Topics in Current Chemistry

, 375:18 | Cite as

Advances in Production and Applications of Carbon Nanotubes

  • Xilai Jia
  • Fei Wei
Part of the following topical collections:
  1. Single-Walled Carbon Nanotubes: Preparation, Property and Application


Recent decades have witnessed many breakthroughs in research on carbon nanotubes (CNTs), particularly regarding controllable synthesis, production scale-up, and application advances for this material. This sp 2-bonded nanocarbon uniquely combines extreme mechanical strength, exceptionally high electrical conductivity, as well as many other superior properties, making it highly attractive for fundamental research and industrial applications. Synthesis and mass production form the solid basis for high-volume applications of CNTs. During recent decades, CNT production capacity has reached more than thousands of tons per year, greatly decreasing the price of CNTs. Although the unique physiochemical properties of an individual CNT are stated repeatedly, manifestation of such unique properties in a macroscopic material, e.g., realization of high-strength CNT fibers, remains a great challenge. If such challenges are solved, many critical applications will be enabled. Herein we review the critical progress in the development of synthesis and scaled-up production methods for CNTs, and discuss advances in their applications. Scientific problems and technological challenges are discussed together.


Carbon nanotube Mass production Application advances 



We greatly appreciate the reviewers’ constructive comments. This work was supported by the National Natural Science Foundation of China (Nos. 21306102 and 21422604, Prof. F. Wei), and partially by the National Natural Science Foundation of China (Nos. 51502347, Dr. X. Jia).


  1. 1.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  2. 2.
    De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Science 339:535CrossRefGoogle Scholar
  3. 3.
    Zhang Q, Huang J-Q, Qian W-Z, Zhang Y-Y, Wei F (2013) Small 9:1237CrossRefGoogle Scholar
  4. 4.
    Endo M, Strano MS, Ajayan PM (2007) Potential applications of carbon nanotubes, Springer, Berlin Heidelberg, p 13Google Scholar
  5. 5.
    Liu C, Cheng H-M (2013) Mater Today 16:19CrossRefGoogle Scholar
  6. 6.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787CrossRefGoogle Scholar
  7. 7.
    Endo M (1988) ChemTech 18:568Google Scholar
  8. 8.
    Yan Y, Miao J, Yang Z, Xiao F-X, Yang HB, Liu B, Yang Y (2015) Chem Soc Rev 44:3295CrossRefGoogle Scholar
  9. 9.
    Sinnott SB, Andrews R, Qian D, Rao AM, Mao Z, Dickey EC, Derbyshire F (1999) Chem Phys Lett 315:25CrossRefGoogle Scholar
  10. 10.
    Liu C, Cheng H-M (2016) J Am Chem Soc 138:6690CrossRefGoogle Scholar
  11. 11.
    Chen Y, Zhang Y, Hu Y, Kang L, Zhang S, Xie H, Liu D, Zhao Q, Li Q, Zhang J (2014) Adv Mater 26:5898CrossRefGoogle Scholar
  12. 12.
    Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J-Q, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y (2014) Nature 510:522CrossRefGoogle Scholar
  13. 13.
    Murakami Y, Chiashi S, Miyauchi Y, Hu M, Ogura M, Okubo T, Maruyama S (2004) Chem Phys Lett 385:298CrossRefGoogle Scholar
  14. 14.
    Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Science 306:1362CrossRefGoogle Scholar
  15. 15.
    Amama PB, Pint CL, McJilton L, Kim SM, Stach EA, Murray PT, Hauge RH, Maruyama B (2009) Nano Lett 9:44CrossRefGoogle Scholar
  16. 16.
    Chen Z, Kim DY, Hasegawa K, Noda S (2013) ACS Nano 7:6719CrossRefGoogle Scholar
  17. 17.
    Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Chem Phys Lett 313:91CrossRefGoogle Scholar
  18. 18.
    Resasco DE, Alvarez WE, Pompeo F, Balzano L, Herrera JE, Kitiyanan B, Borgna A (2002) J Nanopart Res 4:131CrossRefGoogle Scholar
  19. 19.
    Zhang R, Wen Q, Qian W, Su DS, Zhang Q, Wei F (2011) Adv Mater 23:3387CrossRefGoogle Scholar
  20. 20.
    Zhang R, Zhang Y, Zhang Q, Xie H, Qian W, Wei F (2013) ACS Nano 7:6156CrossRefGoogle Scholar
  21. 21.
    Zhang R, Ning Z, Zhang Y, Zheng Q, Chen Q, Xie H, Zhang Q, Qian W, Wei F (2013) Nat Nanotech 8:912CrossRefGoogle Scholar
  22. 22.
    Jiang K, Li Q, Fan S (2002) Nature 419:801CrossRefGoogle Scholar
  23. 23.
    Jiang K, Wang J, Li Q, Liu L, Liu C, Fan S (2011) Adv Mater 23:1154CrossRefGoogle Scholar
  24. 24.
    Xiang R, Luo GH, Qian WZ, Wang Y, Wei F, Li Q (2007) Chem Vapor Depos 13:533CrossRefGoogle Scholar
  25. 25.
    Kim DY, Sugime H, Hasegawa K, Osawa T, Noda S (2011) Carbon 49:1972CrossRefGoogle Scholar
  26. 26.
    Dichiara A, Bai J (2012) Diam Rel Mater 29:52CrossRefGoogle Scholar
  27. 27.
    Zhang Q, Zhao M, Liu Y, Cao A, Qian W, Lu Y, Wei F (2009) Adv Mater 21:2876CrossRefGoogle Scholar
  28. 28.
    Zhao M-Q, Zhang Q, Huang J-Q, Wei F (2012) Adv Funct Mater 22:675CrossRefGoogle Scholar
  29. 29.
    Zhao M-Q, Zhang Q, Zhang W, Huang J-Q, Zhang Y, Su DS, Wei F (2010) J Am Chem Soc 132:14739CrossRefGoogle Scholar
  30. 30.
    Zhao M-Q, Zhang Q, Jia X-L, Huang J-Q, Zhang Y-H, Wei F (2010) Adv Funct Mater 20:677CrossRefGoogle Scholar
  31. 31.
    Zhang Q, Huang J-Q, Zhao M-Q, Qian W-Z, Wei F (2011) ChemSusChem 4:864CrossRefGoogle Scholar
  32. 32.
    Wei F, Zhang Q, Qian W-Z, Yu H, Wang Y, Luo G-H, Xu G-H, Wang D-Z (2008) Powder Technol 183:10CrossRefGoogle Scholar
  33. 33.
    Zhang Q, Zhao M-Q, Huang J-Q, Liu Y, Wang Y, Qian W-Z, Wei F (2009) Carbon 47:2600CrossRefGoogle Scholar
  34. 34.
    Zhao M-Q, Zhang Q, Huang J-Q, Nie J-Q, Wei F (2010) Carbon 48:3260CrossRefGoogle Scholar
  35. 35.
    Chen T-C, Zhao M-Q, Zhang Q, Tian G-L, Huang J-Q, Wei F (2013) Adv Funct Mater 23:5066CrossRefGoogle Scholar
  36. 36.
    Zhang J, Terrones M, Park CR, Mukherjee R, Monthioux M, Koratkar N, Kim YS, Hurt R, Frackowiak E, Enoki T, Chen Y, Chen Y, Bianco A (2016) Carbon 98:708CrossRefGoogle Scholar
  37. 37.
    Zhao M-Q, Liu X-F, Zhang Q, Tian G-L, Huang J-Q, Zhu W, Wei F (2012) ACS Nano 6:10759CrossRefGoogle Scholar
  38. 38.
    Tian G-L, Zhao M-Q, Yu D, Kong X-Y, Huang J-Q, Zhang Q, Wei F (2014) Small 10:2251CrossRefGoogle Scholar
  39. 39.
    Tang C, Zhang Q, Zhao MQ, Huang JQ, Cheng XB, Tian GL, Peng HJ, Wei F (2014) Adv Mater 26:6100CrossRefGoogle Scholar
  40. 40.
    Zhu Y, Li L, Zhang C, Casillas G, Sun Z, Yan Z, Ruan G, Peng Z, Raji A-RO, Kittrell C, Hauge RH, Tour JM (2012) Nat Commun 3:1225CrossRefGoogle Scholar
  41. 41.
    Lv R, Cui T, Jun M-S, Zhang Q, Cao A, Su DS, Zhang Z, Yoon S-H, Miyawaki J, Mochida I, Kang F (2011) Adv Funct Mater 21:999CrossRefGoogle Scholar
  42. 42.
    Fan Z, Yan J, Zhi L, Zhang Q, Wei T, Feng J, Zhang M, Qian W, Wei F (2010) Adv Mater 22:3723CrossRefGoogle Scholar
  43. 43.
    Zhao M-Q, Zhang Q, Huang J-Q, Tian G-L, Chen T-C, Qian W-Z, Wei F (2013) Carbon 54:403CrossRefGoogle Scholar
  44. 44.
    Zhang WD, Phang IY, Liu TX (2006) Adv Mater 18:73CrossRefGoogle Scholar
  45. 45.
    Wang Y, Wu J, Wei F (2003) Carbon 41:2939CrossRefGoogle Scholar
  46. 46.
    Karousis N, Tagmatarchis N, Tasis D (2010) Chem Rev 110:5366CrossRefGoogle Scholar
  47. 47.
    Premkumar T, Mezzenga R, Geckeler KE (2012) Small 8:1299CrossRefGoogle Scholar
  48. 48.
    Ajayan PM, Tour JM (2007) Nature 447:1066CrossRefGoogle Scholar
  49. 49.
    Nish A, Hwang J-Y, Doig J, Nicholas RJ (2007) Nat Nano 2:640CrossRefGoogle Scholar
  50. 50.
    Gu J, Han J, Liu D, Yu X, Kang L, Qiu S, Jin H, Li H, Li Q, Zhang J (2016) Small 12:4993CrossRefGoogle Scholar
  51. 51.
    Hersam MC (2008) Nat Nano 3:387CrossRefGoogle Scholar
  52. 52.
    Preston C, Song D, Dai J, Tsinas Z, Bavier J, Cumings J, Ballarotto V, Hu L (2015) Nano Res 8:2242CrossRefGoogle Scholar
  53. 53.
    Georgakilas V, Bourlinos A, Gournis D, Tsoufis T, Trapalis C, Mateo-Alonso A, Prato M (2008) J Am Chem Soc 130:8733CrossRefGoogle Scholar
  54. 54.
    Zhao Y, Yang L, Chen S, Wang X, Ma Y, Wu Q, Jiang Y, Qian W, Hu Z (2013) J Am Chem Soc 135:1201CrossRefGoogle Scholar
  55. 55.
    Yu D, Xue Y, Dai L (2012) J Phys Chem Lett 3:2863CrossRefGoogle Scholar
  56. 56.
    Ma X, Baldwin JKS, Hartmann NF, Doorn SK, Htoon H (2015) Adv Funct Mater 25:6157CrossRefGoogle Scholar
  57. 57.
    Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z (2011) Angew Chem Int Ed 123:7270CrossRefGoogle Scholar
  58. 58.
    Thurakitseree T, Kramberger C, Zhao P, Aikawa S, Harish S, Chiashi S, Einarsson E, Maruyama S (2012) Carbon 50:2635CrossRefGoogle Scholar
  59. 59.
    Wang X, Sun G, Routh P, Kim D-H, Huang W, Chen P (2014) Chem Soc Rev 43:7067CrossRefGoogle Scholar
  60. 60.
    Shui J, Wang M, Du F, Dai L (2015) Sci Adv 1:e1400129CrossRefGoogle Scholar
  61. 61.
    Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760CrossRefGoogle Scholar
  62. 62.
    Qi C, Ma X, Ning G, Song X, Chen B, Lan X, Li Y, Zhang X, Gao J (2015) Carbon 92:245CrossRefGoogle Scholar
  63. 63.
    Liu L, Ma W, Zhang Z (2011) Small 7:1504CrossRefGoogle Scholar
  64. 64.
    Li Z, Liu Z, Sun H, Gao C (2015) Chem Rev 115:7046CrossRefGoogle Scholar
  65. 65.
    Feng C, Liu K, Wu J-S, Liu L, Cheng J-S, Zhang Y, Sun Y, Li Q, Fan S, Jiang K (2010) Adv Funct Mater 20:885CrossRefGoogle Scholar
  66. 66.
    Ma W, Song L, Yang R, Zhang T, Zhao Y, Sun L, Ren Y, Liu D, Liu L, Shen J, Zhang Z, Xiang Y, Zhou W, Xie S (2007) Nano Lett 7:2307CrossRefGoogle Scholar
  67. 67.
    Ma W, Liu L, Zhang Z, Yang R, Liu G, Zhang T, An X, Yi X, Ren Y, Niu Z, Li J, Dong H, Zhou W, Ajayan PM, Xie S (2009) Nano Lett 9:2855CrossRefGoogle Scholar
  68. 68.
    Niu Z, Zhou W, Chen J, Feng G, Li H, Ma W, Li J, Dong H, Ren Y, Zhao D, Xie S (2011) Energy Environ Sci 4:1440CrossRefGoogle Scholar
  69. 69.
    Nasibulin AG, Kaskela A, Mustonen K, Anisimov AS, Ruiz V, Kivisto S, Rackauskas S, Timmermans MY, Pudas M, Aitchison B, Kauppinen M, Brown DP, Okhotnikov OG, Kauppinen EI (2011) ACS Nano 5:3214CrossRefGoogle Scholar
  70. 70.
    Reynaud O, Nasibulin AG, Anisimov AS, Anoshkin IV, Jiang H, Kauppinen EI (2014) Chem Eng J 255:134CrossRefGoogle Scholar
  71. 71.
    Mustonen K, Laiho P, Kaskela A, Zhu Z, Reynaud O, Houbenov N, Tian Y, Susi T, Jiang H, Nasibulin AG, Kauppinen EI (2015) Appl Phys Lett 107:013106CrossRefGoogle Scholar
  72. 72.
    Kaskela A, Mustonen K, Laiho P, Ohno Y, Kauppinen EI (2015) ACS Appl Mater Interfaces 7:28134CrossRefGoogle Scholar
  73. 73.
    Lu W, Zu M, Byun J-H, Kim B-S, Chou T-W (2012) Adv Mater 24:1805CrossRefGoogle Scholar
  74. 74.
    Xu W, Chen Y, Zhan H, Wang JN (2016) Nano Lett 16:946CrossRefGoogle Scholar
  75. 75.
    Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D (2010) Adv Mater 22:617CrossRefGoogle Scholar
  76. 76.
    Xu M, Futaba DN, Yamada T, Yumura M, Hata K (2010) Science 330:1364CrossRefGoogle Scholar
  77. 77.
    Davis VA, Parra-Vasquez ANG, Green MJ, Rai PK, Behabtu N, Prieto V, Booker RD, Schmidt J, Kesselman E, Zhou W, Fan H, Adams WW, Hauge RH, Fischer JE, Cohen Y, Talmon Y, Smalley RE, Pasquali M (2009) Nat Nano 4:830CrossRefGoogle Scholar
  78. 78.
    Zhang S, Koziol KKK, Kinloch IA, Windle AH (2008) Small 4:1217CrossRefGoogle Scholar
  79. 79.
    Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AWK, Bengio EA, ter Waarbeek RF, de Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M (2013) Science 339:182CrossRefGoogle Scholar
  80. 80.
    Sun H, Xu Z, Gao C (2013) Adv Mater 25:2554CrossRefGoogle Scholar
  81. 81.
    Peng B, Locascio M, Zapol P, Li S, Mielke SL, Schatz GC, Espinosa HD (2008) Nat Nano 3:626CrossRefGoogle Scholar
  82. 82.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Prog Polym Sci 35:357CrossRefGoogle Scholar
  83. 83.
    Xie X-L, Mai Y-W, Zhou X-P (2005) Mater Sci Eng R 49:89CrossRefGoogle Scholar
  84. 84.
    Tang W, Santare MH, Advani SG (2003) Carbon 41:2779CrossRefGoogle Scholar
  85. 85.
    Lu Y, Liu J, Hou G, Ma J, Wang W, Wei F, Zhang L (2016) Compos Sci Technol 137:94CrossRefGoogle Scholar
  86. 86.
    Johannsen I, Jaksik K, Wirch N, Pötschke P, Fiedler B, Schulte K (2016) Polymer 97:80CrossRefGoogle Scholar
  87. 87.
    Deng F, Ito M, Noguchi T, Wang L, Ueki H, Niihara KI, Kim YA, Endo M, Zheng QS (2011) ACS Nano 5:3858CrossRefGoogle Scholar
  88. 88.
    Jia X, Zhang Q, Zhao M-Q, Xu G-H, Huang J-Q, Qian W, Lu Y, Wei F (2012) J Mater Chem 22:7050CrossRefGoogle Scholar
  89. 89.
    Wang Z, Liang Z, Wang B, Zhang C, Kramer L (2004) Compos Part A Appl Sci Manuf 35:1225CrossRefGoogle Scholar
  90. 90.
    Bekyarova E, Thostenson ET, Yu A, Kim H, Gao J, Tang J, Hahn HT, Chou TW, Itkis ME, Haddon RC (2007) Langmuir 23:3970CrossRefGoogle Scholar
  91. 91.
    An Q, Rider AN, Thostenson ET (2013) ACS Appl Mater Interfaces 5:2022CrossRefGoogle Scholar
  92. 92.
    Jin L, Zhang L, Su D, Li C (2012) Ind Eng Chem Res 51:4927CrossRefGoogle Scholar
  93. 93.
    Cheng Q, Wang B, Zhang C, Liang Z (2010) Small 6:763CrossRefGoogle Scholar
  94. 94.
    Cheng Q, Bao J, Park J, Liang Z, Zhang C, Wang B (2009) Adv Funct Mater 19:3219CrossRefGoogle Scholar
  95. 95.
    Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Polymer 44:5893CrossRefGoogle Scholar
  96. 96.
    Huang J, Mao C, Zhu Y, Jiang W, Yang X (2014) Carbon 73:267CrossRefGoogle Scholar
  97. 97.
    Bauhofer W, Kovacs JZ (2009) Compos Sci Technol 69:1486CrossRefGoogle Scholar
  98. 98.
    Han Z, Fina A (2011) Prog Polym Sci 36:914CrossRefGoogle Scholar
  99. 99.
    Arjmand M, Apperley T, Okoniewski M, Sundararaj U (2012) Carbon 50:5126CrossRefGoogle Scholar
  100. 100.
    Bakshi S, Lahiri D, Agarwal A (2010) Int Mater Rev 55:41CrossRefGoogle Scholar
  101. 101.
    Chen B, Li S, Imai H, Jia L, Umeda J, Takahashi M, Kondoh K (2015) Mater Des 72:1CrossRefGoogle Scholar
  102. 102.
    Cho J, Boccaccini AR, Shaffer MS (2009) J Mater Sci 44:1934CrossRefGoogle Scholar
  103. 103.
    Chae HG, Choi YH, Minus ML, Kumar S (2009) Compos Sci Technol 69:406CrossRefGoogle Scholar
  104. 104.
    Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Energy Environ Sci 2:638CrossRefGoogle Scholar
  105. 105.
    Liu X-M, Huang ZD, Oh SW, Zhang B, Ma P-C, Yuen MM, Kim J-K (2012) Compos Sci Technol 72:121CrossRefGoogle Scholar
  106. 106.
    Sehrawat P, Julien C, Islam SS (2016) Mater Sci Eng B 213:12CrossRefGoogle Scholar
  107. 107.
    Liu X-Y, Peng H-J, Zhang Q, Huang J-Q, Liu X-F, Wang L, He X, Zhu W, Wei F (2014) ACS Sustain Chem Eng 2:200CrossRefGoogle Scholar
  108. 108.
    Xin S, Gu L, Zhao N-H, Yin Y-X, Zhou L-J, Guo Y-G, Wan L-J (2012) J Am Chem Soc 134:18510CrossRefGoogle Scholar
  109. 109.
    Ma J, Fang Z, Yan Y, Yang Z, Gu L, Hu Y-S, Li H, Wang Z, Huang X (2015) Adv Energy Mater 5:1500046CrossRefGoogle Scholar
  110. 110.
    Cheng X-B, Huang J-Q, Zhang Q, Peng H-J, Zhao M-Q, Wei F (2014) Nano Energy 4:65CrossRefGoogle Scholar
  111. 111.
    Zhang SM, Zhang Q, Huang JQ, Liu XF, Zhu W, Zhao MQ, Qian WZ, Wei F (2013) Part Part Syst Charact 30:158CrossRefGoogle Scholar
  112. 112.
    Song J, Gordin ML, Xu T, Chen S, Yu Z, Sohn H, Lu J, Ren Y, Duan Y, Wang D (2015) Angew Chem Int Ed 54:4325CrossRefGoogle Scholar
  113. 113.
    Zhou G, Wang D-W, Li F, Hou P-X, Yin L, Liu C, Lu GQ, Gentle IR, Cheng H-M (2012) Energy Environ Sci 5:8901CrossRefGoogle Scholar
  114. 114.
    Li X, Liu J, Zhang Y, Li Y, Liu H, Meng X, Yang J, Geng D, Wang D, Li R, Sun X (2012) J Power Sources 197:238CrossRefGoogle Scholar
  115. 115.
    Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G (2010) Nat Mater 9:353CrossRefGoogle Scholar
  116. 116.
    Xue L, Xu G, Li Y, Li S, Fu K, Shi Q, Zhang X (2013) ACS Appl Mater Interfaces 5:21CrossRefGoogle Scholar
  117. 117.
    Wang W, Kumta PN (2010) ACS Nano 4:2233CrossRefGoogle Scholar
  118. 118.
    Evanoff K, Khan J, Balandin AA, Magasinski A, Ready WJ, Fuller TF, Yushin G (2012) Adv Mater 24:533CrossRefGoogle Scholar
  119. 119.
    Jia X, Zhu X, Cheng Y, Chen Z, Ning G, Lu Y, Wei F (2015) Small 11:3135CrossRefGoogle Scholar
  120. 120.
    Jia X, Cheng Y, Lu Y, Wei F (2014) ACS Nano 8:9265CrossRefGoogle Scholar
  121. 121.
    Jia X, Zhang L, Zhang R, Lu Y, Wei F (2014) RSC Adv 4:21018CrossRefGoogle Scholar
  122. 122.
    Choi SH, Lee J-H, Kang YC (2015) ACS Nano 9:10173CrossRefGoogle Scholar
  123. 123.
    Jia X, Kan Y, Zhu X, Ning G, Lu Y, Wei F (2014) Nano Energy 10:344CrossRefGoogle Scholar
  124. 124.
    Jia X, Chen Z, Suwarnasarn A, Rice L, Wang X, Sohn H, Zhang Q, Wu BM, Wei F, Lu Y (2012) Energy Environ Sci 5:6845CrossRefGoogle Scholar
  125. 125.
    Zhang Y, Bai W, Cheng X, Ren J, Weng W, Chen P, Fang X, Zhang Z, Peng H (2014) Angew Chem Int Ed 53:14564CrossRefGoogle Scholar
  126. 126.
    Zhou G, Li F, Cheng H-M (2014) Energy Environ Sci 7:1307CrossRefGoogle Scholar
  127. 127.
    Pandolfo AG, Hollenkamp AF (2006) J Power Sources 157:11CrossRefGoogle Scholar
  128. 128.
    Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) Appl Phys Lett 70:1480CrossRefGoogle Scholar
  129. 129.
    Hao L, Li X, Zhi L (2013) Adv Mater 25:3899CrossRefGoogle Scholar
  130. 130.
    Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797CrossRefGoogle Scholar
  131. 131.
    Lazzari M, Mastragostino M, Pandolfo A, Ruiz V, Soavi F (2011) J Electrochem Soc 158:A22CrossRefGoogle Scholar
  132. 132.
    Izadi-Najafabadi A, Yasuda S, Kobashi K, Yamada T, Futaba DN, Hatori H, Yumura M, Iijima S, Hata K (2010) Adv Mater 22:E235CrossRefGoogle Scholar
  133. 133.
    Jiang L, Sheng L, Long C, Fan Z (2015) Nano Energy 11: 471CrossRefGoogle Scholar
  134. 134.
    Sun H, You X, Deng J, Chen X, Yang Z, Ren J, Peng H (2014) Adv Mater 26:2868CrossRefGoogle Scholar
  135. 135.
    Cui C, Qian W, Yu Y, Kong C, Yu B, Xiang L, Wei F (2014) J Am Chem Soc 136:2256CrossRefGoogle Scholar
  136. 136.
    Liu L, Niu Z, Chen J (2016) Chem Soc Rev 45:4340CrossRefGoogle Scholar
  137. 137.
    Dong L, Xu C, Li Y, Huang Z-H, Kang F, Yang Q-H, Zhao X (2016) J Mater Chem A 4:4659CrossRefGoogle Scholar
  138. 138.
    Xu Y, Kraft M, Xu R (2016) Chem Soc Rev 45:3039CrossRefGoogle Scholar
  139. 139.
    Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Science 351:361CrossRefGoogle Scholar
  140. 140.
    Wu G, More KL, Johnston CM, Zelenay P (2011) Science 332:443CrossRefGoogle Scholar
  141. 141.
    Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J-C, Pennycook SJ, Dai H (2012) Nat Nano 7:394CrossRefGoogle Scholar
  142. 142.
    Lu X, Yim W-L, Suryanto BHR, Zhao C (2015) J Am Chem Soc 137:2901CrossRefGoogle Scholar
  143. 143.
    Jia H, Sun Z, Jiang D, Du P (2015) Chem Mater 27:4586CrossRefGoogle Scholar
  144. 144.
    Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) J Am Chem Soc 135:8452CrossRefGoogle Scholar
  145. 145.
    Melchionna M, Marchesan S, Prato M, Fornasiero P (2015) Catal Sci Technol 5:3859CrossRefGoogle Scholar
  146. 146.
    Zhang W, Zhang H, Xiao J, Zhao Z, Yu M, Li Z (2014) Green Chem 16:211CrossRefGoogle Scholar
  147. 147.
    Li P, Wang C, Zhang Y, Wei F (2014) Small 10:4543CrossRefGoogle Scholar
  148. 148.
    Li P, Zong Y, Zhang Y, Yang M, Zhang R, Li S, Wei F (2013) Nanoscale 5:3367CrossRefGoogle Scholar
  149. 149.
    Li P, Wang C, Li Z, Zong Y, Zhang Y, Yang X, Li S, Wei F (2014) RSC Adv 4:54115CrossRefGoogle Scholar
  150. 150.
    Wang C, Li P, Zong Y, Zhang Y, Li S, Wei F (2014) Carbon 79:424CrossRefGoogle Scholar
  151. 151.
    Yang S, Nie J, Wei F, Yang X (2016) Environ Sci Technol 50:9592CrossRefGoogle Scholar
  152. 152.
    Inukai S, Cruz-Silva R, Ortiz-Medina J, Morelos-Gomez A, Takeuchi K, Hayashi T, Tanioka A, Araki T, Tejima S, Noguchi T, Terrones M, Endo M (2015) Sci Rep 5:13562CrossRefGoogle Scholar
  153. 153.
    Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Science 312:1034CrossRefGoogle Scholar
  154. 154.
    Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nature 438:44CrossRefGoogle Scholar
  155. 155.
    Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ (2014) Desalination 336:97CrossRefGoogle Scholar
  156. 156.
    Baek Y, Kim C, Seo DK, Kim T, Lee JS, Kim YH, Ahn KH, Bae SS, Lee SC, Lim J, Lee K, Yoon J (2014) J Membr Sci 460:171CrossRefGoogle Scholar
  157. 157.
    Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Science 303:62CrossRefGoogle Scholar
  158. 158.
    Kar S, Bindal RC, Tewari PK (2012) Nano Today 7:385CrossRefGoogle Scholar
  159. 159.
    Nakanishi J, Morimoto Y, Ogura I, Kobayashi N, Naya M, Ema M, Endoh S, Shimada M, Ogami A, Myojyo T, Oyabu T, Gamo M, Kishimoto A, Igarashi T, Hanai S (2015) Risk Anal 35:1940CrossRefGoogle Scholar
  160. 160.
    Nowack B, David RM, Fissan H, Morris H, Shatkin JA, Stintz M, Zepp R, Brouwer D (2013) Environ Int 59:1CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  2. 2.Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical EngineeringTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations