Advertisement

Topics in Current Chemistry

, 375:86 | Cite as

Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods

  • Jan Philip Kraack
Review
Part of the following topical collections:
  1. Multidimensional Time-Resolved Spectroscopy

Abstract

Ultrafast, multi-dimensional infrared (IR) spectroscopy has been advanced in recent years to a versatile analytical tool with a broad range of applications to elucidate molecular structure on ultrafast timescales, and it can be used for samples in a many different environments. Following a short and general introduction on the benefits of 2D IR spectroscopy, the first part of this chapter contains a brief discussion on basic descriptions and conceptual considerations of 2D IR spectroscopy. Outstanding classical applications of 2D IR are used afterwards to highlight the strengths and basic applicability of the method. This includes the identification of vibrational coupling in molecules, characterization of spectral diffusion dynamics, chemical exchange of chemical bond formation and breaking, as well as dynamics of intra- and intermolecular energy transfer for molecules in bulk solution and thin films. In the second part, several important, recently developed variants and new applications of 2D IR spectroscopy are introduced. These methods focus on (i) applications to molecules under two- and three-dimensional confinement, (ii) the combination of 2D IR with electrochemistry, (iii) ultrafast 2D IR in conjunction with diffraction-limited microscopy, (iv) several variants of non-equilibrium 2D IR spectroscopy such as transient 2D IR and 3D IR, and (v) extensions of the pump and probe spectral regions for multi-dimensional vibrational spectroscopy towards mixed vibrational-electronic spectroscopies. In light of these examples, the important open scientific and conceptual questions with regard to intra- and intermolecular dynamics are highlighted. Such questions can be tackled with the existing arsenal of experimental variants of 2D IR spectroscopy to promote the understanding of fundamentally new aspects in chemistry, biology and materials science. The final part of the chapter introduces several concepts of currently performed technical developments, which aim at exploiting 2D IR spectroscopy as an analytical tool. Such developments embrace the combination of 2D IR spectroscopy and plasmonic spectroscopy for ultrasensitive analytics, merging 2D IR spectroscopy with ultra-high-resolution microscopy (nanoscopy), future variants of transient 2D IR methods, or 2D IR in conjunction with microfluidics. It is expected that these techniques will allow for groundbreaking research in many new areas of natural sciences.

Keywords

Ultrafast 2D IR spectroscopy Molecular structure Spectral diffusion Energy transfer Chemical exchange Vibrational coupling Surface spectroscopy Transient 2D IR spectroscopy 2D IR microscopy 2D IR electrochemistry 2D IR Nanoscopy 

Notes

Acknowledgements

I would like to thank Peter Hamm for many valuable discussions, the productive research atmosphere as well as his continuous and generous support.

References

  1. 1.
    Fayer MD (2013) Ultrafast infrared vibrational spectroscopy. Ultrafast Infrared Vib Spectrosc. doi: 10.1201/b13972-2 CrossRefGoogle Scholar
  2. 2.
    Nibbering ETJ, Fidder H, Pines E (2005) ULTRAFAST CHEMISTRY: using time-resolved vibrational spectroscopy for interrogation of structural dynamics. Annu Rev Phys Chem 56:337–367. doi: 10.1146/annurev.physchem.56.092503.141314 CrossRefGoogle Scholar
  3. 3.
    Butler JM, George MW, Schoonover JR et al (2007) Application of transient infrared and near infrared spectroscopy to transition metal complex excited states and intermediates. Coord Chem Rev 251:492–514. doi: 10.1016/j.ccr.2006.12.002 CrossRefGoogle Scholar
  4. 4.
    Tolstoij VP, Chernyshova IV, Skryshevsky VA (2003) Handbook of infrared spectroscopy of ultrathin films. Wiley, HobokenCrossRefGoogle Scholar
  5. 5.
    Stuart B (2013) Infrared Spectrosc Fundam Appl. doi: 10.1017/CBO9781107415324.004 Google Scholar
  6. 6.
    Radu I, Schleeger M, Bolwien C, Heberle J (2009) Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins. Photochem Photobiol Sci 8:1517–1528. doi: 10.1039/b9pp00050j CrossRefGoogle Scholar
  7. 7.
    Ataka K, Kottke T, Heberle J (2010) Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems. Angew Chemie Int Ed 49:5416–5424. doi: 10.1002/anie.200907114 CrossRefGoogle Scholar
  8. 8.
    Nibbering ETJ, Elsaesser T (2004) Ultrafast vibrational dynamics of hydrogen bonds in the condensed phase. Chem Rev 104:1887–1914. doi: 10.1021/cr020694p CrossRefGoogle Scholar
  9. 9.
    Zaera F (2014) New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions. Chem Soc Rev 43:7624–7663. doi: 10.1039/c3cs60374a CrossRefGoogle Scholar
  10. 10.
    Hamm P, Zanni MT (2011) Concepts and methods of 2D infrared spectroscopy. Cambridge University Press, New YorkCrossRefGoogle Scholar
  11. 11.
    Hamm P (2009) For structural biology, try infrared instead. Structure 17:149–150. doi: 10.1016/j.str.2009.01.002 CrossRefGoogle Scholar
  12. 12.
    Hill JR, Dlott DD, Rella CW et al (1996) Ultrafast infrared spectroscopy in biomolecules: active site dynamics of heme proteins. Biospectroscopy 2:277–299. doi: 10.1002/(SICI)1520-6343(1996)2:53.3.CO;2-4 CrossRefGoogle Scholar
  13. 13.
    Fayer MD (2001) Ultrafast infrared and Raman spectroscopy. CRC Press, Boca RatonCrossRefGoogle Scholar
  14. 14.
    Cho M (2002) Ultrafast vibrational spectroscopy in condensed phases. PhysChemComm 5:40. doi: 10.1039/b110898k CrossRefGoogle Scholar
  15. 15.
    Kraack JP, Hamm P (2016) Surface-sensitive and surface-specific ultrafast two-dimensional vibrational spectroscopy. Chem Rev. doi: 10.1021/acs.chemrev.6b00437 Google Scholar
  16. 16.
    Hamm P, Lim M, Hochstrasser RM (1998) Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy. J Phys Chem B 102:6123–6138. doi: 10.1021/jp9813286 CrossRefGoogle Scholar
  17. 17.
    Abramavicius D, Palmieri B, Voronine DV et al (2009) Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle versus supermolecule perspectives. Chem Rev 109:2350–2408. doi: 10.1021/cr800268n CrossRefGoogle Scholar
  18. 18.
    Cho M (2008) Coherent two-dimensional optical spectroscopy. Chem Rev 108:1331–1418. doi: 10.1021/cr078377b CrossRefGoogle Scholar
  19. 19.
    Simpson J (2008) Organic Structure Determination Using 2-D NMR Spectroscopy. Academic Press, New York, OxfordGoogle Scholar
  20. 20.
    Jeener J, Meier BH, Bachmann P, Ernst RR (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys 71:4546–4553. doi: 10.1063/1.438208 CrossRefGoogle Scholar
  21. 21.
    Brey WS (2012) Pulse methods in 1D & 2D liquid-phase NMR. Elsevier, New YorkGoogle Scholar
  22. 22.
    Friebolin H, Becconsall JK (1993) Basic one-and two-dimensional NMR spectroscopy. VCH, WeinheimGoogle Scholar
  23. 23.
    Macura S, Ernst RR (1980) Elucidation of cross relaxation in liquids by two-dimensional N.M.R. spectroscopy. Mol Phys 41:95–117. doi: 10.1080/00268978000102601 CrossRefGoogle Scholar
  24. 24.
    Reppert M, Tokmakoff A (2016) Computational amide I 2D IR spectroscopy as a probe of protein structure and dynamics. Annu Rev Phys Chem 67:359–386. doi: 10.1146/annurev-physchem-040215-112055 CrossRefGoogle Scholar
  25. 25.
    Hamm P, Lim M, DeGrado WF, Hochstrasser RM (1999) The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional structure. Proc Natl Acad Sci USA 96:2036–2041. doi: 10.1073/Pnas.96.5.2036 CrossRefGoogle Scholar
  26. 26.
    Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta Proteins Proteom 1814:942–968. doi: 10.1016/j.bbapap.2010.10.012 CrossRefGoogle Scholar
  27. 27.
    Haller JD, Schanda P (2013) Amplitudes and time scales of picosecond-to-microsecond motion in proteins studied by solid-state NMR: a critical evaluation of experimental approaches and application to crystalline ubiquitin. J Biomol NMR 57:263–280. doi: 10.1007/s10858-013-9787-x CrossRefGoogle Scholar
  28. 28.
    Sapienza P, Lee A (2010) Using NMR to study fast dynamics in proteins: methods and applications. Curr Opin Pharmacol 10:723–730. doi: 10.1016/j.coph.2010.09.006.Using CrossRefGoogle Scholar
  29. 29.
    Johnson PJM, Koziol KL, Hamm P (2017) Quantifying biomolecular recognition with site-specific 2D infrared probes. J Phys Chem Lett 8:2280–2284. doi: 10.1021/acs.jpclett.7b00742 CrossRefGoogle Scholar
  30. 30.
    Ghosh A, Ostrander JS, Zanni MT (2017) Watching proteins wiggle: mapping structures with two-dimensional infrared spectroscopy. Chem Rev. doi: 10.1021/acs.chemrev.6b00582
  31. 31.
    Muller EA, Pollard B, Raschke MB (2015) Infrared chemical nano-imaging: accessing structure, coupling, and dynamics on molecular length scales. J Phys Chem Lett 6:1275–1284. doi: 10.1021/acs.jpclett.5b00108 CrossRefGoogle Scholar
  32. 32.
    Fayer MD (2009) Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy. Annu Rev Phys Chem 60:21–38. doi: 10.1146/annurev-physchem-073108-112712 CrossRefGoogle Scholar
  33. 33.
    Cho M (2008) Coherent two-dimensional optical spectroscopy. Chem Rev 108:1331–1418. doi: 10.1021/cr078377b CrossRefGoogle Scholar
  34. 34.
    Remorino A, Hochstrasser RM (2012) Three-dimensional structures by two- dimensional vibrational spectroscopy. Acc Chem Res 45:1896–1905. doi: 10.1021/ar3000025 CrossRefGoogle Scholar
  35. 35.
    Zanni MT, Hochstrasser RM (2001) Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures. Curr Opin Struct Biol 11:516–522CrossRefGoogle Scholar
  36. 36.
    Kim YS, Hochstrasser RM (2009) Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics. J Phys Chem B 113:8231–8251. doi: 10.1021/jp8113978 CrossRefGoogle Scholar
  37. 37.
    Woutersen S, Hamm P (2002) Nonlinear two-dimensional vibrational spectroscopy of peptides. J Phys Condens Matter 1035:R1035–R1062CrossRefGoogle Scholar
  38. 38.
    Hamm P, Helbing J, Bredenbeck J (2008) Two-dimensional infrared spectroscopy of photoswitchable peptides. Annu Rev Phys Chem 59:291–317. doi: 10.1146/annurev.physchem.59.032607.093757 CrossRefGoogle Scholar
  39. 39.
    Bredenbeck J, Helbing J, Kolano C, Hamm P (2007) Ultrafast 2D–IR spectroscopy of transient species. ChemPhysChem 8:1747–1756. doi: 10.1002/cphc.200700148 CrossRefGoogle Scholar
  40. 40.
    Simpson N, Hunt NT (2015) Ultrafast 2D-IR spectroscopy of haemoproteins. Int Rev Phys Chem 34:361–383. doi: 10.1080/0144235X.2015.1061793 CrossRefGoogle Scholar
  41. 41.
    Hunt NT (2009) 2D-IR spectroscopy: ultrafast insights into biomolecule structure and function. Chem Soc Rev 38:1837–1848. doi: 10.1039/b819181f CrossRefGoogle Scholar
  42. 42.
    Strasfeld DB, Shim S-H, Zanni MT (2009) New Advances in mid-IR pulse shaping and its application to 2D IR spectroscopy and ground-state coherent control. Adv Chem Phys 141:1–28Google Scholar
  43. 43.
    Chen H, Bian H, Li J et al (2012) Ultrafast multiple-mode multiple-dimensional vibrational spectroscopy. Int Rev Phys Chem 31:469–565. doi: 10.1080/0144235X.2012.733116 CrossRefGoogle Scholar
  44. 44.
    Le Sueur AL, Horness RE, Thielges M (2015) Applications of two-dimensional infrared spectroscopy. Analyst 140:4336–4349. doi: 10.1039/C5AN00558B CrossRefGoogle Scholar
  45. 45.
    Finkelstein IJ, Zheng J, Ishikawa H et al (2007) Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy. Phys Chem Chem Phys 9:1533–1549. doi: 10.1039/b618158a CrossRefGoogle Scholar
  46. 46.
    Ge N-H, Hochstrasser RM (2002) Femtosecond two-dimensional infrared spectroscopy: IR-COSY and THIRSTY. PhysChemComm 5:17. doi: 10.1039/b109935c CrossRefGoogle Scholar
  47. 47.
    Ganim Z, Hoi SC, Smith AW et al (2008) Amide I two-dimensional infrared spectroscopy of proteins. Acc Chem Res 41:432–441. doi: 10.1021/ar700188n CrossRefGoogle Scholar
  48. 48.
    Mukamel S (2000) Multidimensional femtosecond correlation spectroscopies of electronic and vibrationnal excitations. Annu Rev Phys Chem 51:691–729CrossRefGoogle Scholar
  49. 49.
    Shim S-H, Zanni MT (2009) How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping. Phys Chem Chem Phys 11:748–761. doi: 10.1039/b813817f CrossRefGoogle Scholar
  50. 50.
    Zheng J, Kwak K, Fayer MD (2007) Ultrafast 2D IR vibrational echo spectroscopy. Acc Chem Res 40:75–83. doi: 10.1021/ar068010d CrossRefGoogle Scholar
  51. 51.
    Van Wilderen LJGW, Bredenbeck J (2015) From ultrafast structure determination to steering reactions: mixed IR/Non-IR multidimensional vibrational spectroscopies. Angew Chemie Int Ed 54:11624–11640. doi: 10.1002/anie.201503155 CrossRefGoogle Scholar
  52. 52.
    Cho M (2008) Coherent two-dimensional optical spectroscopy. Bull Korean Chem Soc 108:1331–1418. doi: 10.1021/cr078377b Google Scholar
  53. 53.
    Wang J (2017) Ultrafast two-dimensional infrared spectroscopy for molecular structures and dynamics with expanding wavelength range and increasing sensitivities: from experimental and computational perspectives. Int Rev Phys Chem 36:377–431. doi: 10.1080/0144235X.2017.1321856 CrossRefGoogle Scholar
  54. 54.
    Jonas DM (2003) Two-dimensional femtosecond spectroscopy. Annu Rev Phys Chem 54:425–463. doi: 10.1146/annurev.physchem.54.011002.103907 CrossRefGoogle Scholar
  55. 55.
    Cho M (2009) Two-dimensional optical spectroscopy, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton/LondonCrossRefGoogle Scholar
  56. 56.
    Goodno GD, Dadusc G, Miller RJ (1998) Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics. JOSA B 15:1791–1794CrossRefGoogle Scholar
  57. 57.
    Maznev AA, Nelson KA, Rogers JA (1998) Optical heterodyne detection of laser-induced gratings. Opt Lett 23:1319–1321. doi: 10.1364/OL.23.001319 CrossRefGoogle Scholar
  58. 58.
    Fuller FD, Ogilvie JP (2013) Experimental implementations of two-dimensional fourier transform electronic spectroscopy. Annu Rev Phys Chem 66:667–690. doi: 10.1146/annurev-physchem-040513-103623 CrossRefGoogle Scholar
  59. 59.
    Baiz CR, Schach D, Tokmakoff A (2014) Ultrafast 2D IR microscopy. Opt Express 22:18724–18735. doi: 10.1364/OE.22.018724 CrossRefGoogle Scholar
  60. 60.
    Ostrander JS, Serrano AL, Ghosh A, Zanni MT (2016) Spatially resolved two-dimensional infrared spectroscopy via wide-field microscopy. ACS Photonics 3:1315–1323. doi: 10.1021/acsphotonics.6b00297 CrossRefGoogle Scholar
  61. 61.
    Helbing J, Hamm P (2010) Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity. J Opt Soc Am B 28:171–178. doi: 10.1364/JOSAB.28.000171 CrossRefGoogle Scholar
  62. 62.
    Mukamel S (1995) Principles of nonlinear optical spectroscopy. Oxford University Press, New YorkGoogle Scholar
  63. 63.
    Boyd RW (2008) Nonlinear optics, 3rd edn. Academic Press, San DiegoGoogle Scholar
  64. 64.
    Shen YR (2002) The principles of nonlinear optics. Wiley-VCH Verlag, New YorkGoogle Scholar
  65. 65.
    Grimberg BI, Lozovoy VV, Dantus M, Mukamel S (2002) Ultrafast Nonlinear spectroscopic techniques in the gas phase and their density matrix representation. J Phys Chem A 106:697–718CrossRefGoogle Scholar
  66. 66.
    Khalil M, Demirdöven N, Tokmakoff A (2003) Coherent 2D IR spectroscopy: molecular structure and dynamics in solution. J Phys Chem A 107:5258–5279. doi: 10.1021/jp0219247 CrossRefGoogle Scholar
  67. 67.
    Khalil M, Demirdöven N, Tokmakoff A (2003) Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra. Phys Rev Lett 90(047401):1–4. doi: 10.1103/PhysRevLett.90.047401 Google Scholar
  68. 68.
    Kim YS, Hochstrasser RM (2006) Comparison of linear and 2D IR spectra in the presence of fast exchange. J Phys Chem B 110:8531–8534. doi: 10.1021/jp060935n CrossRefGoogle Scholar
  69. 69.
    Roberts ST, Loparo JJ, Tokmakoff A (2006) Characterization of spectral diffusion from two-dimensional line shapes. J Chem Phys 125(084502):1–8. doi: 10.1063/1.2232271 Google Scholar
  70. 70.
    Guo Q, Pagano P, Li Y-L et al (2015) Line shape analysis of two-dimensional infrared spectra. J Chem Phys 142:212427. doi: 10.1063/1.4918350 CrossRefGoogle Scholar
  71. 71.
    Kwak K, Park S, Finkelstein IJ, Fayer MD (2007) Frequency-frequency correlation functions and apodization in two-dimensional infrared vibrational echo spectroscopy: a new approach. J Chem Phys 127:124503. doi: 10.1063/1.2772269 CrossRefGoogle Scholar
  72. 72.
    Rosenfeld DE, Fayer MD (2012) Excitation transfer induced spectral diffusion and the influence of structural spectral diffusion. J Chem Phys 137(064109):1–18. doi: 10.1063/1.4742762 Google Scholar
  73. 73.
    Donaldson PM, Guo R, Fournier F et al (2007) Direct identification and decongestion of Fermi resonances by control of pulse time ordering in two-dimensional IR spectroscopy. J Chem Phys doi 10(1063/1):2771176Google Scholar
  74. 74.
    Kurochkin DV, Naraharisetty SRG, Rubtsov IV (2007) A relaxation-assisted 2D IR spectroscopy method. Proc Natl Acad Sci USA 104:14209–14214. doi: 10.1073/pnas.0700560104 CrossRefGoogle Scholar
  75. 75.
    Rubtsova NI, Rubtsov IV (2015) Vibrational energy transport in molecules studied by relaxation-assisted two-dimensional infrared spectroscopy. Annu Rev Phys Chem 66:717–738. doi: 10.1146/annurev-physchem-040214-121337 CrossRefGoogle Scholar
  76. 76.
    Golonzka O, Khalil M, Demirdöven N, Tokmakoff A (2001) Coupling and orientation between anharmonic vibrations characterized with two-dimensional infrared vibration echo spectroscopy. J Chem Phys 115:10814–10828. doi: 10.1063/1.1417504 CrossRefGoogle Scholar
  77. 77.
    Woutersen S, Mu Y, Stock G, Hamm P (2001) Subpicosecond conformational dynamics of small peptides probed by two-dimensional vibrational spectroscopy. Proc Natl Acad Sci USA 98:11254–11258. doi: 10.1073/pnas.201169498 CrossRefGoogle Scholar
  78. 78.
    Zanni MT, Ge NH, Kim YS, Hochstrasser RM (2001) Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination. Proc Natl Acad Sci USA 98:11265–11270. doi: 10.1073/pnas.201412998 CrossRefGoogle Scholar
  79. 79.
    Krummel AT, Mukherjee P, Zanni MT (2003) Inter and intrastrand vibrational coupling in DNA studied with heterodyned 2D-IR spectroscopy. J Phys Chem B 107:9165–9169. doi: 10.1021/jp035473h CrossRefGoogle Scholar
  80. 80.
    Buchanan LE, Dunkelberger EB, Zanni MT (2012) Examining amyloid structure and kinetics with 1D and 2D infrared spectroscopy and isotope labeling BT - protein folding and misfolding: shining light by infrared spectroscopy. In: Fabian H, Naumann D (eds) Protein fold. Misfolding. Springer, Berlin, pp 217–237CrossRefGoogle Scholar
  81. 81.
    Buchanan LE, Carr JK, Fluitt AM et al (2014) Structural motif of polyglutamine amyloid fibrils discerned with mixed-isotope infrared spectroscopy. Proc Natl Acad Sci 111:5796–5801. doi: 10.1073/pnas.1401587111 CrossRefGoogle Scholar
  82. 82.
    Moran A, Mukamel S (2004) The origin of vibrational mode couplings in various secondary structural motifs of polypeptides. Proc Natl Acad Sci USA 101:506–510. doi: 10.1073/pnas.2533089100 CrossRefGoogle Scholar
  83. 83.
    Bereau T, Meuwly M (2014) Computational Two-Dimensional Infrared Spectroscopy without Maps: N-Methylacetamide in Water. J Phys Chem B 118:8135−8147. doi:  10.1021/jp5011692
  84. 84.
    Woutersen S, Hamm P (2000) Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy. J Phys Chem B 104:11316–11320. doi: 10.1021/jp001546a CrossRefGoogle Scholar
  85. 85.
    Krummel AT, Zanni MT (2006) DNA Vibrational Coupling Revealed with Two-Dimensional Infrared Spectroscopy : Insight into Why Vibrational Spectroscopy Is Sensitive to DNA Structure. J Phys Chem B 110:13991–14000. doi:  10.1021/jp062597w
  86. 86.
    Baiz CR, Reppert M, Tokmakoff A (2013) Introduction to protein 2D IR spectroscopy. In: Fayer MD (ed) Ultrafast infrared Vib. Spectrosc. CRC Press/Taylor & Francis Group, Boca Raton/New York, pp 361–405CrossRefGoogle Scholar
  87. 87.
    Baiz CR, Peng CS, Reppert ME et al (2012) Coherent two-dimensional infrared spectroscopy: quantitative analysis of protein secondary structure in solution. Analyst 137:1793–1799. doi: 10.1039/c2an16031e CrossRefGoogle Scholar
  88. 88.
    Waegele MM, Culik RM, Gai F (2011) Site-specific spectroscopic reporters of the local electric field, hydration, structure, and dynamics of biomolecules. J Phys Chem Lett 2:2598–2609. doi: 10.1021/jz201161b CrossRefGoogle Scholar
  89. 89.
    Kim H, Cho M (2013) Infrared probes for studying the structure and dynamics of biomolecules. Chem Rev 113:5817–5847. doi: 10.1021/cr3005185 CrossRefGoogle Scholar
  90. 90.
    Buchanan LE, Dunkelberger EB, Tran HQ et al (2013) Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient beta-sheet. Proc Natl Acad Sci USA 110:19285–19290. doi: 10.1073/pnas.1314481110 CrossRefGoogle Scholar
  91. 91.
    Strasfeld DB, Ling YL, Shim S-H, Zanni MT (2008) Tracking fiber formation in human islet amyloid polypeptide with automated 2D-IR spectroscopy. J Am Chem Soc 130:6698–6699. doi: 10.1021/ja801483n CrossRefGoogle Scholar
  92. 92.
    Shim S-H, Gupta R, Ling YL et al (2009) Two-dimensional IR spectroscopy and isotope labeling defines the pathway of amyloid formation with residue-specific resolution. Proc Natl Acad Sci 106:6614–6619. doi: 10.1073/pnas.0805957106 CrossRefGoogle Scholar
  93. 93.
    Middleton CT, Marek P, Cao P et al (2012) Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor. Nat Chem 4:355–360. doi: 10.1038/nchem.1293 CrossRefGoogle Scholar
  94. 94.
    Moran SD, Woys AM, Buchanan LE et al (2012) Two-dimensional IR spectroscopy and segmental 13C labeling reveals the domain structure of human d-crystallin amyloid fibrils. Proc Natl Acad Sci 109:3329–3334. doi: 10.1073/pnas.1117704109 CrossRefGoogle Scholar
  95. 95.
    Kratochvil HT, Carr JK, Matulef K et al (2016) Instantaneous ion configurations in the K+ ion channel selectivity filter revealed by 2D IR spectroscopy. Science 353:1040–1044. doi: 10.1126/science.aag1447 CrossRefGoogle Scholar
  96. 96.
    Thielges MC, Axup JY, Wong D et al (2011) Two-dimensional IR spectroscopy of protein dynamics using two vibrational labels: a site-specific genetically encoded unnatural amino acid and an active site ligand. J Phys Chem B 115:11294–11304. doi: 10.1021/jp206986v CrossRefGoogle Scholar
  97. 97.
    Ma J, Pazos IM, Zhang W et al (2015) Site-specific infrared probes of proteins. Annu Rev Phys Chem 66:357–377. doi: 10.1146/annurev-physchem-040214-121802 CrossRefGoogle Scholar
  98. 98.
    Krummel AT, Zanni MT (2008) Evidence for coupling between nitrile groups using DNA templates: a promising new method for monitoring structures with infrared spectroscopy. J Phys Chem B 112:1336–1338. doi: 10.1021/jp711558a CrossRefGoogle Scholar
  99. 99.
    Ganim Z, Jones K, Tokmakoff A (2010) Biomolecular structures: from isolated molecules to the cell crowded medium. Phys Chem Chem Phys 12:3579–3588. doi: 10.1039/c004156b CrossRefGoogle Scholar
  100. 100.
    Kwak K, Rosenfeld DE, Fayer MD (2008) Taking apart the two-dimensional infrared vibrational echo spectra: more information and elimination of distortions. J Chem Phys 128(204505):1–10. doi: 10.1063/1.2927906 Google Scholar
  101. 101.
    Roy S, Pshenichnikov MS, Jansen TLC (2011) Analysis of 2D CS spectra for systems with non-gaussian dynamics. J Phys Chem B 115:5434–5440. doi: 10.1021/jp109742p Google Scholar
  102. 102.
    Woutersen S, Pfister R, Hamm P et al (2002) Peptide conformational heterogeneity revealed from nonlinear vibrational spectroscopy and molecular-dynamics simulations. J Chem Phys 117:6833–6840. doi: 10.1063/1.1506151 CrossRefGoogle Scholar
  103. 103.
    Woutersen S, Hamm P (2002) Nonlinear two-dimensional vibrational spectroscopy of peptides. J Phys Condens Matter 14:R1035–R1062. doi: 10.1088/0953-8984/14/39/202 CrossRefGoogle Scholar
  104. 104.
    Woutersen S, Hamm P (2001) Isotope-edited two-dimensional vibrational spectroscopy of trialanine in aqueous solution. J Chem Phys 114:2727–2737. doi: 10.1063/1.1336807 CrossRefGoogle Scholar
  105. 105.
    King JT, Baiz CR, Kubarych KJ (2010) Solvent-dependent spectral diffusion in a hydrogen bonded “vibrational aggregate”. J Phys Chem A 114:10590–10604. doi: 10.1021/jp106142u CrossRefGoogle Scholar
  106. 106.
    Kiefer LM, King JT, Kubarych KJ (2015) Dynamics of rhenium photocatalysts revealed through ultrafast multidimensional spectroscopy. Acc Chem Res 48:1123–1130. doi: 10.1021/ar500402r CrossRefGoogle Scholar
  107. 107.
    Perakis F, Hamm P (2011) Two-dimensional infrared spectroscopy of supercooled water. J Phys Chem B 115:5289–5293CrossRefGoogle Scholar
  108. 108.
    Perakis F, De Marco L, Shalit A et al (2016) Vibrational spectroscopy and dynamics of water. Chem Rev 116:7590–7607. doi: 10.1021/acs.chemrev.5b00640 CrossRefGoogle Scholar
  109. 109.
    Ishikawa H, Finkelstein IJ, Kim S et al (2007) Neuroglobin dynamics observed with ultrafast 2D-IR vibrational echo spectroscopy. Proc Natl Acad Sci USA 104:16116–16121. doi: 10.1073/pnas.0707718104 CrossRefGoogle Scholar
  110. 110.
    Chung JK, Thielges MC, Fayer MD (2011) Dynamics of the folded and unfolded villin headpiece (HP35) measured with ultrafast 2D IR vibrational echo spectroscopy. Proc Natl Acad Sci USA 108:3578–3583. doi: 10.1073/pnas.1100587108 CrossRefGoogle Scholar
  111. 111.
    Sokolowsky KP, Bailey HE, Fayer MD (2014) New Divergent dynamics in the isotropic to nematic phase transition of liquid crystals measured with 2D IR vibrational echo spectroscopy. J Chem Phys 194502:1–38. doi: 10.1063/1.4901081 Google Scholar
  112. 112.
    Sokolowsky KP, Fayer MD (2013) Dynamics in the isotropic phase of nematogens using 2D IR vibrational echo measurements on natural-abundance 13CN and extended lifetime probes. J Phys Chem B 117:15060–15071. doi: 10.1021/jp4071955 CrossRefGoogle Scholar
  113. 113.
    King JT, Ross MR, Kubarych KJ (2012) Ultrafast α-like relaxation of a fragile glass-forming liquid measured using two-dimensional infrared spectroscopy. Phys Rev Lett 108:1–5. doi: 10.1103/PhysRevLett.108.157401 Google Scholar
  114. 114.
    Eaves JD, Loparo JJ, Fecko CJ et al (2005) Hydrogen bonds in liquid water are broken only fleetingly. Proc Natl Acad Sci USA 102:13019–13022. doi: 10.1073/pnas.0505125102 CrossRefGoogle Scholar
  115. 115.
    Ren Z, Ivanova AS, Couchot-Vore D, Garrett-Roe S (2014) Ultrafast Structure and Dynamics in Ionic Liquids: 2D-IR Spectroscopy Probes the Molecular Origin of Viscosity. J Phys Chem Lett 5:1541−1546. doi: 10.1021/jz500372f
  116. 116.
    Yamada SA, Bailey HE, Tamimi A, et al (2017) Dynamics in a room-temperature ionic liquid from the cation perspective: 2D IR vibrational echo spectroscopy. J Am Chem Soc. doi: 10.1021/jacs.6b12011
  117. 117.
    Tamimi A, Fayer MD (2016) Ionic liquid dynamics measured with 2D IR and IR pump-probe experiments on a linear anion and the influence of potassium cations. J Phys Chem B 120:5842–5854. doi: 10.1021/acs.jpcb.6b00409 CrossRefGoogle Scholar
  118. 118.
    Rosker MJ, Dantus M, Zewail AH (1988) Femtosecond real-time probing of reactions. I. The technique. J Chem Phys 89:6113CrossRefGoogle Scholar
  119. 119.
    Zewail AH (1988) Laser femtochemistry. Science (80-) 242:1645–1653CrossRefGoogle Scholar
  120. 120.
    Motzkus M, Pedersen S, Zewail AH (1996) Femtosecond real-time probing of reactions. 19. nonlinear (DFWM) techniques for probing transition states of uni- and bimolecular reactions. J Phys Chem 100:5620–5633CrossRefGoogle Scholar
  121. 121.
    Herbst J, Heyne K, Diller R (2002) Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization. Science (80-) 297:822–825CrossRefGoogle Scholar
  122. 122.
    Kukura P, McCamant DW, Yoon S et al (2005) Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science (80-) 310:1006–1009CrossRefGoogle Scholar
  123. 123.
    Vos MH, Lambry JC, Robles SJ et al (1991) Direct observation of vibrational coherence in bacterial reaction centers using femtosecond absorption-spectroscopy. Proc Natl Acad Sci USA 88:8885–8889CrossRefGoogle Scholar
  124. 124.
    Rose TS, Rosker MJ, Zewail AH (1988) Femtosecond real-time observation of wave packet oscillations (resonance) in dissociation reactions. J Chem Phys 88:6672–6673CrossRefGoogle Scholar
  125. 125.
    Dantus M, Bowman RM, Gruebele M, Zewail AH (1989) Femtosecond real-time probing of reactions. V. The reaction of IHgI. J Chem Phys 91:7437–7450CrossRefGoogle Scholar
  126. 126.
    Kraack JP, Buckup T, Motzkus M (2013) Coherent high-frequency vibrational dynamics in the excited electronic state of all-trans retinal derivatives. J Phys Chem Lett 383–387. doi: 10.1021/jz302001m
  127. 127.
    Kraack JP, Buckup T, Hampp N, Motzkus M (2011) Ground- and excited-state vibrational coherence dynamics in bacteriorhodopsin probed with degenerate four-wave-mixing experiments. ChemPhysChem 12:1851–1859. doi: 10.1002/cphc.201100032 CrossRefGoogle Scholar
  128. 128.
    Kraack JP, Wand A, Buckup T et al (2013) Mapping multidimensional excited state dynamics using pump-impulsive- vibrational-spectroscopy and pump-degenerate-four-wave-mixing. Phys Chem Chem Phys 15:14487–14501. doi: 10.1039/c3cp50871d CrossRefGoogle Scholar
  129. 129.
    Gallagher Faeder SM, Jonas DM, Faeder SMG (1999) Two-dimensional electronic correlation and relaxation spectra: theory and model calculations. J Phys Chem A 103:10489–10505. doi: 10.1021/jp9925738 CrossRefGoogle Scholar
  130. 130.
    Aue W, Bartholdi E, Ernst R (1976) Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J Chem Phys 64:2229–2246. doi: 10.1063/1.432450 CrossRefGoogle Scholar
  131. 131.
    Zheng J, Kwak K, Asbury J et al (2005) Ultrafast dynamics of solute- solvent complexation observed at thermal equilibrium in real time. Science 309:1338–1343CrossRefGoogle Scholar
  132. 132.
    Zheng J, Fayer MD (2007) Hydrogen bond lifetimes and energetics for solute/solvent complexes studied with 2D-IR vibrational echo spectroscopy. J Am Chem Soc 94305:4328–4335CrossRefGoogle Scholar
  133. 133.
    Kwak K, Zheng J, Cang H, Fayer MD (2006) Ultrafast two-dimensional infrared vibrational echo chemical exchange experiments and theory. J Phys Chem B 110:19998–20013. doi: 10.1021/jp0624808 CrossRefGoogle Scholar
  134. 134.
    Kwak K, Park S, Fayer MD (2007) Dynamics around solutes and solute-solvent complexes in mixed solvents. Proc Natl Acad Sci USA 104:14221–14226. doi: 10.1073/pnas.0701710104 CrossRefGoogle Scholar
  135. 135.
    Rosenfeld DE, Kwak K, Gengeliczki Z, Fayer MD (2010) Hydrogen bond migration between molecular sites observed with ultrafast 2D IR chemical exchange spectroscopy. J Phys Chem B 114:2383–2389. doi: 10.1021/jp911452z CrossRefGoogle Scholar
  136. 136.
    Kim YS, Hochstrasser RM (2005) Chemical exchange 2D IR of hydrogen-bond making and breaking. Proc Natl Acad Sci USA 102:11185–11190. doi: 10.1073/pnas.0504865102 CrossRefGoogle Scholar
  137. 137.
    Woutersen S, Mu Y, Stock G, Hamm P (2001) Hydrogen-bond lifetime measured by time-resolved 2D-IR spectroscopy: N-methylacetamide in methanol. Chem Phys 266:137–147. doi: 10.1016/S0301-0104(01)00224-5 CrossRefGoogle Scholar
  138. 138.
    Chuntonov L, Pazos IM, Ma J, Gai F (2015) Kinetics of exchange between zero-, one-, and two-hydrogen-bonded states of methyl and ethyl acetate in methanol. J Phys Chem B 150313152915006. doi: 10.1021/acs.jpcb.5b00745
  139. 139.
    Park S, Odelius M, Gaffney KJ (2009) Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions. J Phys Chem B 113:7825–7835. doi: 10.1021/jp9016739 CrossRefGoogle Scholar
  140. 140.
    Olschewski M, Lindner J, Vöhringer P (2013) A hydrogen-bond flip-flop through a bjerrum-type defect. Angew Chemie Int Ed 52:2602–2605. doi: 10.1002/anie.201208625 CrossRefGoogle Scholar
  141. 141.
    Zheng J, Kwak K, Xie J, Fayer MD (2006) Ultrafast carbon-carbon single-bond rotational isomerization in room-temperature solution. Science 313:1951–1955. doi: 10.1126/science.1132178 CrossRefGoogle Scholar
  142. 142.
    Ishikawa H, Kwak K, Chung JK et al (2008) Direct observation of fast protein conformational switching. Proc Natl Acad Sci USA 105:8619–8624. doi: 10.1073/pnas.0803764105 CrossRefGoogle Scholar
  143. 143.
    Park S, Ji M, Gaffney KJ (2010) Ligand exchange dynamics in aqueous solution studied with 2DIR spectroscopy. J Phys Chem B 114:6693–6702. doi: 10.1021/jp100833t CrossRefGoogle Scholar
  144. 144.
    Sun Z, Zhang W, Ji M et al (2013) Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy. J Phys Chem B 117:15306–15312. doi: 10.1021/jp4033854 CrossRefGoogle Scholar
  145. 145.
    Woutersen S, Bakker HJ (1999) Resonant intermolecular transfer of vibrational energy in liquid water. Nature 402:507–509. doi: 10.1038/990058 CrossRefGoogle Scholar
  146. 146.
    Mirkovic T, Ostroumov EE, Anna JM, et al (2016) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev. doi: 10.1021/acs.chemrev.6b00002
  147. 147.
    Chen H, Wen X, Li J, Zheng J (2014) Molecular distances determined with resonant vibrational energy transfers. J Phys Chem A 118:2463–2469. doi: 10.1021/jp500586h CrossRefGoogle Scholar
  148. 148.
    Chen H, Bian H, Li J et al (2015) Vibrational energy transfer: an angstrom molecular ruler in studies of ion pairing and clustering in aqueous solutions. J Phys Chem B 119:4333–4349. doi: 10.1021/jp512320a CrossRefGoogle Scholar
  149. 149.
    Li J, Chen H, Miranda A et al (2016) Non-resonant vibrational energy transfer on metal nanoparticle/liquid interface. J Phys Chem C 120:25173–25179. doi: 10.1021/acs.jpcc.6b03777 CrossRefGoogle Scholar
  150. 150.
    Lin Z, Rubtsov IV (2012) Constant-speed vibrational signaling along polyethyleneglycol chain up to 60-Å distance. Proc Natl Acad Sci 109:1413–1418. doi: 10.1073/pnas.1116289109 CrossRefGoogle Scholar
  151. 151.
    Bian H, Wen X, Li J et al (2011) Ion clustering in aqueous solutions probed with vibrational energy transfer. Proc Natl Acad Sci USA 108:4737–4742. doi: 10.1073/pnas.1019565108 CrossRefGoogle Scholar
  152. 152.
    Chuntonov L (2016) 2D-IR spectroscopy of hydrogen-bond-mediated vibrational excitation transfer. Phys Chem Chem Phys 18:13852–13860. doi: 10.1039/C6CP01640E CrossRefGoogle Scholar
  153. 153.
    De Marco L, Thämer M, Reppert M, Tokmakoff A (2014) Direct observation of intermolecular interactions mediated by hydrogen bonding. J Chem Phys 141(034502):1–10. doi: 10.1063/1.4885145 Google Scholar
  154. 154.
    Elsaesser T (2009) Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase. Acc Chem Res 42:1220–1228. doi: 10.1021/ar900006u CrossRefGoogle Scholar
  155. 155.
    Laaser JE, Christianson R, Oudenhoven TA et al (2014) Dye self-association identified by intermolecular couplings between vibrational modes as revealed by infrared spectroscopy, and implications for electron injection. J Phys Chem C 118:5854–5861CrossRefGoogle Scholar
  156. 156.
    Oudenhoven TA, Joo Y, Laaser JE et al (2015) Dye aggregation identified by vibrational coupling using 2D IR spectroscopy. J Chem Phys 142(212449):1–12. doi: 10.1063/1.4921649 Google Scholar
  157. 157.
    Ostrander JS, Knepper R, Tappan AS et al (2017) Energy transfer between coherently delocalized states in thin films of the explosive pentaerythritol tetranitrate (PETN) revealed by two-dimensional infrared spectroscopy. J Phys Chem B 121:1352–1361. doi: 10.1021/acs.jpcb.6b09879 CrossRefGoogle Scholar
  158. 158.
    Kraack JP, Frei A, Alberto R, Hamm P (2017) Ultrafast vibrational energy-transfer in catalytic monolayers at solid-liquid interfaces. J Phys Chem Lett 8:2489–2495. doi: 10.1021/acs.jpclett.7b01034 CrossRefGoogle Scholar
  159. 159.
    Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663. doi: 10.1021/cr900356p CrossRefGoogle Scholar
  160. 160.
    Hagfeldt A, Graetzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68. doi: 10.1021/cr00033a003 CrossRefGoogle Scholar
  161. 161.
    Ashford DL, Gish MK, Vannucci AK et al (2015) Molecular chromophore-catalyst assemblies for solar fuel applications. Chem Rev 115:13006–13049. doi: 10.1021/acs.chemrev.5b00229 CrossRefGoogle Scholar
  162. 162.
    Esswein AJ, Nocera DG (2007) Hydrogen production by molecular photocatalysis. Chem Rev 107:4022–4047. doi: 10.1021/cr050193e CrossRefGoogle Scholar
  163. 163.
    White JL, Baruch MF, Pander JE et al (2015) Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem Rev 115:12888–12935. doi: 10.1021/acs.chemrev.5b00370 CrossRefGoogle Scholar
  164. 164.
    Anthony JE (2006) Functionalized acenes and heteroacenes for organic electronics. Chem Rev 106:5028–5048. doi: 10.1021/cr050966z CrossRefGoogle Scholar
  165. 165.
    Bendikov M, Wudl F, Perepichka DF (2004) Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: the brick and mortar of organic electronics. Chem Rev 104:4891–4945. doi: 10.1021/cr030666m CrossRefGoogle Scholar
  166. 166.
    Ostroverkhova O (2016) Organic optoelectronic materials: mechanisms and applications. Chem Rev 116:13279–13412. doi: 10.1021/acs.chemrev.6b00127 CrossRefGoogle Scholar
  167. 167.
    Kiefer LM, Kubarych KJ (2016) NOESY-Like 2D-IR spectroscopy reveals non-gaussian dynamics. J Phys Chem Lett 7:3819–3824. doi: 10.1021/acs.jpclett.6b01803 CrossRefGoogle Scholar
  168. 168.
    Yue Y, Qasim LN, Kurnosov AA et al (2015) Band-selective ballistic energy transport in alkane oligomers: toward controlling the transport speed. J Phys Chem B 119:6448–6456. doi: 10.1021/acs.jpcb.5b03658 CrossRefGoogle Scholar
  169. 169.
    Kurochkin DV, Naraharisetty SRG, Rubtsov IV (2005) Dual-frequency 2D IR on interaction of weak and strong IR modes. J Phys Chem A 109:10799–10802. doi: 10.1021/jp055811+ CrossRefGoogle Scholar
  170. 170.
    Lin Z, Rubtsova NI, Kireev VV, Rubtsov IV (2015) Ballistic energy transport in PEG oligomers. Acc Chem Res 48:2547–2555. doi: 10.1051/epjconf/20134105039 CrossRefGoogle Scholar
  171. 171.
    Gray DE (1957) American institute of physics handbook. McGraw-Hill, Boca RatonGoogle Scholar
  172. 172.
    Bredenbeck J, Ghosh A, Smits M, Bonn M (2008) Ultrafast two dimensional-infrared spectroscopy of a molecular monolayer. J Am Chem Soc 130:2152–2153. doi: 10.1021/ja710099c CrossRefGoogle Scholar
  173. 173.
    Rosenfeld DE, Gengeliczki Z, Smith BJ et al (2011) Structural dynamics of a catalytic monolayer probed by ultrafast 2D IR vibrational echoes. Science 334:634–639. doi: 10.1126/science.1211350 CrossRefGoogle Scholar
  174. 174.
    Rosenfeld DE, Nishida J, Yan C et al (2012) Dynamics of functionalized surface molecular monolayers studied with ultrafast infrared vibrational spectroscopy. J Phys Chem C 116:23428–23440. doi: 10.1021/jp307677b CrossRefGoogle Scholar
  175. 175.
    Rosenfeld DE, Nishida J, Yan C et al (2013) Structural dynamics at monolayer-liquid interfaces probed by 2D IR spectroscopy. J Phys Chem C 117:1409–1420. doi: 10.1021/jp311144b CrossRefGoogle Scholar
  176. 176.
    Nishida J, Yan C, Fayer MD (2014) Dynamics of molecular monolayers with different chain lengths in air and solvents probed by ultrafast 2D IR spectroscopy. J Phys Chem C 118:523–532. doi: 10.1021/jp410683h CrossRefGoogle Scholar
  177. 177.
    Yan C, Yuan R, Nishida J, Fayer MD (2015) Structural influences on the fast dynamics of alkylsiloxane monolayers on SiO 2 surfaces measured with 2D IR spectroscopy. J Phys Chem C 119:16811–16823. doi: 10.1021/acs.jpcc.5b05641 CrossRefGoogle Scholar
  178. 178.
    Yan C, Yuan R, Pfalzgraff WC et al (2016) Unraveling the dynamics and structure of functionalized self-assembled monolayers on gold using 2D IR spectroscopy and MD simulations. Proc Natl Acad Sci 113:4929–4934. doi: 10.1073/pnas.1603080113 CrossRefGoogle Scholar
  179. 179.
    Kraack JP, Kaech A, Hamm P (2016) Surface-enhancement in ultrafast 2D ATR IR spectroscopy at the metal-liquid interface. J Phys Chem C 120:3350–3359. doi: 10.1021/acs.jpcc.5b11051 CrossRefGoogle Scholar
  180. 180.
    Kraack JP, Lotti D, Hamm P (2015) 2D attenuated total reflectance infrared spectroscopy reveals ultrafast vibrational dynamics of organic monolayers at metal-liquid interfaces. J Chem Phys 142:212413. doi: 10.1063/1.4916915 CrossRefGoogle Scholar
  181. 181.
    Kraack JP, Lotti D, Hamm P (2015) Surface-enhanced, multi-dimensional attenuated total reflectance spectroscopy. In: Hayes SC, Bittner ER (eds) Proc SPIE, Phys Chem Interfaces Nanomater, vol XIV, pp 95490SGoogle Scholar
  182. 182.
    Zhang Z, Piatkowski L, Bakker HJ, Bonn M (2011) Ultrafast vibrational energy transfer at the water/air interface revealed by two-dimensional surface vibrational spectroscopy. Nat Chem 3:888–893. doi: 10.1038/nchem.1158 CrossRefGoogle Scholar
  183. 183.
    Piatkowski L, Eisenthal KB, Bakker HJ (2009) Ultrafast intermolecular energy transfer in heavy water. Phys Chem Chem Phys 11:9033–9038. doi: 10.1039/b908975f CrossRefGoogle Scholar
  184. 184.
    Wang J, Clark ML, Li Y et al (2015) Short-range catalyst-surface interactions revealed by heterodyne two-dimensional sum frequency generation spectroscopy. J Phys Chem Lett 6:4204–4209. doi: 10.1021/acs.jpclett.5b02158 CrossRefGoogle Scholar
  185. 185.
    Li Y, Wang J, Clark ML et al (2016) Characterizing interstate vibrational coherent dynamics of surface adsorbed catalysts by fourth-order 3D SFG spectroscopy. Chem Phys Lett 650:1–6. doi: 10.1016/j.cplett.2016.02.031 CrossRefGoogle Scholar
  186. 186.
    Li Z, Wang J, Li Y, Xiong W (2016) Solving the “Magic Angle” challenge in determining molecular orientation at interfaces. J Phys Chem C 120:20239–20246. doi: 10.1021/acs.jpcc.6b08093 CrossRefGoogle Scholar
  187. 187.
    Laaser JE, Zanni MT (2013) Extracting structural information from the polarization dependence of one- and two-dimensional sum frequency generation spectra. J Phys Chem A 117:5875–5890. doi: 10.1021/jp307721y CrossRefGoogle Scholar
  188. 188.
    Nihonyanagi S, Kusaka R, Inoue K et al (2015) Accurate determination of complex χ(2) spectrum of the air/water interface. J Chem Phys 143(124707):1–4. doi: 10.1063/1.4931485 Google Scholar
  189. 189.
    Nihonyanagi S, Mondal JA, Yamaguchi S, Tahara T (2013) Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation. Annu Rev Phys Chem 64:579–603. doi: 10.1146/annurev-physchem-040412-110138 CrossRefGoogle Scholar
  190. 190.
    Shen YR, Ostroverkhov V (2006) Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem Rev 106:1140–1154. doi: 10.1021/cr040377d CrossRefGoogle Scholar
  191. 191.
    Ishiyama T, Imamura T, Morita A (2014) Theoretical studies of structures and vibrational sum frequency generation spectra at aqueous interfaces. Chem Rev 114:8447–8470CrossRefGoogle Scholar
  192. 192.
    Laaser JE, Zanni MT (2013) Extracting structural information from the polarization dependence of one- and two-dimensional sum frequency generation spectra. J Phys Chem A 117:5875–5890CrossRefGoogle Scholar
  193. 193.
    Ho J-J, Skoff DR, Ghosh A, Zanni MT (2015) Structural characterization of single-stranded DNA monolayers using two-dimensional sum frequency generation spectroscopy. J Phys Chem B 119:10586–10596. doi: 10.1021/acs.jpcb.5b07078 CrossRefGoogle Scholar
  194. 194.
    Laaser JE, Skoff DR, Ho J et al (2014) Two-dimensional sum-frequency generation reveals structure and dynamics of a surface-bound peptide. J Am Chem Soc 136:956–962CrossRefGoogle Scholar
  195. 195.
    Zhang Z, Piatkowski L, Bakker HJ, Bonn M (2011) Communication: interfacial water structure revealed by ultrafast two-dimensional surface vibrational spectroscopy. J Chem Phys 135:18–21. doi: 10.1063/1.3605657 Google Scholar
  196. 196.
    Hsieh C-S, Okuno M, Hunger J et al (2014) Aqueous heterogeneity at the air/water interface revealed by 2D-HD-SFG spectroscopy. Angew Chem Int Ed Engl 53:8146–8149. doi: 10.1002/anie.201402566 CrossRefGoogle Scholar
  197. 197.
    Nagata Y, Mukamel S (2011) Spectral diffusion at the water/lipid interface revealed by two-dimensional fourth-order optical spectroscopy: a classical simulation study. J Am Chem Soc 133:3276–3279. doi: 10.1021/ja110748s CrossRefGoogle Scholar
  198. 198.
    Singh PC, Inoue KI, Nihonyanagi S et al (2016) Femtosecond hydrogen bond dynamics of bulk-like and bound water at positively and negatively charged lipid interfaces revealed by 2D HD-VSFG spectroscopy. Angew Chemie Int Ed 55:10621–10625. doi: 10.1002/anie.201603676 CrossRefGoogle Scholar
  199. 199.
    Livingstone RA, Nagata Y, Bonn M, Backus EHG (2015) Two types of water at the water-surfactant interface revealed by time-resolved vibrational spectroscopy. J Am Chem Soc 137:14912–14919. doi: 10.1021/jacs.5b07845 CrossRefGoogle Scholar
  200. 200.
    Singh PC, Nihonyanagi S, Yamaguchi S, Tahara T (2012) Ultrafast vibrational dynamics of water at a charged interface revealed by two-dimensional heterodyne-detected vibrational sum frequency generation. J Chem Phys 137(094706):1–6. doi: 10.1063/1.4747828 Google Scholar
  201. 201.
    Inoue KI, Nihonyanagi S, Singh PC et al (2015) 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H2O and HOD water at charged interfaces. J Chem Phys 142(212431):1–12. doi: 10.1063/1.4918644 Google Scholar
  202. 202.
    Piatkowski L, Zhang Z, Backus EHG et al (2014) Extreme surface propensity of halide ions in water. Nat Commun 5:4083. doi: 10.1038/ncomms5083 CrossRefGoogle Scholar
  203. 203.
    Fecko CJ, Eaves JD, Loparo JJ et al (2003) Ultrafast hydrogen-bond dynamics in the infrared. Science 301:1698–1702CrossRefGoogle Scholar
  204. 204.
    Kraack JP, Lotti D, Hamm P (2014) Ultrafast, multidimensional attenuated total reflectance spectroscopy of adsorbates at metal surfaces. J Phys Chem Lett 5:2325–2329CrossRefGoogle Scholar
  205. 205.
    Kraack JP, Kaech A, Hamm P (2017) Molecule-specific interactions of diatomic adsorbates at metal-liquid interfaces. Struct Dyn 4(044009):1–14. doi: 10.1063/1.4978894 Google Scholar
  206. 206.
    Zamadar M, Asaoka S, Grills DC, Miller JR (2013) Giant infrared absorption bands of electrons and holes in conjugated molecules. Nat Commun 4:2818. doi: 10.1038/ncomms3818 CrossRefGoogle Scholar
  207. 207.
    Bertie JE, Lan Z (1996) Infrared intensities of liquids XX: the intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25 C between 15,000 and 1 cm−1. Appl Spectrosc 50:1047–1057. doi: 10.1366/0003702963905385 CrossRefGoogle Scholar
  208. 208.
    Yan C, Nishida J, Yuan R, Fayer MD (2016) Water of hydration dynamics in minerals gypsum and bassanite: ultrafast 2D IR spectroscopy of rocks. J Am Chem Soc 138:9694–9703. doi: 10.1021/jacs.6b05589 CrossRefGoogle Scholar
  209. 209.
    Bakulin AA, Cringus D, Pieniazek PA et al (2013) Dynamics of water confined in reversed micelles: multidimensional vibrational spectroscopy study. J Phys Chem B 117:15545–15558. doi: 10.1021/jp405853j CrossRefGoogle Scholar
  210. 210.
    Bagchi B (2005) Water dynamics in the hydration layer around proteins and micelles. Chem Rev 105:3197–3219. doi: 10.1021/cr020661+ CrossRefGoogle Scholar
  211. 211.
    Volkov VV, Palmer DJ, Righini R (2007) Distinct water species confined at the interface of a phospholipid membrane. Phys Rev Lett 99:1–4. doi: 10.1103/PhysRevLett.99.078302 CrossRefGoogle Scholar
  212. 212.
    Bakulin AA, Selig O, Bakker HJ, et al (2015) Real-time observation of organic cation reorientation in methylammonium lead iodide perovskites. J Phys Chem Lett 3663–3669. doi: 10.1021/acs.jpclett.5b01555
  213. 213.
    Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Bond Surf Interfaces 98:199–217. doi: 10.1016/B978-044452837-7.50005-8 Google Scholar
  214. 214.
    Medders GR, Paesani F (2014) Water dynamics in metal − Organic frameworks: effects of heterogeneous confinement predicted by computational spectroscopy. J Phys Chem Lett 5:2897–2902CrossRefGoogle Scholar
  215. 215.
    Nishida J, Tamimi A, Fei H et al (2014) Structural dynamics inside a functionalized metal-organic framework probed by ultrafast 2D IR spectroscopy. Proc Nat Acad Sci USA 111:18442–18447. doi: 10.1073/pnas.1422194112 CrossRefGoogle Scholar
  216. 216.
    Yoon M, Srirambalaji R, Kim K (2012) Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem Rev 112:1196–1231. doi: 10.1021/cr2003147 CrossRefGoogle Scholar
  217. 217.
    Kreno LE, Leong K, Farha OK et al (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125. doi: 10.1021/cr200324t (Washington, DC, United States) CrossRefGoogle Scholar
  218. 218.
    Lotti D, Hamm P, Kraack JP (2016) Surface-sensitive spectro-electrochemistry using ultrafast 2D ATR IR spectroscopy. J Phys Chem C 120:2883–2892. doi: 10.1021/acs.jpcc.6b00395 CrossRefGoogle Scholar
  219. 219.
    Lambert DK (1988) Vibrational stark effect of CO on Ni(100), and CO in the aqueous double layer: experiment, theory, and models. J Chem Phys 89:3847. doi: 10.1063/1.454860 CrossRefGoogle Scholar
  220. 220.
    Hush NS, Reimers JR (1995) Vibrational stark spectroscopy. 1. basic theory and application to the CO stretch. J Phys Chem 99:15798–15805. doi: 10.1021/j100043a018 CrossRefGoogle Scholar
  221. 221.
    Chattopadhyay A, Boxer SG (1995) Vibrational stark effect spectroscopy. J Am Chem Soc 117:1449–1450CrossRefGoogle Scholar
  222. 222.
    Lambert DK (1996) Vibrational stark effect of adsorbates at electrochemical interfaces. Electrochim Acta 41:623–630. doi: 10.1016/0013-4686(95)00349-5 CrossRefGoogle Scholar
  223. 223.
    Fried SD, Boxer SG (2015) Measuring electric fields and noncovalent interactions using the vibrational stark effect. Acc Chem Res 48:998–1006. doi: 10.1021/ar500464j CrossRefGoogle Scholar
  224. 224.
    Mojet BL, Ebbesen SD, Lefferts L (2010) Light at the interface: the potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water. Chem Soc Rev 39:4643–4655. doi: 10.1039/c0cs00014k CrossRefGoogle Scholar
  225. 225.
    El Khoury Y, van Wilderen LJGW, Vogt T et al (2015) A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy. Rev Sci Instrum 86(083102):1–5. doi: 10.1063/1.4927533 Google Scholar
  226. 226.
    El Khoury Y, van Wilderen LJGW, Bredenbeck J (2015) Ultrafast 2D-IR spectroelectrochemistry of flavin mononucleotide. J Chem Phys 142:212416. doi: 10.1063/1.4916916 CrossRefGoogle Scholar
  227. 227.
    Nishida J, Yan C, Fayer MD (2017) Enhanced nonlinear spectroscopy for monolayers and thin films in near-Brewster ’ s angle reflection pump-probe geometry. J Chem Phys 146:94201. doi: 10.1063/1.4977508 CrossRefGoogle Scholar
  228. 228.
    Liu W-T, Shen YR (2014) In situ sum-frequency vibrational spectroscopy of electrochemical interfaces with surface plasmon resonance. Proc Natl Acad Sci 111:1293–1297. doi: 10.1073/pnas.1317290111 CrossRefGoogle Scholar
  229. 229.
    Peremans A, Tadjeddine A, Zheng W-Q et al (1996) Vibrational dynamics of CO at single-crystal platinum electrodes in aqueous and non-aqueous electrolytes. Surf Sci 368:384–388. doi: 10.1016/S0039-6028(96)01080-1 CrossRefGoogle Scholar
  230. 230.
    Peremans A, Tadjeddine A (1994) Vibrational spectroscopy of electrochemically deposited hydrogen on platinum. Phys Rev Lett 73:3010–3013CrossRefGoogle Scholar
  231. 231.
    Roberts ST, Loparo JJ, Ramasesha K, Tokmakoff A (2011) A fast-scanning Fourier transform 2D IR interferometer. Opt Commun 284:1062–1066. doi: 10.1016/j.optcom.2010.10.049 CrossRefGoogle Scholar
  232. 232.
    Garrett-Roe S, Hamm P (2009) What can we learn from three-dimensional infrared spectroscopy? Acc Chem Res 42:1412–1422. doi: 10.1021/ar900028k CrossRefGoogle Scholar
  233. 233.
    Mukamel S, Piryatinski A, Chernyak V (1999) Two-dimensional Raman echoes: femtosecond view of molecular structure and vibrational coherence. Acc Chem Res 32:145–154. doi: 10.1021/ar960206y CrossRefGoogle Scholar
  234. 234.
    Tokmakoff A, Lang M, Larsen D et al (1997) Two-dimensional Raman spectroscopy of vibrational interactions in liquids. Phys Rev Lett 79:2702–2705. doi: 10.1103/PhysRevLett.79.2702 CrossRefGoogle Scholar
  235. 235.
    Tokmakoff A, Fleming GR (1997) Two-dimensional Raman spectroscopy of the intermolecular modes of liquid CS2. J Chem Phys 106:2569–2582. doi: 10.1063/1.473361 CrossRefGoogle Scholar
  236. 236.
    Frostig H, Bayer T, Dudovich N et al (2015) Single-beam spectrally controlled two-dimensional Raman spectroscopy. Nat Photonics 9:339–343. doi: 10.1038/nphoton.2015.64 CrossRefGoogle Scholar
  237. 237.
    Garrett-Roe S, Perakis F, Rao F, Hamm P (2011) Three-dimensional infrared spectroscopy of isotope-substituted liquid water reveals heterogeneous dynamics. J Phys Chem B 115:6976–6984. doi: 10.1021/jp201989s CrossRefGoogle Scholar
  238. 238.
    Garrett-Roe S, Hamm P (2009) Purely absorptive three-dimensional infrared spectroscopy. J Chem Phys 130:164510. doi: 10.1063/1.3122982 CrossRefGoogle Scholar
  239. 239.
    Perakis F, Borek JA, Hamm P (2013) Three-dimensional infrared spectroscopy of isotope-diluted ice Ih. J Chem Phys. doi: 10.1063/1.4812216 Google Scholar
  240. 240.
    Ding F, Zanni MT (2007) Heterodyned 3D IR spectroscopy. Chem Phys 341:95–105. doi: 10.1016/j.chemphys.2007.06.010 CrossRefGoogle Scholar
  241. 241.
    Fulmer EC, Ding F, Zanni MT (2005) Heterodyned fifth-order 2D-IR spectroscopy of the azide ion in an ionic glass. J Chem Phys 122:34302. doi: 10.1063/1.1810513 CrossRefGoogle Scholar
  242. 242.
    Kemlin V, Bonvalet A, Daniault L, Joffre M (2016) Transient two-dimensional infrared spectroscopy in a vibrational ladder. J Phys Chem Lett 3377–3382. doi: 10.1021/acs.jpclett.6b01535
  243. 243.
    Kraack JP, Hamm P (2016) Vibrational ladder-climbing in surface-enhanced, ultrafast infrared spectroscopy. Phys Chem Chem Phys 18:16088–16093. doi: 10.1039/C6CP02589G CrossRefGoogle Scholar
  244. 244.
    Kraack, J. P. (2013). Multi-dimensional Ultrafast Spectroscopy of Vibrational Coherence Dynamics in Excited Electronic States of Polyenes, Ruprecht-Karls-University of Heidelberg (Doctoral dissertation).Google Scholar
  245. 245.
    Borek JA, Perakis F, Hamm P (2014) Testing for memory-free spectroscopic coordinates by 3D IR exchange spectroscopy. Proc Natl Acad Sci 111:10462–10467. doi: 10.1073/pnas.1406967111 CrossRefGoogle Scholar
  246. 246.
    Kwac K, Lee C, Jung Y et al (2006) Phenol-benzene complexation dynamics: quantum chemistry calculation, molecular dynamics simulations, and two dimensional IR spectroscopy. J Chem Phys. doi: 10.1063/1.2403132 Google Scholar
  247. 247.
    Lane TJ, Shukla D, Beauchamp KA, Pande VS (2013) To milliseconds and beyond: challenges in the simulation of protein folding. Curr Opin Struct Biol 23:58–65. doi: 10.1016/j.sbi.2012.11.002 CrossRefGoogle Scholar
  248. 248.
    Shukla D, Hernandez CX, Weber JK, Pande VS (2015) Markov state models provide insights into dynamic modulation of protein function. Acc Chem Res 48:414–422. doi: 10.1021/ar5002999 CrossRefGoogle Scholar
  249. 249.
    Lane TJ, Bowman GR, Beauchamp KA et al (2011) Markov state model reveals folding and functional dynamics in ultra-long MD trajectories. J Am Chem Soc 133:18413–18419. doi: 10.1021/ja207470h.Markov CrossRefGoogle Scholar
  250. 250.
    Xiong W, Laaser JE, Paoprasert P et al (2009) Transient 2D IR spectroscopy of charge injection in dye-sensitized nanocrystalline thin films. J Am Chem Soc 131:18040–18041. doi: 10.1021/ja908479r CrossRefGoogle Scholar
  251. 251.
    Bredenbeck J, Helbing J, Behrendt R et al (2003) Transient 2D-IR spectroscopy : snapshots of the nonequilibrium ensemble during the picosecond conformational transition of a small peptide. J Phys Chem B 107:8654–8660. doi: 10.1021/jp034552q CrossRefGoogle Scholar
  252. 252.
    Bredenbeck J, Helbing J, Hamm P (2004) Labeling vibrations by light: ultrafast transient 2D-IR spectroscopy tracks vibrational modes during photoinduced charge transfer. J Am Chem Soc 126:990–991. doi: 10.1021/ja0380190 CrossRefGoogle Scholar
  253. 253.
    Hunt NT (2014) Transient 2D-IR spectroscopy of inorganic excited states. Dalt Trans 43:17578–17589. doi: 10.1039/C4DT01410C CrossRefGoogle Scholar
  254. 254.
    Kiefer LM, King JT, Kubarych KJ (2014) Equilibrium excited state dynamics of a photoactivated catalyst measured with ultrafast transient 2DIR. J Phys Chem A 118:9853–9860. doi: 10.1021/jp508974w CrossRefGoogle Scholar
  255. 255.
    Di Donato M, Ragnoni E, Lapini A et al (2015) Femtosecond transient infrared and stimulated Raman spectroscopy shed light on the relaxation mechanisms of photo-excited peridinin. J Chem Phys 142:212409. doi: 10.1063/1.4915072 CrossRefGoogle Scholar
  256. 256.
    Di Donato M, Centellas MS, Lapini A et al (2014) Combination of transient 2D-IR experiments and Ab initio computations sheds light on the formation of the charge-transfer state in photoexcited carbonyl carotenoids. J Phys Chem B 118:9613–9630CrossRefGoogle Scholar
  257. 257.
    Delor M, Sazanovich IV, Towrie M, Weinstein JA (2015) Probing and exploiting the interplay between nuclear and electronic motion in charge transfer processes. Acc Chem Res 150319121125006. doi: 10.1021/ar500420c
  258. 258.
    Kolano C, Helbing J, Kozinski M et al (2006) Watching hydrogen-bond dynamics in a beta-turn by transient two-dimensional infrared spectroscopy. Nature 444:469–472. doi: 10.1038/nature05352 CrossRefGoogle Scholar
  259. 259.
    Cervetto V, Pfister R, Bredenbeck J et al (2008) Transient IR and 2D-IR spectroscopy of thiopeptide isomerization. J Phys Chem B 112:8395–8405. doi: 10.1016/B978-044452821-6/50058-7 Google Scholar
  260. 260.
    Chung HS, Ganim Z, Jones KC, Tokmakoff A (2007) Transient 2D IR spectroscopy of ubiquitin unfolding dynamics. Proc Natl Acad Sci USA 104:14237–14242. doi: 10.1073/pnas.0700959104 CrossRefGoogle Scholar
  261. 261.
    Jones KC, Peng CS, Tokmakoff A (2013) Folding of a heterogeneous β-hairpin peptide from temperature-jump 2D IR spectroscopy. Proc Natl Acad Sci USA 110:2828–2833. doi: 10.1073/pnas.1211968110 CrossRefGoogle Scholar
  262. 262.
    Baiz CR, Lin YS, Peng CS et al (2014) A molecular interpretation of 2D IR protein folding experiments with markov state models. Biophys J 106:1359–1370. doi: 10.1016/j.bpj.2014.02.008 CrossRefGoogle Scholar
  263. 263.
    Chung HS, Khalil M, Smith AW, Tokmakoff A (2007) Transient two-dimensional IR spectrometer for probing nanosecond temperature-jump kinetics. Rev Sci Instrum. doi: 10.1063/1.2743168 Google Scholar
  264. 264.
    Peng CS, Baiz CR, Tokmakoff A (2013) Direct observation of ground-state lactam-lactim tautomerization using temperature-jump transient 2D IR spectroscopy. Proc Natl Acad Sci USA 110:9243–9248. doi: 10.1073/pnas.1303235110 CrossRefGoogle Scholar
  265. 265.
    Bredenbeck J, Helbing J, Hamm P (2004) Transient two-dimensional infrared spectroscopy: exploring the polarization dependence. J Chem Phys 121:5943–5957. doi: 10.1063/1.1779575 CrossRefGoogle Scholar
  266. 266.
    Andresen ER, Hamm P (2009) Site-specific difference 2D-IR spectroscopy of bacteriorhodopsin. J Phys Chem B 113:6520–6527. doi: 10.1021/jp810397u CrossRefGoogle Scholar
  267. 267.
    Bredenbeck J, Helbing J, Hamm P (2005) Solvation beyond the linear response regime. Phys Rev Lett 95:1–4. doi: 10.1103/PhysRevLett.95.083201 CrossRefGoogle Scholar
  268. 268.
    Baiz CR, Nee MJ, McCanne R, Kubarych KJ (2008) Ultrafast nonequilibrium Fourier-transform two-dimensional infrared spectroscopy. Opt Lett 33:2533–2535. doi: 10.1364/OL.33.002533 CrossRefGoogle Scholar
  269. 269.
    Bredenbeck J, Helbing J, Nienhaus K et al (2007) Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy. Proc Natl Acad Sci USA 104:14243–14248. doi: 10.1073/pnas.0607758104 CrossRefGoogle Scholar
  270. 270.
    Van Wilderen LJGW, Messmer AT, Bredenbeck J (2014) Mixed IR/Vis two-dimensional spectroscopy: chemical exchange beyond the vibrational lifetime and sub-ensemble selective photochemistry. Angew Chemie-Int Ed 53:2667–2672. doi: 10.1002/anie.201305950 CrossRefGoogle Scholar
  271. 271.
    Zhang XX, Jones KC, Fitzpatrick A et al (2016) Studying protein–protein binding through T-jump induced dissociation: transient 2D IR spectroscopy of insulin dimer. J Phys Chem B 120:5134–5145. doi: 10.1021/acs.jpcb.6b03246 CrossRefGoogle Scholar
  272. 272.
    Courtney TL, Fox ZW, Estergreen L, Khalil M (2015) Measuring coherently coupled intramolecular vibrational and charge transfer dynamics with two-dimensional vibrational-electronic spectroscopy. J Phys Chem Lett 6:1286–1292. doi: 10.1021/acs.jpclett.5b00356 CrossRefGoogle Scholar
  273. 273.
    Courtney TL, Fox ZW, Slenkamp KM, Khalil M (2015) Two-dimensional vibrational-electronic spectroscopy. J Chem Phys 143:154201. doi: 10.1063/1.4932983 CrossRefGoogle Scholar
  274. 274.
    Dahms F, Fingerhut BP, Nibbering ETJ et al (2017) Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2D IR spectroscopy. Science (80-) 5144:1–9. doi: 10.1126/science.aan5144 Google Scholar
  275. 275.
    Balasubramanian M, Courtney TL, Gaynor JD, Khalil M (2016) Compression of tunable broadband mid-IR pulses with a deformable mirror pulse shaper. J Opt Soc Am B 33:2033–2037. doi: 10.1364/JOSAB.33.002033 CrossRefGoogle Scholar
  276. 276.
    Gaynor JD, Courtney TL, Balasubramanian M, Khalil M (2016) Coherent Fourier transform two-dimensional electronic-vibrational spectroscopy using an octave-spanning mid-IR probe. Opt Lett 41:2895–2898. doi: 10.1364/UP.2016.UTu4A.7 CrossRefGoogle Scholar
  277. 277.
    Maiti KS (2015) Broadband two dimensional infrared spectroscopy of cyclic amide 2-Pyrrolidinone. Phys Chem Chem Phys 17:24998–25003. doi: 10.1039/C5CP04272K CrossRefGoogle Scholar
  278. 278.
    Wand A, Gdor I, Zhu J, et al (2013) Shedding new light on retinal protein photochemistry. Annu Rev Phys Chem 64:null. doi: 10.1146/annurev-physchem-040412-110148
  279. 279.
    Brixner T, Mančal T, Stiopkin IV, Fleming GR (2004) Phase-stabilized two-dimensional electronic spectroscopy. J Chem Phys 121:4221. doi: 10.1063/1.1776112 CrossRefGoogle Scholar
  280. 280.
    Oliver TAA, Lewis NHC, Graham R (2014) Correlating the motion of electrons and nuclei with two-dimensional electronic–vibrational spectroscopy. Proc Nat Acad Sci USA. doi: 10.5452/ma-ax7dd Google Scholar
  281. 281.
    Lewis NHC, Fleming GR (2016) Two-dimensional electronic-vibrational spectroscopy of chlorophyll a and b. J Phys Chem Lett 831–837. doi: 10.1021/acs.jpclett.6b00037
  282. 282.
    Lewis NHC, Dong H, Oliver TAA, Fleming GR (2015) Measuring correlated electronic and vibrational spectral dynamics using line shapes in two-dimensional electronic–vibrational spectroscopy. J Chem Phys. doi: 10.1063/1.4919686 Google Scholar
  283. 283.
    Lewis NHC, Dong H, Oliver TAA, Fleming GR (2015) A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy. J Chem Phys. doi: 10.1063/1.4931634 Google Scholar
  284. 284.
    Lewis NHC, Gruenke NL, Oliver TAA, et al (2016) Observation of electronic excitation transfer through light harvesting complex II using two-dimensional electronic–vibrational spectroscopy. J Phys Chem Lett 4197–4206. doi: 10.1021/acs.jpclett.6b02280
  285. 285.
    Dong H, Lewis NHC, Oliver TAA, Fleming GR (2015) Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy. J Chem Phys. doi: 10.1063/1.4919684 Google Scholar
  286. 286.
    Oliver TAA, Fleming GR (2015) Following coupled electronic-nuclear motion through conical intersections in the ultrafast relaxation of β-Apo-8’-carotenal. J Phys Chem B 119:11428–11441. doi: 10.1021/acs.jpcb.5b04893 CrossRefGoogle Scholar
  287. 287.
    Buckup T, Kraack JP, Marek MS, Motzkus M (2013) Vibronic coupling in excited electronic states investigated with resonant 2D Raman spectroscopy. EPJ Web Conf 41:5018CrossRefGoogle Scholar
  288. 288.
    Tracy KM, Barich MV, Carver CL et al (2016) High-throughput two-dimensional infrared (2D IR) spectroscopy achieved by interfacing microfluidic technology with a high repetition rate 2D IR spectrometer. J Phys Chem Lett 7:4865–4870. doi: 10.1021/acs.jpclett.6b01941 CrossRefGoogle Scholar
  289. 289.
    Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5:210–218. doi: 10.1038/nrd1985 CrossRefGoogle Scholar
  290. 290.
    Johnson TJ, Ross D, Locascio LE (2002) Rapid microfluidic mixing. Anal Chem 74:45–51. doi: 10.1021/ac010895d CrossRefGoogle Scholar
  291. 291.
    Wong SH, Ward MCL, Wharton CW (2004) Micro T-mixer as a rapid mixing micromixer. Sens Actuators B Chem 100:359–379. doi: 10.1016/j.snb.2004.02.008 CrossRefGoogle Scholar
  292. 292.
    Olson JS (1981) [38] Stopped-flow, rapid mixing measurements of ligand binding to hemoglobin and red cells. Methods Enzymol 76:631–651. doi: 10.1016/0076-6879(81)76148-2 CrossRefGoogle Scholar
  293. 293.
    Roder H, Wüthrich K (1986) Protein folding kinetics by combined use of rapid mixing techniques and NMR observation of individual amide protons. Proteins Struct Funct Genet 1:34–42. doi: 10.1002/prot.340010107 CrossRefGoogle Scholar
  294. 294.
    Roder H, Maki K, Latypov RF et al (2006) Early events in protein folding explored by rapid mixing methods. Chem Rev 106:1836–1861. doi: 10.1002/9783527619498.ch15 CrossRefGoogle Scholar
  295. 295.
    Chow AW (2002) Lab-on-a-chip: opportunities for chemical engineering. AIChE J 48:1590–1595. doi: 10.1002/aic.690480802 CrossRefGoogle Scholar
  296. 296.
    Hansen C, Quake SR (2003) Microfluidics in structural biology: smaller, faster… better. Curr Opin Struct Biol 13:538–544. doi: 10.1016/j.sbi.2003.09.010 CrossRefGoogle Scholar
  297. 297.
    Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices/microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411. doi: 10.1146/annurev.fluid.36.050802.122124 CrossRefGoogle Scholar
  298. 298.
    Jensen K (2001) Microreaction engineering—is small better? Chem Eng Sci 56:293–303. doi: 10.1016/S0009-2509(00)00230-X CrossRefGoogle Scholar
  299. 299.
    Stone HA, Kim S (2001) Microfluidics: basic issues, applications, and challenges. AIChE J 47:1250–1254. doi: 10.1002/aic.690470602 CrossRefGoogle Scholar
  300. 300.
    Watts P, Haswell SJ (2003) Microfluidic combinatorial chemistry. Curr Opin Chem Biol 7:380–387. doi: 10.1016/S1367-5931(03)00050-4 CrossRefGoogle Scholar
  301. 301.
    Luther BM, Tracy KM, Gerrity M et al (2016) 2D IR spectroscopy at 100 kHz utilizing a Mid-IR OPCPA laser source. Opt Express 24:4117–4127. doi: 10.1364/OE.24.004117 CrossRefGoogle Scholar
  302. 302.
    Greetham GM, Donaldson PM, Nation C et al (2016) A 100 kHz time-resolved multiple-probe femtosecond to second infrared absorption spectrometer. Appl Spectrosc 70:645–653CrossRefGoogle Scholar
  303. 303.
    Chalus O, Bates PK, Smolarski M, Biegert J (2009) Mid-IR short-pulse OPCPA with micro-joule energy at 100 kHz. Opt Express 17:3587–3594. doi: 10.1364/OE.17.003587 CrossRefGoogle Scholar
  304. 304.
    Shim S-H, Strasfeld DB, Ling YL, Zanni MT (2007) Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide. Proc Natl Acad Sci 104:14197–14202. doi: 10.1073/pnas.0700804104 CrossRefGoogle Scholar
  305. 305.
    Leger JD, Nyby CM, Varner C et al (2014) Fully automated dual-frequency three-pulse-echo 2DIR spectrometer accessing spectral range from 800 to 4000 wavenumbers. Rev Sci Instrum. doi: 10.1063/1.4892480 Google Scholar
  306. 306.
    Kuroda DG, Bauman JD, Challa JR et al (2013) Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase. Nat Chem 5:174–181. doi: 10.1038/nchem.1559 CrossRefGoogle Scholar
  307. 307.
    Ataka K, Heberle J (2007) Biochemical applications of surface-enhanced infrared absorption spectroscopy. Anal Bioanal Chem 388:47–54. doi: 10.1007/s00216-006-1071-4 CrossRefGoogle Scholar
  308. 308.
    Ataka K, Stripp ST, Heberle J (2013) Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. Biochim Biophys Acta-Biomembr 1828:2283–2293. doi: 10.1016/j.bbamem.2013.04.026 CrossRefGoogle Scholar
  309. 309.
    Neubrech F, Pucci A, Cornelius TW et al (2008) Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys Rev Lett 101(157403):1–4. doi: 10.1103/PhysRevLett.101.157403 Google Scholar
  310. 310.
    Neubrech F, Pucci A (2013) Plasmonic enhancement of vibrational excitations in the infrared. IEEE J Sel Top Quantum Electron 19:4600809. doi: 10.1109/JSTQE.2012.2227302 CrossRefGoogle Scholar
  311. 311.
    Selig O, Siffels R, Rezus YLA (2015) Ultrasensitive ultrafast vibrational spectroscopy employing the near field of gold nanoantennas. Phys Rev Lett 114(233004):1–5. doi: 10.1103/PhysRevLett.114.233004 Google Scholar
  312. 312.
    Donaldson PM, Hamm P (2013) Gold nanoparticle capping layers: structure, dynamics, and surface enhancement measured using 2D-IR spectroscopy. Angew Chem Int Ed 52:634–638. doi: 10.1002/anie.201204973 CrossRefGoogle Scholar
  313. 313.
    Arrivo SM, Dougherty TP, Grubbs WT, Heilweil EJ (1995) Ultrafast infrared spectroscopy of vibrational CO-stretch up-pumping and relaxation dynamics of W(CO)6. Chem Phys Lett 235:247–254CrossRefGoogle Scholar
  314. 314.
    Witte T, Hornung T, Windhorn L et al (2003) Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing. J Chem Phys 118:2021–2024. doi: 10.1063/1.1540101 CrossRefGoogle Scholar
  315. 315.
    Windhorn L, Witte T, Yeston JS et al (2002) Molecular dissociation by mid-IR femtosecond pulses. Chem Phys Lett 357:85–90. doi: 10.1016/S0009-2614(02)00444-X CrossRefGoogle Scholar
  316. 316.
    Falvo C, Debnath A, Meier C (2013) Vibrational ladder climbing in carboxy-hemoglobin: effects of the protein environment. J Chem Phys. doi: 10.1063/1.4799271 Google Scholar
  317. 317.
    Debnath A, Falvo C, Meier C (2013) State-selective excitation of the CO stretch in carboxyhemoglobin by mid-IR laser pulse shaping: a theoretical investigation. J Phys Chem A 117:12884–12888. doi: 10.1021/jp410473u CrossRefGoogle Scholar
  318. 318.
    Witte T, Yeston JS, Motzkus M et al (2004) Femtosecond infrared coherent excitation of liquid phase vibrational population distributions (v > 5). Chem Phys Lett 392:156–161. doi: 10.1016/j.cplett.2004.05.052 CrossRefGoogle Scholar
  319. 319.
    Maas DJ, Duncan DI, Vrijen RB et al (1998) Vibrational ladder climbing in NO by (sub)picosecond frequency-chirped infrared laser pulses. Chem Phys Lett 290:75–80. doi: 10.1016/S0009-2614(98)00531-4 CrossRefGoogle Scholar
  320. 320.
    Kleiman VD, Arrivo SM, Melinger JS, Heilweil EJ (1998) Controlling condensed-phase vibrational excitation with tailored infrared pulses. Chem Phys 233:207–216CrossRefGoogle Scholar
  321. 321.
    Nuernberger P, Vieille T, Ventalon C, Joffre M (2011) Impact of pulse polarization on coherent vibrational ladder climbing signals. J Phys Chem B 115:5554–5563. doi: 10.1021/jp1113762 CrossRefGoogle Scholar
  322. 322.
    Ventalon C, Fraser JM, Vos MH et al (2004) Coherent vibrational climbing in carboxyhemoglobin. Proc Natl Acad Sci USA 101:13216–13220. doi: 10.1073/pnas.0401844101 CrossRefGoogle Scholar
  323. 323.
    Strasfeld DB, Shim SH, Zanni MT (2007) Controlling vibrational excitation with shaped Mid-IR pulses. Phys Rev Lett 99:1–4. doi: 10.1103/PhysRevLett.99.038102 CrossRefGoogle Scholar
  324. 324.
    Wodtke AM, Matsiev D, Auerbach D (2008) Energy transfer and chemical dynamics at solid surfaces: the special role of charge transfer. Prog Surf Sci 83:167–214. doi: 10.1016/j.progsurf.2008.02.001 CrossRefGoogle Scholar
  325. 325.
    Golibrzuch K, Bartels N, Auerbach DJ, Wodtke AM (2015) The dynamics of molecular interactions and chemical reactions at metal surfaces: testing the foundations of theory. Annu Rev Phys Chem 66:399–425. doi: 10.1146/annurev-physchem-040214-121958 CrossRefGoogle Scholar
  326. 326.
    Krüger BC, Meyer S, Kandratsenka A et al (2016) Vibrational inelasticity of highly vibrationally excited NO on Ag(111). J Phys Chem Lett 7:441–446. doi: 10.1021/acs.jpclett.5b02448 CrossRefGoogle Scholar
  327. 327.
    Silva M, Jongma R, Field RW, Wodtke AM (2001) The dynamics of “stretched molecules”: experimental studies of highly vibrationally excited molecules with stimulated emission pumping. Annu Rev Phys Chem 52:811–852. doi: 10.1146/annurev.physchem.52.1.811 CrossRefGoogle Scholar
  328. 328.
    Kneba M, Wolfrum J (1980) Bimolecular reactions of vibrationally excited molecules. Annu Rev Phys Chem 31:47–79CrossRefGoogle Scholar
  329. 329.
    Moore C, Smith I (1979) Vibrational–rotational excitation. Chemical reactions of vibrationally excited molecules. Faraday Discuss Chem Soc 67:146–161. doi: 10.1039/DC9796700146 CrossRefGoogle Scholar
  330. 330.
    Enders D, Nagao T, Pucci A et al (2011) Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold. Phys Chem Chem Phys 13:4935–4941. doi: 10.1039/c0cp01450h CrossRefGoogle Scholar
  331. 331.
    Lessinger L (1994) Morse oscillators, Birge–Sponer extrapolation, and the electronic absorption spectrum of I2. J Chem Educ 71:388. doi: 10.1021/ed071p388 CrossRefGoogle Scholar
  332. 332.
    Luo Y-R (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca RatonCrossRefGoogle Scholar
  333. 333.
    Huber CJ, Egger SM, Spector IC et al (2015) 2D-IR spectroscopy of porous silica nanoparticles: measuring the distance sensitivity of spectral diffusion. J Phys Chem C 119:25135–25144. doi: 10.1021/acs.jpcc.5b05637 CrossRefGoogle Scholar
  334. 334.
    Wohlleben W, Buckup T, Herek JL, Motzkus M (2005) Coherent control for spectroscopy and manipulation of biological dynamics. ChemPhysChem 6:850–857CrossRefGoogle Scholar
  335. 335.
    Herek JL, Wohlleben W, Cogdell RJ et al (2002) Quantum control of energy flow in light harvesting. Nature 417:533–535CrossRefGoogle Scholar
  336. 336.
    Prokhorenko VI, Halpin A, Miller RJD (2011) Coherently-controlled two-dimensional spectroscopy: evidence for phase induced long-lived memory effects. Faraday Discuss 153:27–39. doi: 10.1039/c1fd00095k CrossRefGoogle Scholar
  337. 337.
    Buckup T, Hauer J, Mohring J, Motzkus M (2009) Multidimensional spectroscopy of beta-carotene: vibrational cooling in the excited state. Arch Biochem Biophys 483:219–223CrossRefGoogle Scholar
  338. 338.
    Prokhorenko VI, Nagy AM, Waschuk SA et al (2006) Coherent control of retinal isomerization in bacteriorhodopsin. Science (80-) 313:1257–1261. doi: 10.1126/science.1130747 CrossRefGoogle Scholar
  339. 339.
    Kraack JP, Motzkus M, Buckup T (2011) Selective nonlinear response preparation using femtosecond spectrally resolved four-wave-mixing. J Chem Phys 135:224505CrossRefGoogle Scholar
  340. 340.
    Windhorn L, Yeston JS, Witte T et al (2003) Getting ahead of IVR: a demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale. J Chem Phys 119:641–645. doi: 10.1063/1.1587696 CrossRefGoogle Scholar
  341. 341.
    Shim S-H, Strasfeld DB, Fulmer EC, Zanni MT (2006) Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation. Opt Lett 31:838–840. doi: 10.1364/OL.31.000838 CrossRefGoogle Scholar
  342. 342.
    Shim S-H, Strasfeld DB, Zanni MT (2006) Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses. Opt Express 14:13120–13130. doi: 10.1364/UP.2010.TuE28 CrossRefGoogle Scholar
  343. 343.
    Witte T, Kompa KL, Motzkus M (2003) Femtosecond pulse shaping in the mid infrared by difference-frequency mixing. Appl Phys B Lasers Opt 76:467–471. doi: 10.1007/s00340-003-1118-6 CrossRefGoogle Scholar
  344. 344.
    Middleton CT, Strasfeld DB, Zanni MT (2009) Polarization shaping in the mid-IR and polarization-based balanced heterodyne detection with application to 2D IR spectroscopy. Opt Express 17:14526–14533. doi: 10.1364/OE.17.014526 CrossRefGoogle Scholar
  345. 345.
    Strasfeld DB, Middleton CT, Zanni MT (2009) Mode selectivity with polarization shaping in the mid-IR. New J Phys. doi: 10.1088/1367-2630/11/10/105046 Google Scholar
  346. 346.
    Jiang X, Zaitseva E, Schmidt M et al (2008) Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy. Proc Natl Acad Sci USA 105:12113–12117. doi: 10.1073/pnas.0802289105 CrossRefGoogle Scholar
  347. 347.
    Dennis AM, Delehanty JB, Medintz IL (2016) Emerging physicochemical phenomena along with new opportunities at the biomolecular-nanoparticle interface. J Phys Chem Lett 7:2139–2150. doi: 10.1021/acs.jpclett.6b00570 CrossRefGoogle Scholar
  348. 348.
    Howes PD, Rana S, Stevens MM (2014) Plasmonic nanomaterials for biodiagnostics. Chem Soc Rev 43:3835–3853. doi: 10.1039/c3cs60346f CrossRefGoogle Scholar
  349. 349.
    Samanta D, Sarkar A (2011) Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications. Chem Soc Rev 40:2567–2592. doi: 10.1039/c0cs00056f CrossRefGoogle Scholar
  350. 350.
    Anker JN, Hall WP, Lyandres O et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453. doi: 10.1038/nmat2162 CrossRefGoogle Scholar
  351. 351.
    Leblanc RM (2006) Molecular recognition at Langmuir monolayers. Curr Opin Chem Biol 10:529–536. doi: 10.1016/j.cbpa.2006.09.010 CrossRefGoogle Scholar
  352. 352.
    Spinke J, Liley M, Angermaierj HGL, Knoll W (1993) Molecular recognition at self -assembled monolayers : the construction of multicomponent multilayers. Langmuir 9:1821–1825. doi: 10.1021/la00031a033 CrossRefGoogle Scholar
  353. 353.
    Zhang X, Yadavalli VK (2012) Functional self-assembled DNA nanostructures for molecular recognition. Nanoscale 4:2439–2446. doi: 10.1039/c2nr11711h CrossRefGoogle Scholar
  354. 354.
    Sampson NS, Mrksich M, Bertozzi CR (2000) Surface molecular recognition. Proc Nat Acad Sci USA 98:2000–2001Google Scholar
  355. 355.
    Aprile A, Ciuchi F, Pinalli R et al (2016) Probing molecular recognition at the solid-gas interface by sum-frequency vibrational spectroscopy. J Phys Chem Lett 7:3022–3026. doi: 10.1021/acs.jpclett.6b01300 CrossRefGoogle Scholar
  356. 356.
    Rodrigo D, Limaj O, Janner D et al (2016) Mid-infrared plasmonic biosensing with graphene. Science 349:165–168. doi: 10.1017/CBO9781107415324.004 CrossRefGoogle Scholar
  357. 357.
    Wu C, Khanikaev AB, Adato R et al (2012) Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater 11:69–75. doi: 10.1038/nmat3161 CrossRefGoogle Scholar
  358. 358.
    Adato R, Aksu S, Altug H (2015) Engineering mid-infrared nanoantennas for surface enhanced infrared absorption spectroscopy. Mater Today 18:436–446. doi: 10.1016/j.mattod.2015.03.001 CrossRefGoogle Scholar
  359. 359.
    Huck C, Vogt J, Sendner M et al (2015) Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods. ACS Photonics 2:1489–1497. doi: 10.1021/acsphotonics.5b00390 CrossRefGoogle Scholar
  360. 360.
    Li M, Cushing SK, Wu N (2015) Plasmon-enhanced optical sensors: a review. Analyst 140:386–406. doi: 10.1039/c4an01079e CrossRefGoogle Scholar
  361. 361.
    Huck C, Neubrech F, Vogt J et al (2014) Surface-enhanced infrared spectroscopy using nanometer-sized gaps. ACS Nano 8:4908–4914CrossRefGoogle Scholar
  362. 362.
    Adato R, Altug H (2013) In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat Commun 4:2154. doi: 10.1038/ncomms3154 CrossRefGoogle Scholar
  363. 363.
    Howes PD, Chandrawati R, Stevens MM (2014) Colloidal nanoparticles as advanced biological sensors. Science (80-) 346:1247390–1–1247390–10. doi: 10.1016/0250-6874(86)80002-6 CrossRefGoogle Scholar
  364. 364.
    Cheng F, Yang X, Gao J (2015) Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials. Sci Rep 5:14327. doi: 10.1038/srep14327 CrossRefGoogle Scholar
  365. 365.
    Betzig E, Trautman JK (1992) Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257:189–195. doi: 10.1126/science.257.5067.189 CrossRefGoogle Scholar
  366. 366.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated-emission - stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782. doi: 10.1364/OL.19.000780 CrossRefGoogle Scholar
  367. 367.
    Courjon D, Bainier C (1999) Near field microscopy and near field optics. Reports Prog Phys 57:989–1028. doi: 10.1088/0034-4885/57/10/002 CrossRefGoogle Scholar
  368. 368.
    Schuller JA, Barnard ES, Cai W et al (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204. doi: 10.1038/nmat2630 CrossRefGoogle Scholar
  369. 369.
    Kravtsov V, Ulbricht R, Atkin JM, Raschke MB (2016) Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat Nanotechnol 11:1–7. doi: 10.1038/nnano.2015.336 CrossRefGoogle Scholar
  370. 370.
    Centrone A (2015) Infrared imaging and spectroscopy beyond the diffraction limit. Annu Rev Anal Chem 8:101–126. doi: 10.1146/annurev-anchem-071114-040435 CrossRefGoogle Scholar
  371. 371.
    Centrone A, Lahiri B, Holland G (2013) Chemical imaging beyond the diffraction limit using photothermal induced resonance microscopy. 27:6–9Google Scholar
  372. 372.
    Keilmann F, Hillenbrand R (2004) Near-field microscopy by elastic light scattering from a tip. Philos Trans A Math Phys Eng Sci 362:787–805. doi: 10.1098/rsta.2003.1347 CrossRefGoogle Scholar
  373. 373.
    Atkin JM, Sass PM, Teichen PE, et al (2015) Nanoscale probing of dynamics in local molecular environments. J Phys Chem Lett. acs.jpclett.5b02093. doi: 10.1021/acs.jpclett.5b02093
  374. 374.
    Xu XG, Raschke MB (2013) Near-field infrared vibrational dynamics and tip-enhanced decoherence. Nano Lett 13:1588–1595. doi: 10.1021/nl304804p CrossRefGoogle Scholar
  375. 375.
    Kim SK, Wang J-K, Zewail AH (1994) Femtosecond pH jump: dynamics of acid—base reactions in solvent cages. Chem Phys Lett 228:369–378. doi: 10.1016/0009-2614(94)00951-1 CrossRefGoogle Scholar
  376. 376.
    Donten ML, Hassan S, Popp A et al (2015) pH-Jump induced leucine zipper folding beyond the diffusion limit. J Phys Chem B 119:1425–1432. doi: 10.1021/jp511539c CrossRefGoogle Scholar
  377. 377.
    Kohse S, Neubauer A, Pazidis A et al (2013) Photoswitching of enzyme activity by laser-induced pH-jump. J Am Chem Soc 135:9407–9411. doi: 10.1021/ja400700x CrossRefGoogle Scholar
  378. 378.
    Nunes RMD, Pineiro M, Arnaut LG (2009) Photoacid for extremely long-lived and reversible pH-jumps. J Am Chem Soc 131:9456–9462. doi: 10.1021/ja901930c CrossRefGoogle Scholar
  379. 379.
    Donten ML, Hamm P (2011) PH-Jump overshooting. J Phys Chem Lett 2:1607–1611. doi: 10.1021/jz200610n CrossRefGoogle Scholar
  380. 380.
    Genosar L, Cohen B, Huppert D (2000) Ultrafast direct photoacid-base reaction. J Phys Chem A 104:6689–6698. doi: 10.1021/jp000317l CrossRefGoogle Scholar
  381. 381.
    Pines E, Huppert D (1983) Ph jump—a relaxational approach. J Phys Chem 87:4471–4478. doi: 10.1021/j100245a029 CrossRefGoogle Scholar
  382. 382.
    Donten ML, Hamm P, VandeVondele J (2011) A consistent picture of the proton release mechanism of oNBA in water by ultrafast spectroscopy and ab initio molecular dynamics. J Phys Chem B 115:1075–1083. doi: 10.1021/jp109053r CrossRefGoogle Scholar
  383. 383.
    Donten ML, Hamm P (2013) PH-jump induced alpha-helix folding of poly-l-glutamic acid. Chem Phys 422:124–130. doi: 10.1016/j.chemphys.2012.11.023 CrossRefGoogle Scholar
  384. 384.
    Kohse S, Neubauer A, Lochbrunner S, Kragl U (2015) Improving the time resolution for remote control of enzyme activity by a nanosecond laser-induced pH jump. ChemCatChem 6:3511–3517. doi: 10.1002/cctc.201402442 CrossRefGoogle Scholar
  385. 385.
    Abbruzzetti S, Sottini S, Viappiani C, Corrie JET (2006) Acid-induced unfolding of myoglobin triggered by a laser pH jump method. Photochem Photobiol Sci 5:621–628. doi: 10.1039/b516533d CrossRefGoogle Scholar
  386. 386.
    Dumont C, Emilsson T, Gruebele M (2009) Reaching the protein folding speed limit with large, sub-microsecond pressure jumps. Nat Methods 6:515–519. doi: 10.1038/Nmeth.1336 CrossRefGoogle Scholar
  387. 387.
    Smeller L, Heremans K (1999) 2D FT-IR spectroscopy analysis of the pressure-induced changes in proteins. Vib Spectrosc 375–378. doi: 10.1016/S0924-2031(98)00075-7
  388. 388.
    Chenevarin S, Thibault-Starzyk F (2004) Two-dimensional IR pressure-jump spectroscopy of adsorbed species for zeolites. Angew Chemie Int Ed 43:1155–1158. doi: 10.1002/anie.200352754 CrossRefGoogle Scholar
  389. 389.
    Rivallan M, Seguin E, Thomas S et al (2010) Platinum sintering on H-ZSM-5 followed by chemometrics of CO adsorption and 2D pressure-jump IR spectroscopy of adsorbed species. Angew Chemie Int Ed 49:785–789. doi: 10.1002/anie.200905181 CrossRefGoogle Scholar
  390. 390.
    Noda I, Story GM, Marcott C (1999) Pressure-induced transitions of polyethylene studied by two-dimensional infrared correlation spectroscopy. Vib Spectrosc 19:461–465. doi: 10.1016/S0924-2031(98)00080-0 CrossRefGoogle Scholar
  391. 391.
    Yamakata A, Uchida T, Kubota J, Osawa M (2006) Laser-induced potential jump at the electrochemical interface probed by picosecond time-resolved surface-enhanced infrared absorption spectroscopy. J Phys Chem B 110:6423–6427. doi: 10.1021/jp060387d CrossRefGoogle Scholar
  392. 392.
    Yamakata A, Osawa M (2008) Dynamics of double-layer restructuring on a platinum electrode covered by CO: laser-induced potential transient measurement. J Phys Chem C 112:11427–11432. doi: 10.1021/jp8018149 CrossRefGoogle Scholar
  393. 393.
    Muller EA, Pollard B, Bechtel HA et al (2016) Infrared vibrational nano-crystallography and -imaging. Sci Adv 2:e1601006. doi: 10.1126/sciadv.1601006 CrossRefGoogle Scholar
  394. 394.
    Pollard B, Maia FCB, Raschke MB, Freitas RO (2016) Infrared vibrational nanospectroscopy by self-referenced interferometry. Nano Lett 16:55–61. doi: 10.1021/acs.nanolett.5b02730 CrossRefGoogle Scholar
  395. 395.
    Pollard B, Muller EA, Hinrichs K, Raschke MB (2014) Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupling and dynamics. Nat Commun 5:3587. doi: 10.1038/ncomms4587 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ZürichZurichSwitzerland

Personalised recommendations