Topics in Current Chemistry

, 375:2 | Cite as

Palladium Catalyst Supported on Zeolite for Cross-coupling Reactions: An Overview of Recent Advances

Review

Abstract

Over the last 30–40 years, Pd-catalyzed C–C bond-forming reactions have gained immense importance for their use in synthesis of biologically and pharmaceutically important organic fragments. Heterogeneous Pd catalysts supported on porous materials, especially zeolites, have many advantages as they have high surface area with tunable acidity and basicity, hydrophobic and hydrophilic character, shape and size selectivity, as well as chemical and thermal stability. They also offer very easy recovery and reusability. This review covers the literature published on the synthesis and characterization of Pd catalysts supported on zeolites and their applications in various organic transformations.

Keywords

Palladium Heterogeneous catalysis Supported catalysts Zeolites Coupling reactions 

Notes

Acknowledgements

We wish to express our appreciation to the University Grants Commission, Government of India, New Delhi, for supporting this work under the scheme of Major Research Project [F. No. 41-182/2014 (SR)]. We also partly acknowledge the financial support from the Science and Engineering Research Board, Department of Science and Technology (SERB-DST), Government of India, New Delhi, under the scheme of Start-Up research grants for Young Scientists (SB/FT/CS-153/2013).

References

  1. 1.
    Tsuji J (2000) Transition metal reagents and catalysts: Innovations in organic synthesis. Wiley, ChichesterGoogle Scholar
  2. 2.
    Crabtree RH (2005) The organometallic chemistry of the transition metals. Wiley, USACrossRefGoogle Scholar
  3. 3.
    Charlotte H, Veronique G (2012) Chem Commun 48:2929–2942CrossRefGoogle Scholar
  4. 4.
    Beletskaya IP, Cheprakov AV (2000) Chem Rev 100:3009–3066CrossRefGoogle Scholar
  5. 5.
    Miyaura N, Suzuki A (1995) Chem Rev 95:2457–2483CrossRefGoogle Scholar
  6. 6.
    Negishi E (1982) Acc Chem Res 15:340–348CrossRefGoogle Scholar
  7. 7.
    Stille JK (1986) Angew Chem Int Ed 25:508–524CrossRefGoogle Scholar
  8. 8.
    Tamao K, Sumitani K, Kumada M (1972) J Am Chem Soc 94:4374–4376CrossRefGoogle Scholar
  9. 9.
    Denmark SE, Sweis RF (2002) Acc Chem Res 35:835–846CrossRefGoogle Scholar
  10. 10.
    Trost BM, Vrankren DLV (1996) Chem Rev 96:395–422CrossRefGoogle Scholar
  11. 11.
    Sonogashira K, Tohda Y, Hagihara N (1975) Tetrahedron Lett 16:4467–4470CrossRefGoogle Scholar
  12. 12.
    The Nobel Prize in Chemistry 2010, Press Release, http://nobelprize.org/nobel_prizes/chemistry/laureates/2010/press.html. Accessed 30 Nov 2016
  13. 13.
    Shaughnessy KH In: Dixneuf PH, Cadierno V (ed) Metal-catalyzed reactions in water, 1st ed Wiley-VCHGoogle Scholar
  14. 14.
    Leadbeter NE, Marco M (2002) Chem Rev 102:3217–3274CrossRefGoogle Scholar
  15. 15.
    Polshettiwar V, Len C, Fihri A (2009) Coord Chem Rev 253:2599–2626CrossRefGoogle Scholar
  16. 16.
    Kumbhar A, Salunkhe R (2015) Cur Org Chem 19:2075–2121CrossRefGoogle Scholar
  17. 17.
    Gil M, Scheuermann LR, Peter S, Willi B, Rolf M (2009) J Am Chem Soc 131:8262–8270CrossRefGoogle Scholar
  18. 18.
    Kamal A, Srinivasulu V, Seshadri BN, Markandeya N, Alarifi A, Shankaraiah N (2012) Green Chem 14:2513–2522CrossRefGoogle Scholar
  19. 19.
    Jiang J, She X, Lin (2009) Adv Synth Catal 351:2558–2562Google Scholar
  20. 20.
    Cejka J, Corma A, Zones S (eds) (2010) Zeolites and catalysis: synthesis, reactions and applications. Wiley, WeinheimGoogle Scholar
  21. 21.
    Dirk E, Mieke D, Bert F, Pierre A (2002) Chem Rev 102:3615–3640CrossRefGoogle Scholar
  22. 22.
    Jacobs A, Flanigen EM, Jansen JC, Bekkum Herman (eds) (2001) Introduction to zeolite zcience and practice, vol 137, 2nd edn. Elsevier ScienceGoogle Scholar
  23. 23.
    Smit B, Maesen T (2008) Nature 451:671–678CrossRefGoogle Scholar
  24. 24.
    Stefenson M, Holmes S, Dryfe R (2005) Angew Chem Int Ed 44:3075–3078CrossRefGoogle Scholar
  25. 25.
    Faghihian H, Maragheh M, Malikpour A (2002) J Radioanal Nucl Chem 254:545–550CrossRefGoogle Scholar
  26. 26.
    Heck RF (1968) J Am Chem Soc 90:5518–5526CrossRefGoogle Scholar
  27. 27.
    Gagnon A, Danishefsky SJ (2002) Angew Chem Int Ed 41:1581–1584CrossRefGoogle Scholar
  28. 28.
    Djakovitch L, Heise H, Kohler K (1999) J Organomet Chem 584:16–26CrossRefGoogle Scholar
  29. 29.
    Jeffery T (1996) In: Liebeskind LS (ed) Advances in metal-organic chemistry, vol 5. JAI, Greenwich, p 153Google Scholar
  30. 30.
    Andre HM, Jan M, John H, Huub H, Johannes G (2003) Org Lett 5:3285–3288CrossRefGoogle Scholar
  31. 31.
    Yeetz MT, Westermann E (2000) Angew Chem Int Ed 39:165–168CrossRefGoogle Scholar
  32. 32.
    Choi M, Lee D, Na K, Yu B, Ryoo R (2009) Angew Chem 121:3727–3730CrossRefGoogle Scholar
  33. 33.
    Dang T, Zhu Y, Ngiam J, Ghosh S, Chen A, Seayad A (2013) ACS Catal 3:1406–1410CrossRefGoogle Scholar
  34. 34.
    Huang J, Yin J, Chai W, Liang C, Shena J, Zhang F (2012) New J Chem 36:1378–1384CrossRefGoogle Scholar
  35. 35.
    Djakovitch L, Koehler K (1999) J Mol Catal A Chem 142:275–284CrossRefGoogle Scholar
  36. 36.
    Michalik J, Narayana M, Kevan L (1985) J Phys Chem 89:4553–4560CrossRefGoogle Scholar
  37. 37.
    Dams M, Drijkoningen L, Pauwels B, Van G, De Vos DE, Jacobs PA (2002) J Catal 209:225–236CrossRefGoogle Scholar
  38. 38.
    Djakovitch L, Wagner M, Kohler K (1999) J Organomet Chem 592:225–234CrossRefGoogle Scholar
  39. 39.
    Djakovitch L, Kohler K (2000) J Organomet Chem 606:101–107CrossRefGoogle Scholar
  40. 40.
    King AO, Yasuda N (2004) Top Organomet Chem 6:205–245CrossRefGoogle Scholar
  41. 41.
    Bakherad M (2013) Appl Organomet Chem 27:125–140CrossRefGoogle Scholar
  42. 42.
    Siemsen P, Livingston RC, Diederich F (2000) Angew Chem Int Ed 39:2632–3257CrossRefGoogle Scholar
  43. 43.
    Rollet P, Kleist W, Dufaud V, Djakovitch L (2005) J Mol Catal A Chem 241:39–51CrossRefGoogle Scholar
  44. 44.
    Bulut H, Artok L, Yilmaz S (2003) Tetrahedron Lett 44:289–291CrossRefGoogle Scholar
  45. 45.
    Artok L, Bulut H (2004) Tetrahed Lett 45:3881–3884CrossRefGoogle Scholar
  46. 46.
    Sachtler WMH, Cavalcanti FAP, Zhang Z (1991) Catal Lett 9:261–272CrossRefGoogle Scholar
  47. 47.
    Durgen G, Aksin O, Artok L (2007) J Mol Catal A Chem 278:189–199CrossRefGoogle Scholar
  48. 48.
    Jutand A, Negri S, de Vries JG (2002) Eur J Inorg Chem 1711–1717Google Scholar
  49. 49.
    Pröckl SS, Kleist W, Gruber MA, Köhler K (2004) Angew Chem Int Ed 43:1881–1882CrossRefGoogle Scholar
  50. 50.
    Okumura K, Nota K, Yoshida K, Niwa M (2005) J Catal 231:245–253CrossRefGoogle Scholar
  51. 51.
    Okumura K, Yoshimoto R, Uruga T, Tanida H, Kato K, Yokota S, Niwa M (2004) J Phys Chem B 108:6250–6255CrossRefGoogle Scholar
  52. 52.
    Okumura K, Amano J, Yasunobu N, Niwa M (2000) J Phys Chem B 104:1050–1057CrossRefGoogle Scholar
  53. 53.
    Okumura K, Kusakabe T, Yokota S, Kato K, Tanida H, Uruga T, Niwa M (2003) Chem Lett 32:636–637CrossRefGoogle Scholar
  54. 54.
    Okumura K, Tomiyama T, Okuda S, Yoshida H, Niwa M (2010) J Catal 273:156–166CrossRefGoogle Scholar
  55. 55.
    Okumura K, Matsui H, Sanada T, Arao M, Honma T, Hirayama S, Niwa M (2009) J Catal 26:89–98CrossRefGoogle Scholar
  56. 56.
    Okumura K, Matsui H, Tomiyama T, Sanada T, Honma T, Hirayama S, Niwa M (2009) Chem Phys Chem 10:3265–3272CrossRefGoogle Scholar
  57. 57.
    Okumura K, Tomiyama T, Moriyama S, Nakamichi A, Niwa M (2011) Molecules 16:38–51CrossRefGoogle Scholar
  58. 58.
    Xu LQ, Zhang ZC, Sachtler WMH (1992) J Chem Soc Faraday Trans 88:2291–2295CrossRefGoogle Scholar
  59. 59.
    Huang L, Wang Z, Ang TP, Tan J, Wong PK (2006) Catal Lett 112:219–225CrossRefGoogle Scholar
  60. 60.
    Kosslick H, Oehme G (2001) Microporous Mesoporous Mater 44:537–545CrossRefGoogle Scholar
  61. 61.
    Wang HX, Wu HF, Yang XL, Ma N, Wan L (2007) Polyhedron 26:3857–3864CrossRefGoogle Scholar
  62. 62.
    Corma A, Garcıa H, Leyva A (2002) Appl Catal A Gen 236:179–185CrossRefGoogle Scholar
  63. 63.
    Corma A, Fornés V, Martın-Aranda RM, Garcıa H, Primo J (1990) Appl Catal 59:237–248CrossRefGoogle Scholar
  64. 64.
    Cizmek A, Subotic B, Aiello R, Crea F, Nastro A, Tuoto C (1995) Microporous Mater 4:159–168CrossRefGoogle Scholar
  65. 65.
    Groen JC, Moulijn JA, Perez-Ramirez J (2006) J Mater Chem 16:2121–2131CrossRefGoogle Scholar
  66. 66.
    Kumbhar A, Kamble S, Mane A, Jha R, Salunkhe R (2013) J Organomet Chem 738:29–34CrossRefGoogle Scholar
  67. 67.
    Old DW, Wolfe JP, Buchwald SL (1998) J Am Chem Soc 120:9722–9723CrossRefGoogle Scholar
  68. 68.
    Blöchl PE, Togni A (1996) Organometallics 15:4125–4132CrossRefGoogle Scholar
  69. 69.
    Dekker G, Buijs A, Elsevier C, Vrieze K, Leeuwen P, Smeets W, Spek A, Wang Y, Stam C (1992) Organometallics 11:1937–1948CrossRefGoogle Scholar
  70. 70.
    Mukhopadhyay K, Sarkar BR, Chaudhari RV (2002) J Am Chem Soc 124:9692–9693CrossRefGoogle Scholar
  71. 71.
    Kumbhar A, Kamble S, Jadhav S, Rashinkar G, Salunkhe R (2012) Catal Lett 142:1388–1396CrossRefGoogle Scholar
  72. 72.
    Kumbhar A, Jadhav S, Kamble S, Rashinkar G, Salunkhe R (2013) Tetrahed Lett 54:1331–1337CrossRefGoogle Scholar
  73. 73.
    Mandal S, Roy D, Chaudhari RV, Sastry M (2004) Chem Mater 16:3714–3724CrossRefGoogle Scholar
  74. 74.
    Wasserscheid P, Welton T (eds) (2002) Ionic liquids in synthesis. Wiley-VCH, WeinheimGoogle Scholar
  75. 75.
    Zhang Q, Zhang S, Deng Y (2011) Green Chem 13:2619–2637CrossRefGoogle Scholar
  76. 76.
    Mehnert CP, Mozeleski EJ, Cook RA (2002) Chem Commun 3010–3011Google Scholar
  77. 77.
    Lou L, Peng X, Yu K, Liu S (2008) Catal Commun 9:1891–1893CrossRefGoogle Scholar
  78. 78.
    Riisager A, Fehrman R, Haumann R, Wasserscheid P (2006) Top Catal 40:91–102CrossRefGoogle Scholar
  79. 79.
    Rashinkar G, Kamble S, Kumbhar A, Salunkhe R (2011) Catal Commun 12:1442–1447CrossRefGoogle Scholar
  80. 80.
    Riisager A, Wasserscheid P, van Hal R, Fermann RJ (2003) Catal 219:452–455CrossRefGoogle Scholar
  81. 81.
    Jadhav S, Kumbhar A, Mali S, Hong CK, Salunkhe R (2015) New J Chem 39:2333–2341CrossRefGoogle Scholar
  82. 82.
    Jin MJ, Taher A, Kang HJ, Choi M, Ryoo R (2009) Green Chem 11:309–313CrossRefGoogle Scholar
  83. 83.
    Choi M, Cho HS, Srivastava R, Venkatesan C, Choi DH, Ryoo R (2006) Nat Mater 5:718–723CrossRefGoogle Scholar
  84. 84.
    Brenna S, Posset T, Furrer J, Blumel J (2006) Chem Eur J 12:2880–2888CrossRefGoogle Scholar
  85. 85.
    Qin W, Long S, Panunzio M, Biondi S (2013) Molecules 18:12264–12289CrossRefGoogle Scholar
  86. 86.
    Keleş K, Keleş H, Emir DM (2015) Appl Organomet Chem 29:543–548CrossRefGoogle Scholar
  87. 87.
    Gogoi A, Dewan A, Boraha G, Bora U (2015) New J Chem 39:3341–3344CrossRefGoogle Scholar
  88. 88.
    Arellano CG, Corma A, Iglesias M, Sanchez F (2004) Adv Synth Catal 346:1758–1764CrossRefGoogle Scholar
  89. 89.
    He J, Yoneyama Y, Xu B, Nishiyama N, Tsubaki N (2005) Langmuir 21:1699–1702CrossRefGoogle Scholar
  90. 90.
    Guan Z, Hu J, Gu Y, Zhang H, Li G, Li T (2012) Green Chem 14:1964–1970CrossRefGoogle Scholar
  91. 91.
    Yang H, Zhang L, Zhong L, Yang Q, Li C (2007) Angew Chem Int Ed 46:6861–6865CrossRefGoogle Scholar
  92. 92.
    Yang G, Wang D, Yoneyama Y, Tan Y, Tsubaki N (2011) Chem Commun 48:1263–1265CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of ChemistryPadmabhushan Dr. Vasantraodada Patil CollegeTasgaon SangliIndia

Personalised recommendations