manure. Biores Technol 177:240–246CrossRefGoogle Scholar
  154. 154.
    Liu LL, Huang XX, Wei LK, Zeng BB, Mu LL, Liu ZJ, Cai ZW (2014) Removal of nitrogen and phosphorus by 15 strains of microalgae and their nutritional values in piggery sewage. Acta Sci Circum 34(8):1986–1994Google Scholar
  155. 155.
    Li X, Hu HY, Yang J (2010) Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. New Biotechnol 27(1):59–63CrossRefGoogle Scholar
  156. 156.
    Wang Y, Ho SH, Cheng CL, Nagarajan D, Guo WQ, Lin C, Li S, Ren N, Chang JS (2017) Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production. Biores Technol 242:7–14CrossRefGoogle Scholar
  157. 157.
    Wang Y, Guo W, Yen HW, Ho SH, Lo YC, Cheng CL, Ren N, Chang JS (2015) Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Biores Technol 198:619–625CrossRefGoogle Scholar
  158. 158.
    Wang H, Xiong H, Hui Z, Zeng X (2012) Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Biores Technol 104:215–222CrossRefGoogle Scholar
  159. 159.
    Zhu L, Wang Z, Shu Q, Takala J, Hiltunen E, Feng P, Yuan Z (2013) Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res 47(13):4294–4302CrossRefGoogle Scholar
  160. 160.
    Olguín EJ, Dorantes E, Castillo OS, Hernández-Landa VJ (2015) Anaerobic digestates from vinasse promote growth and lipid enrichment in Neochloris oleoabundans cultures. J Appl Phycol 27(5):1813–1822CrossRefGoogle Scholar
  161. 161.
    Levine RB, Costanza-Robinson MS, Spatafora GA (2011) Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production. Biomass Bioenergy 35(1):40–49CrossRefGoogle Scholar
  162. 162.
    Wang B, Lan CQ (2011) Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Biores Technol 102(10):5639–5644CrossRefGoogle Scholar
  163. 163.
    Chaiklahan R, Chirasuwan N, Siangdung W, Paithoonrangsarid K, Bunnag B (2010) Cultivation of Spirulina platensis using pig wastewater in a semi-continuous process. J Microbiol Biotechnol 20(3):609–614CrossRefGoogle Scholar
  164. 164.
    Bhatnagar A, Bhatnagar M, Chinnasamy S, Das KC (2010) Chlorella minutissima-a promising fuel alga for cultivation in municipal wastewaters. Appl Biochem Biotechnol 161(1–8):523–536CrossRefGoogle Scholar
  165. 165.
    Van DHS, Vervaeren H, Desmet S, Boon N (2011) Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. New Biotechnol 29(1):23–31CrossRefGoogle Scholar
  166. 166.
    Cai ZP, Duan SS (2008) Microalgal biosorption on the heavy metals in polluted waters. Ecological Science 27(6):499–505Google Scholar
  167. 167.
    Rugnini L, Costa G, Congestri R, Bruno L (2017) Testing of two different strains of green microalgae for Cu and Ni removal from aqueous media. Sci Total Environ 601–602:959–967CrossRefGoogle Scholar
  168. 168.
    Hala Y, Sjahrul M (2013) Biosorption of Zn2+ and Cd2+ in a two-metal system by Nannochloropsis salina. Eur Chem Bull 2(5):238–241Google Scholar
  169. 169.
    Li YM, Yang HB, Lv FR, Zhang XH, Liu Y, Yu Y (2003) Study on the Purifying trace lead in wastewater by Dicrateria sp. Environ Technol 21(6):21–24Google Scholar
  170. 170.
    Napan K, Hess D, McNeil B, Quinn JC (2015) Quantification of heavy metals and other inorganic contaminants on the productivity of microalgae. JoVE (J. Vis. Exp.) 101:e52936–e52936Google Scholar
  171. 171.
    Mahan CA, Holcombe JA (1992) Immobilization of algae cells on silica gel and their characterization for trace metal preconcentration. Anal Chem 64(17):1933–1939CrossRefGoogle Scholar
  172. 172.
    Solé-bundó M, Cucina M, Folch M, Tàpias J, Gigliotti G, Garfí M, Ferrer I (2017) Assessing the agricultural reuse of the digestate from microalgae anaerobic digestion and co-digestion with sewage sludge. Sci Total Environ 586:1–9CrossRefGoogle Scholar
  173. 173.
    Fu HL, Qin J, Chen H (2001) Study on charophytes ability to purify and accumulate the heavy metal ions. Journal of Sichuan University 38(2):263–268Google Scholar
  174. 174.
    Wu HS, Zhang HL, Zhang AQ, Wang LS, Wang LJ (2004) Biosorption of heavy metals by Chlorella. Environ Chem 2:173–177Google Scholar
  175. 175.
    Deng X, Wei B, Hu ZL (2007) Study on heavy metal tolerance of recombinant Chlamydomonas reinhardtii and its bioaccumulation to Cadmium ion. Biotechnology 17(6):66–68Google Scholar
  176. 176.
    Li C (2011) The application of algae in treatment of waste water containing heavy metal ions. Plating Finish 33(2):19–22Google Scholar
  177. 177.
    Yu Z, Song MM, Pei HY, Han F, Jiang LQ, Hou QJ (2017) The growth characteristics and biodiesel production of ten algae strains cultivated in anaerobically digested effluent from kitchen waste. Algal Res 24:265–275CrossRefGoogle Scholar
  178. 178.
    Pleissner D, Lam WC, Sun Z, Lin CS (2013) Food waste as nutrient source in heterotrophic microalgae cultivation. Biores Technol 137(6):139–146CrossRefGoogle Scholar
  179. 179.
    Lee JY, Chan Y, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Biores Technol 101(1):S75–S77CrossRefGoogle Scholar
  180. 180.
    Olmstead ILD, Kentish SE, Scales PJ, Martin GJO (2013) Low solvent, low temperature method for extracting biodiesel lipids from concentrated microalgal biomass. Biores Technol 148(7):615–619CrossRefGoogle Scholar
  181. 181.
    Dong T, Knoshaug EP, Pienkos PT, Laurens LML (2016) Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review. Appl Energy 177:879–895CrossRefGoogle Scholar
  182. 182.
    Kerissen UD, Sen U, Soydemir G, Gurol MD (2014) An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency. Biores Technol 152(1):407–413CrossRefGoogle Scholar
  183. 183.
    Balasubramanian S, Allen JD, Kanitkar A, Boldor D (2011) Oil extraction from Scenedesmus obliquus using a continuous microwave system-design, optimization, and quality characterization. Biores Technol 102(3):3396–3403CrossRefGoogle Scholar
  184. 184.
    Harrison ST (1991) Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnol Adv 9(2):217–240CrossRefGoogle Scholar
  185. 185.
    Samarasinghe N, Fernando S, Lacey R, Faulkner WB (2012) Algal cell rupture using high pressure homogenization as a prelude to oil extraction. Renew Energy 48(6):300–308CrossRefGoogle Scholar
  186. 186.
    Halim R, Harun R, Danquah MK, Webley PA (2012) Microalgal cell disruption for biofuel development. Appl Energy 91(1):116–121CrossRefGoogle Scholar
  187. 187.
    Yap BHJ, Dumsday GJ, Scales PJ, Martin GJO (2015) Energy evaluation of algal cell disruption by high pressure homogenisation. Biores Technol 184:280–285CrossRefGoogle Scholar
  188. 188.
    Zhang F, Cheng LH, Xu XH, Zhang L, Chen HL (2012) Technologies of microalgal harvesting and lipid extraction. Progress Chem 24(10):2062–2072Google Scholar
  189. 189.
    Cooney MJ, Young G, Pate R (2011) Bio-oil from photosynthetic microalgae: case study. Biores Technol 102(1):166–177CrossRefGoogle Scholar
  190. 190.
    Wu Q, Chen H, Han MH, Wang JF, Wang DZ, Jin Y (2006) Transesterification of cottonseed oil to biodiesel catalyzed by highly active ionic liquids. Chin J Catal 4:294–296Google Scholar
  191. 191.
    Meher LC, Sagar DV, Naik SN (2006) Technical aspects of biodiesel production by transesterification-a review. Renew Sustain Energy Rev 10(3):248–268CrossRefGoogle Scholar
  192. 192.
    Li WM, Yao C (2009) Research progress on preparation of biodiesel by transesterification. Cereal and Food Industry 16(1):9–13Google Scholar
  193. 193.
    Demirbas A (2008) Biodiesel: a realistic fuel alternative for diesel engines. El Campo Boletín De Información Agraria 107(2):99–103Google Scholar
  194. 194.
    Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manage 50(1):14–34CrossRefGoogle Scholar
  195. 195.
    Kawashima A, Matsubara K, Honda K (2009) Acceleration of catalytic activity of calcium oxide for biodiesel production. Biores Technol 100(2):696–700CrossRefGoogle Scholar
  196. 196.
    Zhang FQ, Jiu M, Wang LJ (2013) Research progress of biodiesel production technologies. Academic Periodical of Farm Products Processing 17:40–42Google Scholar
  197. 197.
    Serio MD, Cozzolino M, Tesser R, Patrono P, Pinzari F, Bonelli B, Santacesaria E (2007) Vanadyl phosphate catalysts in biodiesel production. Appl Catal A 320(3):1–7CrossRefGoogle Scholar
  198. 198.
    Viola E, Blasi A, Valerio V, Guidi I, Zimbardi F, Braccio G, Giordano G (2012) Biodiesel from fried vegetable oils via transesterification by heterogeneous catalysis. Catal Today 179(1):185–190CrossRefGoogle Scholar
  199. 199.
    Cerveró JM, Coca J, Luque S (2008) Production of biodiesel from vegetable oils. Grasas Aceites 59(1):895–913Google Scholar
  200. 200.
    Kulkarni MG, Dalai AK (2006) Waste cooking oil-an economical source for biodiesel: a review. Ind Eng Chem Res 45:2901–2913CrossRefGoogle Scholar
  201. 201.
    Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G (2012) Current biodiesel production technologies: a comparative review. Energy Convers Manage 63(11):138–148CrossRefGoogle Scholar
  202. 202.
    Eckey EW (1956) Esterification and interesterification. J Am Oil Chem Soc 33(11):575–579CrossRefGoogle Scholar
  203. 203.
    Ma F, Hanna MA (1999) Biodiesel production: a review. Biores Technol 70(1):1–15CrossRefGoogle Scholar
  204. 204.
    Sun SY, He HY, Wang LY, Yang JC (2005) Production of biodiesel in supercritical methanol. Fine Chem 12:916–919Google Scholar
  205. 205.
    Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Biores Technol 102(1):215–225CrossRefGoogle Scholar
  206. 206.
    Anastasakis K, Ross AB (2011) Hydrothermal liquefaction of the brown macro-alga Laminaria saccharina: effect of reaction conditions on product distribution and composition. Biores Technol 102(7):4876–4883CrossRefGoogle Scholar
  207. 207.
    Jena U, Das KC, Kastner JR (2011) Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Biores Technol 102(10):6221–6229CrossRefGoogle Scholar
  208. 208.
    Aresta M, Dibenedetto A, Carone M, Colonna T, Fragale C (2005) Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction. Environ Chem Lett 3(3):136–139CrossRefGoogle Scholar
  209. 209.
    Yin S, Dolan R, Harris M, Tan Z (2010) Subcritical hydrothermal liquefaction of cattle manure to bio-oil: effects of conversion parameters on bio-oil yield and characterization of bio-oil. Biores Technol 101(10):3657–3664CrossRefGoogle Scholar
  210. 210.
    Zou S, Wu Y, Yang M, Li C, Tong J (2010) Bio-oil production from sub- and supercritical water liquefaction of microalgae Dunaliella tertiolecta and related properties. Energy Environ Sci 3(8):1073–1078CrossRefGoogle Scholar
  211. 211.
    Valdez PJ, Nelson MC, Wang HY, Lin XXN, Savage PE (2012) Hydrothermal liquefaction of Nannochloropsis sp.: systematic study of process variables and analysis of the product fractions. Biomass Bioenerg 46(46):317–331CrossRefGoogle Scholar
  212. 212.
    Costanzo W, Jena U, Hilten R, Das KC, Kastner JR (2015) Low temperature hydrothermal pretreatment of algae to reduce nitrogen heteroatoms and generate nutrient recycle streams. Algal Res 12:377–387CrossRefGoogle Scholar
  213. 213.
    Gai C, Zhang YH, Chen WT, Zhang P, Dong YP (2015) An investigation of reaction pathways of hydrothermal liquefaction using Chlorella pyrenoidosa and Spirulina platensis. Energy Convers Manage 96:330–339CrossRefGoogle Scholar
  214. 214.
    Yun YM, Cho SK, Jung KW, Kim MS, Shin HS, Kim DH (2014) Inhibitory effect of chloroform on fermentative hydrogen and methane production from lipid-extracted microalgae. Int J Hydrogen Energy 39(33):19256–19261CrossRefGoogle Scholar
  215. 215.
    Silva CEDF, Bertucco A (2016) Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochem 51(11):1833–1842CrossRefGoogle Scholar
  216. 216.
    Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Biores Technol 113(3):244–252CrossRefGoogle Scholar
  217. 217.
    Ashokkumar V, Salam Z, Tiwari ON, Chinnasamy S, Mohammed S, Ani FN (2015) An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor. Energy Convers Manage 101:778–786CrossRefGoogle Scholar
  218. 218.
    Nguyen MT, Choi SP, Lee J, Lee JH, Sim SJ (2009) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol 19(2):161–166CrossRefGoogle Scholar
  219. 219.
    Wang H, Ji C, Bi S, Zhou P, Chen L, Liu T (2014) Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp. Biores Technol 172(1):169–173CrossRefGoogle Scholar
  220. 220.
    Badger PC, Janick J, Whipkey A (2002). Ethanol from cellulose: a general review. Trends in new crops and new uses. Proceedings of the Fifth National Symposium, Atlanta, Georgia, USA 17-21Google Scholar
  221. 221.
    Pang T, Liu JG, Lin W, Liu Q (2012) Advances on the algae to bioethanol technologies. Fishery Modernization 39(5):63–71Google Scholar
  222. 222.
    Olvera-Novoa MA, Domínguez-Cen LJ, Olivera-Castillo L, Martínez-Palacios CA (2001) Effect of the use of the microalga Spirulina maxima as fish meal replacement in diets for tilapia, Oreochromis mossambicus (Peters), fry. Aquac Res 29(10):709–715CrossRefGoogle Scholar
  223. 223.
    Nandeesha MC, Gangadhara B, Manissery JK, Venkataraman LV (2001) Growth performance of two Indian major carps, catla (Catla catla) ja: math, and rohu (Labeo rohita) ja:math, fed diets containing different levels of Spirulina platensis. Biores Technol 80(2):117–120CrossRefGoogle Scholar
  224. 224.
    Kim SS, Rahimnejad S, Kim KW, Lee KJ (2013) Partial Replacement of fish meal with Spirulina pacifica in diets for parrot fish (Oplegnathus fasciatus). Turkish Journal of Fisheries & Aquatic Sciences 13(13):197–204Google Scholar
  225. 225.
    Benemann JR (1992) Microalgae aquaculture feeds. J Appl Phycol 4(3):233–245CrossRefGoogle Scholar
  226. 226.
    Liu HF (2001) The application of Spirulina in feed industry. Animal Science & Veterinary Medicine 2:62–65Google Scholar
  227. 227.
    Teimouri M, Amirkolaie AK, Yeganeh S (2013) The effects of Spirulina platensis, meal as a feed supplement on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture 396–399(6):14–19CrossRefGoogle Scholar
  228. 228.
    Liu LH, Zheng SX, Xu HX, Chen LQ, Hu ZX (2005) Effects of Spirulina in diet on growth, amino acid and fatty acid profile of Litopenaeus vannamei. Journal of Fisheries of China 6:791–797Google Scholar
  229. 229.
    Lokapirnasari WP, Yulianto AB, Legowo D, Agustono D (2016) The effect of Spirulina as feed additive to myocardial necrosis and leukocyte of chicken with avian influenza (H5N1) virus infection. Procedia Chemistry 18:213–217CrossRefGoogle Scholar
  230. 230.
    Zhang JM, Liu XN (2005) Varieties and application foreground of available microalgae. Resource Development & Market 1:65–66Google Scholar
  231. 231.
    Wang R, Sun ZB, Shang QK (2005) Study on nutritional value and safety of Chlorella powder as feed additive. Feed Review 4:4–7Google Scholar
  232. 232.
    Morris HJ, Carrillo O, Almarales A, Bermúdez RC, Lebeque Y, Fontaine R, Llauradó G, Beltrán Y (2007) Immunostimulant activity of an enzymatic protein hydrolysate from green microalga Chlorella vulgaris on undernourished mice. Enzyme & Microbial Technology 40(3):456–460CrossRefGoogle Scholar
  233. 233.
    Kralovec JA, Metera KL, Kumar JR, Watson LV, Girouard GS, Guan Y, Carr RI, Barrow CJ, Ewart HS (2007) Immunostimulatory principles from Chlorella pyrenoidosa-part 1: isolation and biological assessment in vitro. Phytomedicine 14(1):57–64CrossRefGoogle Scholar
  234. 234.
    Zhang C, Meng FP (2007) A study on the technique for culturing marine microalgae with sewage sludge from municipal wastewater treatment plants. Ocean University of ChinaGoogle Scholar
  235. 235.
    Kanai S, Uto K, Honda K, Hagiwara N, Oda H (2011) Eicosapentaenoic acid reduces warfarin-induced arterial calcification in rats. Atherosclerosis 215(1):43–51CrossRefGoogle Scholar
  236. 236.
    Machado RV, Mauricio AF, Taniguti APT, Ferretti R, Neto HS, Marques MJ (2011) Eicosapentaenoic acid decreases TNF-α and protects dystrophic muscles of mdx mice from degeneration. J Neuroimmunol 232(1–2):145–150CrossRefGoogle Scholar
  237. 237.
    Figueras M, Olivan M, Busquets S, López-Soriano FJ, Argilés JM (2011) Effects of eicosapentaenoic acid (EPA) treatment on insulin sensitivity in an animal model of diabetes: improvement of the inflammatory status. Obesity 19(2):362–369CrossRefGoogle Scholar
  238. 238.
    Iwami D, Nonomura K, Shirasugi N, Niimi M (2011) Immunomodulatory effects of eicosapentaenoic acid through induction of regulatory T cells. Int Immunopharmacol 11(3):384–389CrossRefGoogle Scholar
  239. 239.
    Yuan JP, Peng J, Yin K, Wang JH (2011) Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55(1):150–165CrossRefGoogle Scholar
  240. 240.
    Li JQ, Liu HQ, Yuan S (2016) Research progress of microalgae polysaccharide. Modern Chemical Industry 36(6):60–62Google Scholar
  241. 241.
    Halim R, Webley PA, Martin GJO (2016) The CIDES process: fractionation of concentrated microalgal paste for co-production of biofuel, nutraceuticals, and high-grade protein feed. Algal Res 19:299–306CrossRefGoogle Scholar
  242. 242.
    Yap BHJ, Crawford SA, Dumsday GJ, Scales PJ, Martin GJO (2014) A mechanistic study of algal cell disruption and its effect on lipid recovery by solvent extraction. Algal Res 5(4):112–120CrossRefGoogle Scholar
  243. 243.
    Ma JC, Li Y, Liu ZW, Chen FH, Chen TY (2002) Study on the quality of Spirulina platensis cultivated in two kinds of wastewater. Food and Fermentation Industries 1:13–15Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.International Research Center for Marine Biosciences, Ministry of Science and TechnologyShanghai Ocean UniversityShanghaiChina
  2. 2.Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of EducationShanghai Ocean UniversityShanghaiChina
  3. 3.National Demonstration Center for Experimental Fisheries Science EducationShanghai Ocean UniversityShanghaiChina
  4. 4.Department of Chemical and Biomolecular EngineeringUniversity of MelbourneMelbourneAustralia

Personalised recommendations