Topics in Current Chemistry

, 375:85 | Cite as

Towards Rectifying Performance at the Molecular Scale

  • Guang-Ping Zhang
  • Zhen Xie
  • Yang Song
  • Gui-Chao Hu
  • Chuan-Kui Wang
Part of the following topical collections:
  1. Molecular-Scale Electronics: Current Status and Perspective


Molecular diode, proposed by Mark Ratner and Arieh Aviram in 1974, is the first single-molecule device investigated in molecular electronics. As a fundamental device in an electric circuit, molecular diode has attracted an enduring and extensive focus during the past decades. In this review, the theoretical and experimental progresses of both charge-based and spin-based molecular diodes are summarized. For the charge-based molecular diodes, the rectifying properties originated from asymmetric molecules including D–σ–A, D–π–A, D–A, and σ–π type compounds, asymmetric electrodes, asymmetric nanoribbons, and their combination are analyzed. Correspondingly, the rectification mechanisms are discussed in detail. Furthermore, a series of strategies for modulating rectification performance is figured out. Discussion on concept of molecular spin diode is also involved based on a magnetic co-oligomer. At the same time, the intrinsic mechanism as well as the modulation of the spin-current rectification performance is introduced. Finally, several crucial issues that need to be addressed in the future are given.


Molecular electronics Molecular rectification Charge-current rectification Spin-current rectification 



Support from the National Natural Science Foundation of China (Grant Nos. 11374195, and 11604122), the Natural Science Foundation of Shandong Province (Grant No. ZR2014AM017), and the Taishan Scholar Project of Shandong Province are gratefully acknowledged.


  1. 1.
    Metzger RM, Mattern DL (2011) Unimolecular electronic devices. Top Curr Chem 313:39CrossRefGoogle Scholar
  2. 2.
    Metzger RM (2015) Unimolecular electronics. Chem Rev 115:5056CrossRefGoogle Scholar
  3. 3.
    Xiang D, Wang X, Jia C, Lee T, Guo X (2016) Molecular-scale electronics: from concept to function. Chem Rev 116:4318CrossRefGoogle Scholar
  4. 4.
    Metzger RM (1999) The unimolecular rectifier: unimolecular electronic devices are coming. J Mater Chem 9:2027CrossRefGoogle Scholar
  5. 5.
    Metzger RM (1999) Electrical rectification by a molecule: the advent of unimolecular electronic devices. Acc Chem Res 32:950CrossRefGoogle Scholar
  6. 6.
    Metzger RM (2003) Unimolecular electrical rectifiers. Chem Rev 103:3803CrossRefGoogle Scholar
  7. 7.
    Metzger RM (2009) Unimolecular electronics and rectifiers. Synth Met 159:2277CrossRefGoogle Scholar
  8. 8.
    Metzger RM (2001) Rectification by a single molecule. Synth Met 124:107CrossRefGoogle Scholar
  9. 9.
    Lo W-Y, Zhang N, Cai Z, Li L, Yu L (2016) Beyond molecular wires: design molecular electronic functions based on dipolar effect. Acc Chem Res 49:1852CrossRefGoogle Scholar
  10. 10.
    Iwane M, Fujii S, Kiguchi M (2017) Molecular diode studies based on a highly sensitive molecular measurement technique. Sensors 17:956CrossRefGoogle Scholar
  11. 11.
    Liu H, Zhao J (2009) Experimental and theoretical study of molecular rectification. Prog Chem 21:1154Google Scholar
  12. 12.
    Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277CrossRefGoogle Scholar
  13. 13.
    Kushmerick JG, Holt DB, Yang JC, Naciri J, Moore MH, Shashidhar R (2002) Metal-molecule contacts and charge transport across monomolecular layers: measurement and theory. Phys Rev Lett 89:086802CrossRefGoogle Scholar
  14. 14.
    Dhirani A, Lin P-H, Guyot-Sionnest P, Zehner RW, Sita LR (1997) Self-assembled molecular rectifiers. J Chem Phys 106:5249CrossRefGoogle Scholar
  15. 15.
    Metzger RM et al (1997) Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J Am Chem Soc 119:10455CrossRefGoogle Scholar
  16. 16.
    Chen B, Metzger RM (1999) Rectification between 370 and 105 K in hexadecylquinolinium tricyanoquinodimethanide. J Phys Chem B 103:4447CrossRefGoogle Scholar
  17. 17.
    Ashwell GJ, Sambles JR, Martin AS, Parker WG, Szablewski M (1990) Rectifying characteristics of Mg|(C16H33–Q3CNQ LB film)|Pt structures. J Chem Soc Chem Commun 19:1374CrossRefGoogle Scholar
  18. 18.
    Geddes NJ, Sambles JR, Jarvis DJ, Parker WG, Sandman DJ (1990) Fabrication and investigation of asymmetric current–voltage characteristics of a metal/langmuir–blodgett monolayer/metal structure. Appl Phys Lett 56:1916CrossRefGoogle Scholar
  19. 19.
    Geddes NJ, Sambles JR, Jarvis DJ, Parker WG, Sandman DJ (1992) The electrical properties of metal-sandwiched Langmuir–Blodgett multilayers and monolayers of a redox-active organic molecular compound. J Appl Phys 71:756CrossRefGoogle Scholar
  20. 20.
    Martin AS, Sambles JR, Ashwell GJ (1993) Molecular rectifier. Phys Rev Lett 70:218CrossRefGoogle Scholar
  21. 21.
    Ng M-K, Lee D-C, Yu L (2002) Molecular diodes based on conjugated diblock co-oligomers. J Am Chem Soc 124:11862CrossRefGoogle Scholar
  22. 22.
    Ng M-K, Yu L (2002) Synthesis of amphiphilic conjugated diblock oligomers as molecular diodes. Angew Chem Int Ed 41:3598CrossRefGoogle Scholar
  23. 23.
    Jiang P, Morales GM, You W, Yu L (2004) Synthesis of diode molecules and their sequential assembly to control electron transport. Angew Chem Int Ed 43:4471CrossRefGoogle Scholar
  24. 24.
    Honciuc A, Jaiswal A, Gong A, Ashworth K, Spangler CW, Peterson IR, Dalton LR, Metzger RM (2005) Current rectification in a Langmuir–Schaefer monolayer of fullerene-bis-[4-diphenylamino-4″-(N-ethyl-N-2‴-ethyl) amino-1,4-diphenyl-1,3-butadiene] malonate between Au electrodes. J Phys Chem B 109:857CrossRefGoogle Scholar
  25. 25.
    Morales GM, Jiang P, Yuan S, Lee Y, Sanchez A, You W, Yu L (2005) Inversion of the rectifying effect in diblock molecular diodes by protonation. J Am Chem Soc 127:10456CrossRefGoogle Scholar
  26. 26.
    Wang B, Zhou Y, Ding X, Wang K, Wang X, Yang J, Hou JG (2006) Conduction mechanism of Aviram–Ratner rectifiers with single pyridine-σ-C60 oligomers. J Phys Chem B 110:24505CrossRefGoogle Scholar
  27. 27.
    Díez-Pérez I, Hihath J, Lee Y, Yu L, Adamska L, Kozhushner MA, Oleynik II, Tao N (2009) Rectification and stability of a single molecular diode with controlled orientation. Nat Chem 1:635CrossRefGoogle Scholar
  28. 28.
    Yuan L, Nerngchamnong N, Cao L, Hamoudi H, Del Barco E, Roemer M, Sriramula RK, Thompson D, Nijhuis CA (2015) Controlling the direction of rectification in a molecular diode. Nat Commun 6:6324CrossRefGoogle Scholar
  29. 29.
    Nerngchamnong N, Yuan L, Qi D-C, Li J, Thompson D, Nijhuis CA (2013) The role of van der Waals forces in the performance of molecular diodes. Nat Nanotechnol 8:113CrossRefGoogle Scholar
  30. 30.
    Zhang N, Lo W-Y, Cai Z, Li L, Yu L (2017) Molecular rectification tuned by through-space gating effect. Nano Lett 17:308CrossRefGoogle Scholar
  31. 31.
    Stokbro K, Taylor J, Brandbyge M (2003) Do Aviram–Ratner diodes rectify? J Am Chem Soc 125:3674CrossRefGoogle Scholar
  32. 32.
    Mujica V, Ratner MA, Nitzan A (2002) Molecular rectification: why is it so rare? Chem Phys 281:147CrossRefGoogle Scholar
  33. 33.
    Taylor J, Brandbyge M, Stokbro K (2002) Theory of rectification in tour wires: the role of electrode coupling. Phys Rev Lett 89:138301CrossRefGoogle Scholar
  34. 34.
    Troisi A, Ratner MA (2002) Molecular rectification through electric field induced conformational changes. J Am Chem Soc 124:14528CrossRefGoogle Scholar
  35. 35.
    Gasyna ZL, Morales GM, Sanchez A, Yu L (2006) Asymmetric current–voltage characteristics of molecular junctions containing bipolar molecules. Chem Phys Lett 417:401CrossRefGoogle Scholar
  36. 36.
    Krzeminski C, Delerue C, Allan G, Vuillaume D, Metzger RM (2001) Theory of electrical rectification in a molecular monolayer. Phys Rev B 64:085405CrossRefGoogle Scholar
  37. 37.
    Oleynik II, Kozhushner MA, Posvyanskii VS, Yu L (2006) Rectification mechanism in diblock oligomer molecular diodes. Phys Rev Lett 96:096803CrossRefGoogle Scholar
  38. 38.
    Hu GC, Wei JH, Xie SJ (2007) Bias-induced orbital hybridization in diblock co-oligomer diodes. Appl Phys Lett 91:142115CrossRefGoogle Scholar
  39. 39.
    Huang J, Li Q, Li Z, Yang J (2009) Rectifying effect in polar conjugated molecular junctions: a first-principles study. J Nanosci Nanotechnol 9:774CrossRefGoogle Scholar
  40. 40.
    Zhang G-P, Hu G-C, Li Z-L, Wang C-K (2012) Theoretical studies on protonation-induced inversion of the rectifying direction in dipyrimidinyl–diphenyl diblock molecular junctions. J Phys Chem C 116:3773CrossRefGoogle Scholar
  41. 41.
    Zhang G-P, Hu G-C, Song Y, Li Z-L, Wang C-K (2012) Modulation of rectification in diblock co-oligomer diodes by adjusting anchoring groups for both symmetric and asymmetric electrodes. J Phys Chem C 116:22009CrossRefGoogle Scholar
  42. 42.
    Nakamura H, Asai Y, Hihath J, Bruot C, Tao N (2011) Switch of conducting orbital by bias-induced electronic contact asymmetry in a bipyrimidinyl-biphenyl diblock molecule: mechanism to achieve a pn directional molecular diode. J Phys Chem C 115:19931CrossRefGoogle Scholar
  43. 43.
    Hu G, Zhang G, Li Y, Ren J, Wang C (2014) Proportion effect in diblock co-oligomer molecular diodes. Chem Phys Lett 614:207CrossRefGoogle Scholar
  44. 44.
    Zhang G-P, Xie Z, Song Y, Hu G-C, Wang C-K (2014) Molecular-length induced inversion of rectification in diblock pyrimidinyl-phenyl molecular junctions. Chem Phys Lett 591:296CrossRefGoogle Scholar
  45. 45.
    Wang S, Wei M-Z, Hu G-C, Wang C-K, Zhang G-P (2017) Mechanisms of the odd–even effect and its reversal in rectifying performance of ferrocenyl-n-alkanethiolate molecular diodes. Org Electron 49:76CrossRefGoogle Scholar
  46. 46.
    Zhang G-P, Wang S, Wei M-Z, Hu G-C, Wang C-K (2017) Tuning the direction of rectification by adjusting the location of the bipyridyl group in alkanethiolate molecular diodes. J Phys Chem C 121:7643CrossRefGoogle Scholar
  47. 47.
    Liu H, Li P, Zhao J, Yin X, Zhang H (2008) Theoretical investigation on molecular rectification on the basis of asymmetric substitution and proton transfer reaction. J Chem Phys 129:224704CrossRefGoogle Scholar
  48. 48.
    Hihath J, Bruot C, Nakamura H, Asai Y, Díez-Pérez I, Lee Y, Yu L, Tao N (2011) Inelastic transport and low-bias rectification in a single-molecule diode. ACS Nano 5:8331CrossRefGoogle Scholar
  49. 49.
    Yoon HJ, Liao K-C, Lockett MR, Kwok SW, Baghbanzadeh M, Whitesides GM (2014) Rectification in tunneling junctions: 2,2′-bipyridyl-terminated n-alkanethiolates. J Am Chem Soc 136:17155CrossRefGoogle Scholar
  50. 50.
    Zhao J, Yu C, Wang N, Liu H (2010) Molecular rectification based on asymmetrical molecule-electrode contact. J Phys Chem C 114:4135CrossRefGoogle Scholar
  51. 51.
    Xue Y, Ratner MA (2003) Microscopic study of electrical transport through individual molecules with metallic contacts. II. Effect of the interface structure. Phys Rev B 68:115407CrossRefGoogle Scholar
  52. 52.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666CrossRefGoogle Scholar
  53. 53.
    Koski KJ, Cui Y (2013) The new skinny in two-dimensional nanomaterials. ACS Nano 7:3739CrossRefGoogle Scholar
  54. 54.
    Feng B et al (2016) Experimental realization of two-dimensional boron sheets. Nat Chem 8:563CrossRefGoogle Scholar
  55. 55.
    Dávila ME, Xian L, Cahangirov S, Rubio A, Lay GL (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys 16:095002CrossRefGoogle Scholar
  56. 56.
    Zhu F, Chen W, Xu Y, Gao C, Guan D, Liu C, Qian D, Zhang S, J-f Jia (2015) Epitaxial growth of two-dimensional stanene. Nat Mater 14:1020CrossRefGoogle Scholar
  57. 57.
    Coleman JN et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568CrossRefGoogle Scholar
  58. 58.
    Sanvito S, Rocha AR (2006) Molecular-spintronics: the art of driving spin through molecules. J Comput Theor Nanosci 3:624CrossRefGoogle Scholar
  59. 59.
    Sanvito S (2011) Molecular spintronics. Chem Soc Rev 40:3336CrossRefGoogle Scholar
  60. 60.
    Dediu VA, Hueso LE, Bergenti I, Taliani C (2009) Spin routes in organic semiconductors. Nat Mater 8:707CrossRefGoogle Scholar
  61. 61.
    Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, Von Molnar S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488CrossRefGoogle Scholar
  62. 62.
    Dalgleish H, Kirczenow G (2006) Spin-current rectification in molecular wires. Phys Rev B 73:235436CrossRefGoogle Scholar
  63. 63.
    Braunecker B, Feldman DE, Li F (2007) Spin current and rectification in one-dimensional electronic systems. Phys Rev B 76:085119CrossRefGoogle Scholar
  64. 64.
    Hu G, He K, Xie S, Saxena A (2008) Spin-current rectification in an organic magnetic/nonmagnetic device. J Chem Phys 129:234708CrossRefGoogle Scholar
  65. 65.
    Zeng M, Shen L, Zhou M, Zhang C, Feng Y (2011) Graphene-based bipolar spin diode and spin transistor: rectification and amplification of spin-polarized current. Phys Rev B 83:115427CrossRefGoogle Scholar
  66. 66.
    Miller JS (2002) Organic magnets-a history. Adv Mater 14:1105CrossRefGoogle Scholar
  67. 67.
    Jain R, Kabir K, Gilroy JB, Mitchell KAR, Wong K, Hicks RG (2007) High-temperature metal-organic magnets. Nature 445:291CrossRefGoogle Scholar
  68. 68.
    Veciana J, Iwamura H (2000) Organic magnets. MRS Bull 25:41CrossRefGoogle Scholar
  69. 69.
    Hu G-C, Wang H, Ren J-F (2011) Effect of proportion on rectification in organic co-oligomer spin rectifiers. Chin Phys B 20:077306CrossRefGoogle Scholar
  70. 70.
    Hu G-C, Zhang Z, Li Y, Ren J-F, Wang C-K (2016) Length dependence of rectification in organic co-oligomer spin rectifiers. Chin Phys B 25:057308CrossRefGoogle Scholar
  71. 71.
    Hu GC, Zhang Z, Zhang GP, Ren JF, Wang CK (2016) Inversion of spin-current rectification in magnetic co-oligomer diodes. Org Electron 37:485CrossRefGoogle Scholar
  72. 72.
    Hu G-C, Zuo M-Y, Li Y, Zhang Z, Ren J-F, Wang C-K (2015) Effect of interfacial coupling on rectification in organic spin rectifiers. Chin Phys B 24:077308CrossRefGoogle Scholar
  73. 73.
    Zuo M-Y, Hu G-C, Li Y, Ren J-F, Wang C-K (2014) Spin-excited states and rectification in an organic spin rectifier. Chin Phys B 23:087306CrossRefGoogle Scholar
  74. 74.
    Metzger R, Panetta C (1983) Progress in cohesive energies, and in building organic un imolecular rectifiers. J Phys Colloq 44:1605CrossRefGoogle Scholar
  75. 75.
    Metzger R, Panetta C, Miura Y, Torres E (1987) Progress towards organic single-monolayer rectifiers. Synth Met 18:797CrossRefGoogle Scholar
  76. 76.
    Metzger RM, Panetta CA (1988) Rectification in Langmuir–Blodgett monolayers of organic D–σ–A molecules. J Chim Phys 85:1125CrossRefGoogle Scholar
  77. 77.
    Metzger RM, Panetta CA (1989) Possible rectification in Langmuir–Blodgett monolayers of organic D–σ–A molecules. Synth Met 28:807CrossRefGoogle Scholar
  78. 78.
    Metzger RM et al (2003) Electrical rectification in a Langmuir–Blodgett monolayer of dimethyanilinoazafullerene sandwiched between gold electrodes. J Phys Chem B 107:1021CrossRefGoogle Scholar
  79. 79.
    Shumate WJ, Mattern DL, Jaiswal A, Dixon DA, White TR, Burgess J, Honciuc A, Metzger RM (2006) Spectroscopy and rectification of three donor–sigma–acceptor compounds, consisting of a one-electron donor (pyrene or ferrocene), a one-electron acceptor (perylenebisimide), and a C19 swallowtail. J Phys Chem B 110:11146CrossRefGoogle Scholar
  80. 80.
    Ho G, Heath JR, Kondratenko M, Perepichka DF, Arseneault K, Pézolet M, Bryce MR (2005) The first studies of a tetrathiafulvalene–σ–acceptor molecular rectifier. Chem Eur J 11:2914CrossRefGoogle Scholar
  81. 81.
    Metzger RM, Xu T, Peterson IR (2001) Electrical rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes. J Phys Chem B 105:7280CrossRefGoogle Scholar
  82. 82.
    Ashwell GJ, Tyrrell WD, Whittam AJ (2003) Molecular Rectification: self-assembled monolayers of a donor–(π-bridge)–acceptor chromophore connected via a truncated Au–S–(CH2)3 bridge. J Mater Chem 13:2855CrossRefGoogle Scholar
  83. 83.
    Jaiswal A, Amaresh RR, Lakshmikantham M, Honciuc A, Cava MP, Metzger RM (2003) Electrical rectification in a monolayer of zwitterions assembled by either physisorption or chemisorption. Langmuir 19:9043CrossRefGoogle Scholar
  84. 84.
    Lörtscher E, Gotsmann B, Lee Y, Yu L, Rettner C, Riel H (2012) Transport properties of a single-molecule diode. ACS Nano 6:4931CrossRefGoogle Scholar
  85. 85.
    Chiechi RC, Weiss EA, Dickey MD, Whitesides GM (2008) Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew Chem Int Ed 47:142CrossRefGoogle Scholar
  86. 86.
    Nijhuis CA, Reus WF, Whitesides GM (2009) Molecular rectification in Metal–SAM–Metal oxide–metal junctions. J Am Chem Soc 131:17814CrossRefGoogle Scholar
  87. 87.
    Nijhuis CA, Reus WF, Barber JR, Dickey MD, Whitesides GM (2010) Charge transport and rectification in arrays of SAM-based tunneling junctions. Nano Lett 10:3611CrossRefGoogle Scholar
  88. 88.
    Nijhuis CA, Reus WF, Whitesides GM (2010) Mechanism of rectification in tunneling junctions based on molecules with asymmetric potential drops. J Am Chem Soc 132:18386CrossRefGoogle Scholar
  89. 89.
    Nijhuis CA, Reus WF, Siegel AC, Whitesides GM (2011) A molecular half-wave rectifier. J Am Chem Soc 133:15397CrossRefGoogle Scholar
  90. 90.
    Reus WF, Thuo MM, Shapiro ND, Nijhuis CA, Whitesides GM (2012) The SAM, not the electrodes, dominates charge transport in metal-monolayer//Ga2O3/gallium–indium eutectic junctions. ACS Nano 6:4806CrossRefGoogle Scholar
  91. 91.
    Mentovich ED, Rosenberg-Shraga N, Kalifa I, Gozin M, Mujica V, Hansen T, Richter S (2013) Gated-Controlled rectification of a self-assembled monolayer-based transistor. J Phys Chem C 117:8468CrossRefGoogle Scholar
  92. 92.
    Jiang L, Yuan L, Cao L, Nijhuis CA (2014) Controlling leakage currents: the role of the binding group and purity of the precursors for self-assembled monolayers in the performance of molecular diodes. J Am Chem Soc 136:1982CrossRefGoogle Scholar
  93. 93.
    Yuan L, Jiang L, Thompson D, Nijhuis CA (2014) On the remarkable role of surface topography of the bottom electrodes in blocking leakage currents in molecular diodes. J Am Chem Soc 136:6554CrossRefGoogle Scholar
  94. 94.
    Yuan L, Breuer R, Jiang L, Schmittel M, Nijhuis CA (2015) A molecular diode with a statistically robust rectification ratio of three orders of magnitude. Nano Lett 15:5506CrossRefGoogle Scholar
  95. 95.
    Nerngchamnong N, Thompson D, Cao L, Yuan L, Jiang L, Roemer M, Nijhuis CA (2015) Nonideal electrochemical behavior of ferrocenyl–alkanethiolate SAMs maps the microenvironment of the redox unit. J Phys Chem C 119:21978CrossRefGoogle Scholar
  96. 96.
    Thompson D, Nijhuis CA (2016) Even the odd numbers help: failure modes of SAM-based tunnel junctions probed via odd-even effects revealed in synchrotrons and supercomputers. Acc Chem Res 49:2061CrossRefGoogle Scholar
  97. 97.
    Song P, Yuan L, Roemer M, Jiang L, Nijhuis CA (2016) Supramolecular vs electronic structure: the effect of the tilt angle of the active group in the performance of a molecular diode. J Am Chem Soc 138:5769CrossRefGoogle Scholar
  98. 98.
    Chabinyc ML et al (2002) Molecular rectification in a metal–insulator–metal junction based on self-assembled monolayers. J Am Chem Soc 124:11730CrossRefGoogle Scholar
  99. 99.
    Jeong H et al (2014) Redox-induced asymmetric electrical characteristics of ferrocene–alkanethiolate molecular devices on rigid and flexible substrates. Adv Funct Mater 24:2472CrossRefGoogle Scholar
  100. 100.
    Jeong H, Jang Y, Kim D, Hwang W-T, Kim J-W, Lee T (2016) An in-depth study of redox-induced conformational changes in charge transport characteristics of a ferrocene–alkanethiolate molecular electronic junction: temperature-dependent transition voltage spectroscopy analysis. J Phys Chem C 120:3564CrossRefGoogle Scholar
  101. 101.
    Mantooth BA, Weiss PS (2003) Fabrication, assembly, and characterization of molecular electronic components. Proc IEEE 91:1785CrossRefGoogle Scholar
  102. 102.
    Wang W, Lee T, Reed MA (2005) Electron tunnelling in self-assembled monolayers. Rep Prog Phys 68:523CrossRefGoogle Scholar
  103. 103.
    Park J, Pasupathy AN, Goldsmith JI, Chang C (2002) Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417:722CrossRefGoogle Scholar
  104. 104.
    Xiang J, Liu B, Wu ST, Ren B, Yang FZ, Mao BW, Chow YL, Tian ZQ (2005) A controllable electrochemical fabrication of metallic electrodes with a nanometer/angstrom-sized gap using an electric double layer as feedback. Angew Chem Int Ed 44:1265CrossRefGoogle Scholar
  105. 105.
    Bonifas AP, McCreery RL (2010) “Soft” Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition. Nat Nanotechnol 5:612CrossRefGoogle Scholar
  106. 106.
    Reed MA, Zhou C, Muller C, Burgin T, Tour J (1997) Conductance of a molecular junction. Science 278:252CrossRefGoogle Scholar
  107. 107.
    Xiang D, Jeong H, Lee T, Mayer D (2013) Mechanically controllable break junctions for molecular electronics. Adv Mater 25:4845CrossRefGoogle Scholar
  108. 108.
    Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D (2013) Three-terminal single-molecule junctions formed by mechanically controllable break junctions with side gating. Nano Lett 13:2809CrossRefGoogle Scholar
  109. 109.
    Wang L, Wang L, Zhang L, Xiang D (2017) Advance of mechanically controllable break junction for molecular electronics. Top Curr Chem 375:61CrossRefGoogle Scholar
  110. 110.
    Chen X, Yeganeh S, Qin L, Li S, Xue C, Braunschweig AB, Schatz GC, Ratner MA, Mirkin CA (2009) Chemical fabrication of heterometallic nanogaps for molecular transport junctions. Nano Lett 9:3974CrossRefGoogle Scholar
  111. 111.
    Fu X-X, Zhang R-Q, Zhang G-P, Li Z-L (2014) Rectifying properties of oligo(phenylene ethynylene) heterometallic molecular junctions: molecular length and side group effects. Sci Rep 4:6357CrossRefGoogle Scholar
  112. 112.
    Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132CrossRefGoogle Scholar
  113. 113.
    Novoselov KS, Fal VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192CrossRefGoogle Scholar
  114. 114.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438:197CrossRefGoogle Scholar
  115. 115.
    Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569CrossRefGoogle Scholar
  116. 116.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385CrossRefGoogle Scholar
  117. 117.
    Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the Quantum Hall Effect and Berry’s phase in graphene. Nature 438:201CrossRefGoogle Scholar
  118. 118.
    Zhang GP, Fang XW, Yao YX, Wang CZ, Ding ZJ, Ho KM (2011) Electronic structure and transport of a carbon chain between graphene nanoribbon leads. J Phys Condens Matter 23:025302CrossRefGoogle Scholar
  119. 119.
    Son Y-W, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803CrossRefGoogle Scholar
  120. 120.
    Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954CrossRefGoogle Scholar
  121. 121.
    Brey L, Fertig HA (2006) Electronic states of graphene nanoribbons studied with the dirac equation. Phys Rev B 73:235411CrossRefGoogle Scholar
  122. 122.
    Martin I, Blanter YM (2009) Transport in disordered graphene nanoribbons. Phys Rev B 79:235132CrossRefGoogle Scholar
  123. 123.
    Li J, Zhang ZH, Kwong G, Tian W, Fan ZQ, Deng XQ (2013) A new exploration on the substantial improvement of rectifying behaviors for a donor–acceptor molecular diode by graphene electrodes. Carbon 61:284CrossRefGoogle Scholar
  124. 124.
    Song Y, Xie Z, Zhang G-P, Ma Y, Wang C-K (2013) Bias dependence of rectifying direction in a diblock co-oligomer molecule with asymmetric graphene nanoribbon electrodes. J Phys Chem C 117:20951CrossRefGoogle Scholar
  125. 125.
    Ervasti MM, Fan Z, Uppstu A, Krasheninnikov AV, Harju A (2015) Silicon and silicon–nitrogen impurities in graphene: structure, energetics, and effects on electronic transport. Phys Rev B 92:235412CrossRefGoogle Scholar
  126. 126.
    Zhou Y-C, Zhang H-L, Deng W-Q (2013) A 3n rule for the electronic properties of doped graphene. Nanotechnology 24:225705CrossRefGoogle Scholar
  127. 127.
    Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ (2013) Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew Chem Int Ed 52:3110CrossRefGoogle Scholar
  128. 128.
    Zhao P, Liu DS, Li SJ, Chen G (2013) Modulation of rectification and negative differential resistance in graphene nanoribbon by nitrogen doping. Phys Lett A 377:1134CrossRefGoogle Scholar
  129. 129.
    Yao W, Yao KL, Gao GY, Fu HH, Zhu SC (2013) Boron-doping controlled peculiar transport properties of graphene nanoribbon pn junctions. Solid State Commun 153:46CrossRefGoogle Scholar
  130. 130.
    Liang J, Jiao Y, Jaroniec M, Qiao SZ (2012) Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew Chem Int Ed 51:11496CrossRefGoogle Scholar
  131. 131.
    Zeng J, Chen K-Q, He J, Fan Z-Q, Zhang X-J (2011) Nitrogen doping-induced rectifying behavior with large rectifying ratio in graphene nanoribbons device. J Appl Phys 109:124502CrossRefGoogle Scholar
  132. 132.
    Yu SS, Zheng WT, Wen QB, Jiang Q (2008) First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges. Carbon 46:537CrossRefGoogle Scholar
  133. 133.
    Zhang DH, Yao KL, Gao GY (2011) The peculiar transport properties in pn junctions of doped graphene nanoribbons. J Appl Phys 110:013718CrossRefGoogle Scholar
  134. 134.
    Song Y, Xie Z, Ma Y, Li Z-L, Wang C-K (2014) Giant rectification ratios of azulene-like dipole molecular junctions induced by chemical doping in armchair-edged graphene nanoribbon electrodes. J Phys Chem C 118:18713CrossRefGoogle Scholar
  135. 135.
    Xie Z, Zuo X, Zhang G-P, Li Z-L, Wang C-K (2016) Detecting CO, NO and NO2 gases by boron-doped graphene nanoribbon molecular devices. Chem Phys Lett 657:18CrossRefGoogle Scholar
  136. 136.
    Cao C, Chen L-N, Long M-Q, Xu H (2013) Rectifying performance in zigzag graphene nanoribbon heterojunctions with different edge hydrogenations. Phys Lett A 377:1905CrossRefGoogle Scholar
  137. 137.
    Khoo KH, Neaton JB, Son YW, Cohen ML, Louie SG (2008) Negative differential resistance in carbon atomic wire-carbon nanotube junctions. Nano Lett 8:2900CrossRefGoogle Scholar
  138. 138.
    Yuzvinsky TD, Mickelson W, Aloni S, Begtrup GE, Kis A, Zettl A (2006) Shrinking a carbon nanotube. Nano Lett 6:2718CrossRefGoogle Scholar
  139. 139.
    Cumings J, Zettl A (2004) Localization and nonlinear resistance in telescopically extended nanotubes. Phys Rev Lett 93:086801CrossRefGoogle Scholar
  140. 140.
    Cook BG, French WR, Varga K (2012) Electron transport properties of carbon nanotube-graphene contacts. Appl Phys Lett 101:153501CrossRefGoogle Scholar
  141. 141.
    Yan Q, Zhou G, Hao S, Wu J, Duan W (2006) Mechanism of nanoelectronic switch based on telescoping carbon nanotubes. Appl Phys Lett 88:173107CrossRefGoogle Scholar
  142. 142.
    Czerw R et al (2001) Identification of electron donor states in N-doped carbon nanotubes. Nano Lett 1:457CrossRefGoogle Scholar
  143. 143.
    Cheng C, Hu H, Wei Y, Zhang Z, Wang X, Zhao J, Peng P (2013) Rectifying behaviors introduced by nitrogen–vacancy complex in spiral chirality single walled carbon nanotube device. J Appl Phys 114:083711CrossRefGoogle Scholar
  144. 144.
    Zanolli Z, Leghrib R, Felten A, Pireaux J-J, Llobet E, Charlier J-C (2011) Gas sensing with Au-decorated carbon nanotubes. ACS Nano 5:4592CrossRefGoogle Scholar
  145. 145.
    He J, Chen K-Q (2012) Humidity effects on the electronic transport properties in carbon based nanoscale device. Phys Lett A 376:869CrossRefGoogle Scholar
  146. 146.
    Wu J, Hagelberg F, Dinadayalane TC, Leszczynska D, Leszczynski J (2011) Do stone-wales defects alter the magnetic and transport properties of single-walled carbon nanotubes? J Phys Chem C 115:22232CrossRefGoogle Scholar
  147. 147.
    Cheng C, Hu H, Zhang Z, Zhang H (2016) Perfect rectifying behavior induced by AA–P2 dopants in armchair silicene nanoribbon devices. RSC Adv 6:7042CrossRefGoogle Scholar
  148. 148.
    Sun J, Lin N, Ren H, Tang C, Yang L, Zhao X (2016) Gas adsorption on MoS2/WS2 in-plane heterojunctions and the I–V response: a first principles study. RSC Adv 6:17494CrossRefGoogle Scholar
  149. 149.
    Yu Z, Hu ML, Zhang CX, He CY, Sun LZ, Zhong J (2011) Transport properties of hybrid zigzag graphene and boron nitride nanoribbons. J Phys Chem C 115:10836CrossRefGoogle Scholar
  150. 150.
    Song Y-L, Zhang J-M, Lu D-B, Xu K-W (2013) Structural and electronic properties of a single C chain doped zigzag silicene nanoribbon. Phys E 53:173CrossRefGoogle Scholar
  151. 151.
    Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J (2012) Tunable bandgap in silicene and germanene. Nano Lett 12:113CrossRefGoogle Scholar
  152. 152.
    Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699CrossRefGoogle Scholar
  153. 153.
    Song Y, Su Y, Zhang G-P, Wang C-K, Chen G (2017) Hydrogenation-induced giant rectifying behaviors in silicene and germanene heterojunctions. Comput Mater Sci 129:37CrossRefGoogle Scholar
  154. 154.
    Liu L et al (2014) Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343:163CrossRefGoogle Scholar
  155. 155.
    Jung J, Qiao Z, Niu Q, MacDonald AH (2012) Transport properties of graphene nanoroads in boron nitride sheets. Nano Lett 12:2936CrossRefGoogle Scholar
  156. 156.
    Modarresi M, Roknabadi MR, Shahtahmasbi N (2011) Transport properties of an armchair boron–nitride nanoribbon embedded between two graphene electrodes. Phys E 43:1751CrossRefGoogle Scholar
  157. 157.
    Bernardi M, Palummo M, Grossman JC (2012) Optoelectronic properties in monolayers of hybridized graphene and hexagonal boron nitride. Phys Rev Lett 108:226805CrossRefGoogle Scholar
  158. 158.
    Qiu M, Liew KM (2011) Transport properties of a single layer armchair h-BNC heterostructure. J Appl Phys 110:064319CrossRefGoogle Scholar
  159. 159.
    Zhang Z, Zhang J, Kwong G, Li J, Fan Z, Deng X, Tang G (2013) All-Carbon spsp 2 hybrid structures: geometrical properties, current rectification, and current amplification. Sci Rep 3:2575CrossRefGoogle Scholar
  160. 160.
    Ji X-L, Xie Z, Zuo X, Zhang G-P, Li Z-L, Wang C-K (2016) Giant rectification in graphene nanoflake molecular devices with asymmetric graphene nanoribbon electrodes. Phys Lett A 380:3198CrossRefGoogle Scholar
  161. 161.
    Lee Y, Carsten B, Yu L (2009) Understanding the anchoring group effect of molecular diodes on rectification. Langmuir 25:1495CrossRefGoogle Scholar
  162. 162.
    Hu GC, Zhang GP, Ren JF, Wang CK, Xie SJ (2011) Length-dependent inversion of rectification in diblock co-oligomer diodes. Appl Phys Lett 99:082105CrossRefGoogle Scholar
  163. 163.
    Zhang G-P, Hu G-C, Song Y, Xie Z, Wang C-K (2013) Stretch or contraction induced inversion of rectification in diblock molecular junctions. J Chem Phys 139:094702CrossRefGoogle Scholar
  164. 164.
    Bruot C, Hihath J, Tao N (2012) Mechanically controlled molecular orbital alignment in single molecule junctions. Nat Nanotechnol 7:35CrossRefGoogle Scholar
  165. 165.
    Yuan L, Thompson D, Cao L, Nerngchangnong N, Nijhuis CA (2015) One carbon matters: the origin and reversal of odd–even effects in molecular diodes with self-assembled monolayers of ferrocenyl–alkanethiolates. J Phys Chem C 119:17910CrossRefGoogle Scholar
  166. 166.
    Korshak YV, Medvedeva TV, Ovchinnikov AA, Spector VN (1987) Organic polymer ferromagnet. Nature 326:370CrossRefGoogle Scholar
  167. 167.
    Moth-Poulsen K, Bjørnholm T (2009) molecular electronics with single molecules in solid-state devices. Nat Nanotechnol 4:551CrossRefGoogle Scholar
  168. 168.
    Ratner M (2013) A brief history of molecular electronics. Nat Nanotechnol 8:378CrossRefGoogle Scholar
  169. 169.
    Guo X (2014) Molecular electronics: challenges and opportunities. AIMS Mater Sci 1:11CrossRefGoogle Scholar
  170. 170.
    Lörtscher E (2013) Wiring molecules into circuits. Nat Nanotechnol 8:381CrossRefGoogle Scholar
  171. 171.
    Jia C, Guo X (2013) Molecule-electrode interfaces in molecular electronic devices. Chem Soc Rev 42:5642CrossRefGoogle Scholar
  172. 172.
    Yu X, Lovrinčić R, Kraynis O, Man G, Ely T, Zohar A, Toledano T, Cahen D, Vilan A (2014) Fabrication of reproducible, integration-compatible hybrid molecular/Si electronics. Small 10:5151Google Scholar
  173. 173.
    Aragonès AC, Darwish N, Ciampi S, Sanz F, Gooding JJ, Díez-Pérez I (2017) Single-molecule electrical contacts on silicon electrodes under ambient conditions. Nat Commun 8:15056CrossRefGoogle Scholar
  174. 174.
    Hybertsen MS, Venkataraman L, Klare JE, Whalley AC, Steigerwald ML, Nuckolls C (2008) Amine-linked single-molecule circuits: systematic trends across molecular families. J Phys Condens Matter 20:374115CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics & Institute of Materials and Clean EnergyShandong Normal UniversityJinanChina
  2. 2.School of Physics and TechnologyUniversity of JinanJinanChina

Personalised recommendations