Topics in Current Chemistry

, 374:79 | Cite as

Combined Microwaves/Ultrasound, a Hybrid Technology

  • Katia Martina
  • Silvia Tagliapietra
  • Alessandro Barge
  • Giancarlo Cravotto
Part of the following topical collections:
  1. Sonochemistry: From basic principles to innovative applications


The combination of microwave heating and ultrasound irradiation has been successfully exploited in applied chemistry. Besides saving energy, these green techniques promote faster and more selective transformations. The aim of this review is to provide a practical overview of the complimentary and synergistic effects generated by the combination of microwaves and either ultrasound or hydrodynamic cavitation. This will begin with a brief history, as we outline pioneering achievements, and will also update the reader on recent developments. Such hyphenated techniques are able to offer reliable and efficient protocols for basic chemistry, organic and inorganic synthesis as well as processing. The development of dedicated hybrid reactors has helped scientists to find solutions to new synthetic challenges in the preparation of nanomaterials and new green catalysts. This research topic falls within the confines of process intensification as it facilitates the design of substantially cleaner, safer and more energy efficient technologies and chemical processes.


Microwaves Ultrasound Enabling technologies Hybrid reactors Synergistic effects 



The University of Turin is warmly acknowledged for its financial support (Fondi Ricerca Locale 2015).


  1. 1.
    Maeda M, Amemiya H (1995) Chemical effects under simultaneous irradiation by microwaves and ultrasound, New. J Chem 19:1023–1028Google Scholar
  2. 2.
    Cravotto G, Cintas P (2007) The combined use of microwaves and ultrasound: new tools in process chemistry and organic synthesis. Chem Eur J 13:1902–1909CrossRefGoogle Scholar
  3. 3.
    Cravotto G, Borretto E, Oliverio M, Procopio A, Penoni A (2015) Catalysis in water or biphasic aqueous systems under sonochemical conditions. Catal Commun 63:2–9CrossRefGoogle Scholar
  4. 4.
    Cintas P, Cravotto G, Canals A (2012) Combined ultrasound-microwave technologies, in Handbook on Applications of Ultrasound: Sonochemistry for Sustainability. CRC Press, Boca Raton, pp 659–673Google Scholar
  5. 5.
    Cravotto G, Cintas P (2006) Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem Soc Rev 35:180–196CrossRefGoogle Scholar
  6. 6.
    Cravotto G, Garella D, Calcio Gaudino E, Lévêque JM (2008) Microwaves-ultrasound coupling: a tool for process intensification in organic synthesis. Chem Today 26:39–41Google Scholar
  7. 7.
    Chemat F, Poux M, Di Martino JL, Berlan J (1996) An original microwave-ultrasound combined reactor suitable for organic synthesis: application to pyrolysis and esterification. J Microwav Power Electromagn Energy 31:19–22CrossRefGoogle Scholar
  8. 8.
    Cravotto G, Beggiato M, Penoni A, Palmisano G, Tollari S, Lévêque JM, Bonrath W (2005) High-intensity ultrasound and microwave, alone or combined, promote Pd/C-catalyzed aryl-aryl couplings. Tetrahedron Lett 46:2267–2271CrossRefGoogle Scholar
  9. 9.
    Cravotto G, Di Carlo S, Curini M, Tumiatti V, Roggero C (2007) A new flow reactor for the treatment of polluted water with microwave and ultrasound. J Chem Technol Biotech 82:205–208CrossRefGoogle Scholar
  10. 10.
    Wu Z, Ondruschka B, Cravotto G (2008) Degradation of phenol under combined irradiation with microwaves and ultrasound. Environ Sci Technol 42:8083–8087CrossRefGoogle Scholar
  11. 11.
    Ragaini V, Pirola C, Borrelli S, Longo I (2012) Simultaneous ultrasound and microwave new reactor: detailed description and energetic consideration. Ultrason Sonochem 19:872–876CrossRefGoogle Scholar
  12. 12.
    Otteson D, Michl J (1984) A procedure for gas-phase dehalogenation of organic dihalides with alkali metal vapors using microwave and/or ultrasound excitation and matrix isolation of products. J Org Chem 49:866–873CrossRefGoogle Scholar
  13. 13.
    Cravotto G, Rinaldi L, Carnaroglio D (2015) Efficient Catalysis by combining Microwaves with other enabling Technologies, Chapt. 8 in Microwaves in Catalysis Ed. Horikoshi S, Serpone N, Wiley-VCH Verlag GmbH & Co. KGaA Boschstr. 12, 69469 Weinheim, GermanyGoogle Scholar
  14. 14.
    Martinez-Guerra E, Gnaneswar Gude V (2014) Synergistic effect of simultaneous microwave and ultrasound irradiations on transesterification of waste vegetable oil. Fuel 137:100–108CrossRefGoogle Scholar
  15. 15.
    Martinez-Guerra E, Gnaneswar Gude V (2014) Transesterification of used vegetable oil catalyzed by barium oxide under simultaneous microwave and ultrasound irradiations. Energy Convers Manage 88:633–640CrossRefGoogle Scholar
  16. 16.
    Martinez-Guerra E, Gude VG (2016) Alcohol effect on microwave-ultrasound enhanced transesterification reaction Chem. Eng Process 101:1–7CrossRefGoogle Scholar
  17. 17.
    Ardebili SMS, Hashjin TT, Ghobadian B, Najafi G, Mantegna S, Cravotto G (2015) Optimization of biodiesel synthesis under simultaneous ultrasound-microwave irradiation using response surface methodology (RSM). Green Process Synth 4:259–267Google Scholar
  18. 18.
    Palmisano G, Bonrath W, Boffa L, Garella D, Barge A, Cravotto G (2007) Heck reactions with very low ligandless catalyst loads accelerated by microwaves or simultaneous microwaves/ultrasound irradiation. Adv Synth Catal 349:2338–2344CrossRefGoogle Scholar
  19. 19.
    Sacco M, Charnay C, De Angelis F, Radoiu M, Lamaty F, Martinez J, Colacino E (2015) Microwave-ultrasound simultaneous irradiation: a hybrid technology applied to ring closing Metathesis. RSC Adv. 5:16878–16885CrossRefGoogle Scholar
  20. 20.
    Palmisano G, Tagliapietra S, Binello A, Boffa L, Cravotto G (2007) Efficient regioselective opening of epoxides by nucleophiles in water under simultaneous ultrasound/microwave irradiation. Synlett 2007:2041–2044CrossRefGoogle Scholar
  21. 21.
    Cintas P, Martina K, Robaldo B, Garella D, Boffa L, Cravotto G (2007) Improved protocols for microwave-assisted Cu(I)-catalyzed Huisgen 1,3-dipolar cycloadditions. Collect Czech Chem Commun 72:1014–1024CrossRefGoogle Scholar
  22. 22.
    Cintas P, Barge A, Tagliapietra S, Boffa L, Cravotto G (2010) Alkyne-azide click reaction catalyzed by metallic copper under ultrasound. Nat Protocol 5:607–616CrossRefGoogle Scholar
  23. 23.
    Peng Y, Song G (2003) Combined microwave and ultrasound accelerated Knoevenagel-Doebner reaction in aqueous media: a green route to 3-aryl acrylic acids. Green Chem 5:704–706CrossRefGoogle Scholar
  24. 24.
    Peng Y, Song G (2002) Combined microwave and ultrasound assisted Williamson ether synthesis in the absence of phase-transfer catalysts. Green Chem 4:349–351CrossRefGoogle Scholar
  25. 25.
    Peng Y, Song G (2001) Simultaneous microwave and ultrasound irradiation: a rapid synthesis of hydrazides. Green Chem 3:302–304CrossRefGoogle Scholar
  26. 26.
    Wu Z, Ondruschka B, Cravotto G, Garella D, Asgari J (2008) Oxidation of primary aromatic amines under irradiation with ultrasound and/or microwaves. Synth Commun 38:2619–2624CrossRefGoogle Scholar
  27. 27.
    Garella D, Tagliapietra S, Metha VP, Van der Eycken E, Cravotto G (2010) Straightforward functionalization of 3,5-Dichloro-2-pyrazinones under simultaneous microwave and ultrasound irradiation. Synthesis 2010:136–140CrossRefGoogle Scholar
  28. 28.
    Cravotto G, Boffa L, Levêque JM, Estager J, Draye M, Bonrath W (2007) A speedy one-pot synthesis of second-generation ionic liquids under ultrasound and/or microwave irradiation. Aust J Chem 60:946–950CrossRefGoogle Scholar
  29. 29.
    Domini C, Vidal L, Cravotto G, Canals A (2009) A simultaneous, direct microwave/ultrasound-assisted digestion procedure for the determination of total Kjeldahl nitrogen. Ultrason Sonochem 16:564–569CrossRefGoogle Scholar
  30. 30.
    Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291:851–853CrossRefGoogle Scholar
  31. 31.
    Boffa L, Tagliapietra S, Cravotto G (2013) Combined energy sources in the synthesis of nanomaterials in Microwaves 55–74. Chapt. 4 in Nanoparticle Synthesis—Fundamentals and Applications. Ed. Horikoshi S, Serpone N, Wiley-VCH Verlag GmbH & Co. KGaA Boschstr. 12, 69469 WeinheimGoogle Scholar
  32. 32.
    Bang JH, Suslick KS (2010) Application of ultrasound to the nanostructured materials. Adv Mater 22:1039–1059CrossRefGoogle Scholar
  33. 33.
    Colmenares JC (2014) Sonication-induced pathways in the synthesis of light-active catalysts for photocatalytic oxidation of organic contaminants. ChemSusChem 7:1512–1527CrossRefGoogle Scholar
  34. 34.
    Cravotto G, Boffa L (2014) Combined Ultrasound-Microwave irradiation for the preparation of nanomaterials, 203–226. Chapt. 7. In: Sivakumar M, Ashokkumar M (eds.) Cavitation—a novel energy efficient technique for the generation of nanomaterials. Pan Stanford Publishing Pte Ltd., eBook ISBN: 978-981-4411-55-4Google Scholar
  35. 35.
    Feng H, Li Y, Lin S, Van der Eycken E, Song G (2014) Nano Cu-catalyzed efficient and selective reduction of nitroarenes under combined microwave and ultrasound irradiation. Sustain Chem Process 2:14–19CrossRefGoogle Scholar
  36. 36.
    Wu Z, Cherkasov N, Cravotto G, Borretto E, Ibhadon AO, Medlock J, Bonrath W (2015) Ultrasound- and microwave-assisted preparation of lead-free palladium catalysts: effects on the kinetics of diphenylacetylene semi-hydrogenation. ChemCatChem 7:952–959CrossRefGoogle Scholar
  37. 37.
    Zhu HT, Zhang CY, Tang YM, Wang JX (2007) Novel synthesis and thermal conductivity of CuO nanofluid. J Phys Chem C 111:1646–1650CrossRefGoogle Scholar
  38. 38.
    Shen X-F (2009) Combining microwave and ultrasound irradiation for rapid synthesis of nanowires: a case study on Pb(OH)Br. J Chem Technol Biotechnol 84:1811–1817CrossRefGoogle Scholar
  39. 39.
    Guo QJ, Ford GM, Yang WC, Walker BC, Stach EA, Hillhouse HW, Agrawal R (2010) Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc 132:17384–17386CrossRefGoogle Scholar
  40. 40.
    Zhou YL, Zhou WH, Du YF, Li M, Wu SX (2011) Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method. Mater Lett 65:1535–1537CrossRefGoogle Scholar
  41. 41.
    Wang Y, Gong H (2011) Cu2ZnSnS4 synthesized through a green and economic process. J Alloy Compd 509:9627–9630CrossRefGoogle Scholar
  42. 42.
    Madiraju VA, Taneja K, Kumar M, Seelaboyina R (2016) CZTS synthesis in aqueous media by microwave irradiation. J Mater Sci: Mater Electron 27:3152–3157Google Scholar
  43. 43.
    Wang W, Shen H, Yao H, Li J, Jiao J (2015) Influence of solution temperature on the properties of Cu2ZnSnS4 nanoparticles by ultrasound-assisted microwave irradiation. J Mater Sci Mater El 26:1449–1454CrossRefGoogle Scholar
  44. 44.
    Long F, Chi S, He J, Wang J, Wu X, Mo S, Zou Z (2015) Synthesis of hexagonal wurtzite Cu2ZnSnS4 prisms by an ultrasound-assisted microwave solvothermal method. J Solid State Chem 229:228–234CrossRefGoogle Scholar
  45. 45.
    Zheng Y, Tan J, Huang L, Tan D, Li Y, Lin X, Huo S, Lin J, Wang Q (2013) Sonochemistry-assisted microwave synthesis of nano-sized lanthanide activated phosphors with luminescence and different microstructures. Mater Lett 113:90–92CrossRefGoogle Scholar
  46. 46.
    Si W, Ding C, Ding S (2014) Synthesis and characterization of YAG nanoparticles by ultrasound-assisted and ultrasound-microwave-assisted alkoxide hydrolysis precipitation methods. J Nanomater 2014:8, Art ID 408910. doi: 10.1155/2014/408910
  47. 47.
    Li H, Liu E, Chan FYF, Lu Z, Chen R (2011) Fabrication of ordered flower-like ZnO nanostructures by a microwave and ultrasonic combined technique and their enhanced photocatalytic activity. Mater Lett 65:3440–3443CrossRefGoogle Scholar
  48. 48.
    Luo C-X, Liu J-K, Lu Y, Du C-S (2012) Controllable preparation and sterilization activity of zinc aluminium oxide nanoparticles. Mater Sci Eng C 32:680–684CrossRefGoogle Scholar
  49. 49.
    Zhang Y, Li G, Yang X, Yang H, Lu Z, Chen R (2013) Monoclinic BiVO4 micro-/nanostructures: microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities. J Alloy Compd 551:544–550CrossRefGoogle Scholar
  50. 50.
    Tai G, Guo W (2008) Sonochemistry-assisted microwave synthesis and optical study of single-crystalline CdS nanoflowers. Ultrason Sonochem 15:350–356CrossRefGoogle Scholar
  51. 51.
    Ma J, Tai G, Guo W (2010) Ultrasound-assisted microwave preparation of Ag-doped CdS nanoparticles. Ultrason Sonochem 17:534–540CrossRefGoogle Scholar
  52. 52.
    Xu Z, Yu Y, Fang D, Xu J, Liang J, Zhou L (2015) Microwave–ultrasound assisted synthesis of β-FeOOH and its catalytic property in a photo-Fenton-like process. Ultrason Sonochem 27:287–295CrossRefGoogle Scholar
  53. 53.
    Dey A, Panja S, Sikder AK, Chattopadhyay S (2015) One pot green synthesis of graphene–iron oxide nanocomposite (GINC): an efficient material for enhancement of thermoelectric performance. RSC Adv 5:10358–10364CrossRefGoogle Scholar
  54. 54.
    Dey A, Hadavale S, Khan MAS, More P, Khanna PK, Sikder AK, Chattopadhyay S (2015) S Polymer based graphene/titanium dioxide nanocomposite (GTNC): an emerging and efficient thermoelectric material. Dalton Trans 44:19248–19255CrossRefGoogle Scholar
  55. 55.
    Dey A, Nangare V, More PV, Shageeuulla Khna MA, Khanna PV, Kanti Sikder A, Chattopadhyay S (2015) A graphene titanium dioxide nanocomposite (GTNC): one pot green synthesis and its application in a solid rocket propellant. RSC Adv 5:63777–63785CrossRefGoogle Scholar
  56. 56.
    Fu X, Sheng X, Zhou Y, Fu Z, Zhao S, Zhang Z, Zhang Y (2016) Ultrasonic/microwave synergistic synthesis of well-dispersed hierarchical zeolite Y with improved alkylation catalytic activity. Korean J Chem Eng 33:1931–1937CrossRefGoogle Scholar
  57. 57.
    Poinerna GEJ, Ghoshc MK, Nga Y-J, Issa TB (2011) Defluoridation behavior of nanostructured hydroxyapatite synthesized throughan ultrasonic and microwave combined technique. J Hazard Mater 185:29–37CrossRefGoogle Scholar
  58. 58.
    Zou Z, Lin K, Chen L, Chang J (2012) Ultrafast synthesis and characterization of carbonated hydroxyl apatite nanopowders via sonochemistry-assisted microwave process. Ultrason Sonochem 19:1174–1179CrossRefGoogle Scholar
  59. 59.
    Liang T, Qian J, Yuan Y, Liu C (2013) Synthesis of mesoporous hydroxyapatite nanoparticles using a template-free sonochemistry-assisted microwave method. J Mater Sci 48:5334–5341CrossRefGoogle Scholar
  60. 60.
    Cravotto G, Cintas P (2007) Chapter 3: Extraction of flavourings from natural sources. In: Taylor A, Hort J (eds) Modifying flavour in food. Woodhead Publishing Ltd./CRC Press, Cambridge, pp 41–63. ISBN: 978-1-84569-074-8CrossRefGoogle Scholar
  61. 61.
    Chemat F, Abert-Vian M, Cravotto G (2012) Review: green extraction of natural products: concept and principles. Int J Mol Sci 13:8615–8627CrossRefGoogle Scholar
  62. 62.
    Cravotto G, Boffa L, Mantegna S, Perego P, Avogadro M, Cintas P (2008) Improved extraction of natural matrices under high-intensity ultrasound and microwave, alone or combined. Ultrason Sonochem 15:898–902CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Katia Martina
    • 1
  • Silvia Tagliapietra
    • 1
  • Alessandro Barge
    • 1
  • Giancarlo Cravotto
    • 1
  1. 1.Dipartimento di Scienza e Tecnologia del Farmaco and NIS-Centre for Nanostructured Interfaces and SurfacesUniversity of TurinTurinItaly

Personalised recommendations