Skip to main content

Advertisement

Log in

Combined Microwaves/Ultrasound, a Hybrid Technology

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

The combination of microwave heating and ultrasound irradiation has been successfully exploited in applied chemistry. Besides saving energy, these green techniques promote faster and more selective transformations. The aim of this review is to provide a practical overview of the complimentary and synergistic effects generated by the combination of microwaves and either ultrasound or hydrodynamic cavitation. This will begin with a brief history, as we outline pioneering achievements, and will also update the reader on recent developments. Such hyphenated techniques are able to offer reliable and efficient protocols for basic chemistry, organic and inorganic synthesis as well as processing. The development of dedicated hybrid reactors has helped scientists to find solutions to new synthetic challenges in the preparation of nanomaterials and new green catalysts. This research topic falls within the confines of process intensification as it facilitates the design of substantially cleaner, safer and more energy efficient technologies and chemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

(reproduced with permission from Ref. [14])

Fig. 10
Scheme 1
Fig. 11

(reproduced from Ref. [19] with permission from the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry)

Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Fig. 12
Fig. 13

(reproduced with permission from Ref. [44])

Fig. 14

(reproduced with permission from Ref. [45])

Fig. 15

Reproduced with permission from Ref. [46]

Fig. 16

(reproduced with permission from Ref. [47])

Fig. 17

Similar content being viewed by others

References

  1. Maeda M, Amemiya H (1995) Chemical effects under simultaneous irradiation by microwaves and ultrasound, New. J Chem 19:1023–1028

    CAS  Google Scholar 

  2. Cravotto G, Cintas P (2007) The combined use of microwaves and ultrasound: new tools in process chemistry and organic synthesis. Chem Eur J 13:1902–1909

    Article  CAS  Google Scholar 

  3. Cravotto G, Borretto E, Oliverio M, Procopio A, Penoni A (2015) Catalysis in water or biphasic aqueous systems under sonochemical conditions. Catal Commun 63:2–9

    Article  CAS  Google Scholar 

  4. Cintas P, Cravotto G, Canals A (2012) Combined ultrasound-microwave technologies, in Handbook on Applications of Ultrasound: Sonochemistry for Sustainability. CRC Press, Boca Raton, pp 659–673

    Google Scholar 

  5. Cravotto G, Cintas P (2006) Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem Soc Rev 35:180–196

    Article  CAS  Google Scholar 

  6. Cravotto G, Garella D, Calcio Gaudino E, Lévêque JM (2008) Microwaves-ultrasound coupling: a tool for process intensification in organic synthesis. Chem Today 26:39–41

    Google Scholar 

  7. Chemat F, Poux M, Di Martino JL, Berlan J (1996) An original microwave-ultrasound combined reactor suitable for organic synthesis: application to pyrolysis and esterification. J Microwav Power Electromagn Energy 31:19–22

    Article  Google Scholar 

  8. Cravotto G, Beggiato M, Penoni A, Palmisano G, Tollari S, Lévêque JM, Bonrath W (2005) High-intensity ultrasound and microwave, alone or combined, promote Pd/C-catalyzed aryl-aryl couplings. Tetrahedron Lett 46:2267–2271

    Article  CAS  Google Scholar 

  9. Cravotto G, Di Carlo S, Curini M, Tumiatti V, Roggero C (2007) A new flow reactor for the treatment of polluted water with microwave and ultrasound. J Chem Technol Biotech 82:205–208

    Article  CAS  Google Scholar 

  10. Wu Z, Ondruschka B, Cravotto G (2008) Degradation of phenol under combined irradiation with microwaves and ultrasound. Environ Sci Technol 42:8083–8087

    Article  CAS  Google Scholar 

  11. Ragaini V, Pirola C, Borrelli S, Longo I (2012) Simultaneous ultrasound and microwave new reactor: detailed description and energetic consideration. Ultrason Sonochem 19:872–876

    Article  CAS  Google Scholar 

  12. Otteson D, Michl J (1984) A procedure for gas-phase dehalogenation of organic dihalides with alkali metal vapors using microwave and/or ultrasound excitation and matrix isolation of products. J Org Chem 49:866–873

    Article  CAS  Google Scholar 

  13. Cravotto G, Rinaldi L, Carnaroglio D (2015) Efficient Catalysis by combining Microwaves with other enabling Technologies, Chapt. 8 in Microwaves in Catalysis Ed. Horikoshi S, Serpone N, Wiley-VCH Verlag GmbH & Co. KGaA Boschstr. 12, 69469 Weinheim, Germany

  14. Martinez-Guerra E, Gnaneswar Gude V (2014) Synergistic effect of simultaneous microwave and ultrasound irradiations on transesterification of waste vegetable oil. Fuel 137:100–108

    Article  CAS  Google Scholar 

  15. Martinez-Guerra E, Gnaneswar Gude V (2014) Transesterification of used vegetable oil catalyzed by barium oxide under simultaneous microwave and ultrasound irradiations. Energy Convers Manage 88:633–640

    Article  CAS  Google Scholar 

  16. Martinez-Guerra E, Gude VG (2016) Alcohol effect on microwave-ultrasound enhanced transesterification reaction Chem. Eng Process 101:1–7

    Article  CAS  Google Scholar 

  17. Ardebili SMS, Hashjin TT, Ghobadian B, Najafi G, Mantegna S, Cravotto G (2015) Optimization of biodiesel synthesis under simultaneous ultrasound-microwave irradiation using response surface methodology (RSM). Green Process Synth 4:259–267

    Google Scholar 

  18. Palmisano G, Bonrath W, Boffa L, Garella D, Barge A, Cravotto G (2007) Heck reactions with very low ligandless catalyst loads accelerated by microwaves or simultaneous microwaves/ultrasound irradiation. Adv Synth Catal 349:2338–2344

    Article  CAS  Google Scholar 

  19. Sacco M, Charnay C, De Angelis F, Radoiu M, Lamaty F, Martinez J, Colacino E (2015) Microwave-ultrasound simultaneous irradiation: a hybrid technology applied to ring closing Metathesis. RSC Adv. 5:16878–16885

    Article  CAS  Google Scholar 

  20. Palmisano G, Tagliapietra S, Binello A, Boffa L, Cravotto G (2007) Efficient regioselective opening of epoxides by nucleophiles in water under simultaneous ultrasound/microwave irradiation. Synlett 2007:2041–2044

    Article  Google Scholar 

  21. Cintas P, Martina K, Robaldo B, Garella D, Boffa L, Cravotto G (2007) Improved protocols for microwave-assisted Cu(I)-catalyzed Huisgen 1,3-dipolar cycloadditions. Collect Czech Chem Commun 72:1014–1024

    Article  CAS  Google Scholar 

  22. Cintas P, Barge A, Tagliapietra S, Boffa L, Cravotto G (2010) Alkyne-azide click reaction catalyzed by metallic copper under ultrasound. Nat Protocol 5:607–616

    Article  CAS  Google Scholar 

  23. Peng Y, Song G (2003) Combined microwave and ultrasound accelerated Knoevenagel-Doebner reaction in aqueous media: a green route to 3-aryl acrylic acids. Green Chem 5:704–706

    Article  CAS  Google Scholar 

  24. Peng Y, Song G (2002) Combined microwave and ultrasound assisted Williamson ether synthesis in the absence of phase-transfer catalysts. Green Chem 4:349–351

    Article  CAS  Google Scholar 

  25. Peng Y, Song G (2001) Simultaneous microwave and ultrasound irradiation: a rapid synthesis of hydrazides. Green Chem 3:302–304

    Article  CAS  Google Scholar 

  26. Wu Z, Ondruschka B, Cravotto G, Garella D, Asgari J (2008) Oxidation of primary aromatic amines under irradiation with ultrasound and/or microwaves. Synth Commun 38:2619–2624

    Article  CAS  Google Scholar 

  27. Garella D, Tagliapietra S, Metha VP, Van der Eycken E, Cravotto G (2010) Straightforward functionalization of 3,5-Dichloro-2-pyrazinones under simultaneous microwave and ultrasound irradiation. Synthesis 2010:136–140

    Article  Google Scholar 

  28. Cravotto G, Boffa L, Levêque JM, Estager J, Draye M, Bonrath W (2007) A speedy one-pot synthesis of second-generation ionic liquids under ultrasound and/or microwave irradiation. Aust J Chem 60:946–950

    Article  CAS  Google Scholar 

  29. Domini C, Vidal L, Cravotto G, Canals A (2009) A simultaneous, direct microwave/ultrasound-assisted digestion procedure for the determination of total Kjeldahl nitrogen. Ultrason Sonochem 16:564–569

    Article  CAS  Google Scholar 

  30. Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291:851–853

    Article  CAS  Google Scholar 

  31. Boffa L, Tagliapietra S, Cravotto G (2013) Combined energy sources in the synthesis of nanomaterials in Microwaves 55–74. Chapt. 4 in Nanoparticle Synthesis—Fundamentals and Applications. Ed. Horikoshi S, Serpone N, Wiley-VCH Verlag GmbH & Co. KGaA Boschstr. 12, 69469 Weinheim

  32. Bang JH, Suslick KS (2010) Application of ultrasound to the nanostructured materials. Adv Mater 22:1039–1059

    Article  CAS  Google Scholar 

  33. Colmenares JC (2014) Sonication-induced pathways in the synthesis of light-active catalysts for photocatalytic oxidation of organic contaminants. ChemSusChem 7:1512–1527

    Article  CAS  Google Scholar 

  34. Cravotto G, Boffa L (2014) Combined Ultrasound-Microwave irradiation for the preparation of nanomaterials, 203–226. Chapt. 7. In: Sivakumar M, Ashokkumar M (eds.) Cavitation—a novel energy efficient technique for the generation of nanomaterials. Pan Stanford Publishing Pte Ltd., eBook ISBN: 978-981-4411-55-4

  35. Feng H, Li Y, Lin S, Van der Eycken E, Song G (2014) Nano Cu-catalyzed efficient and selective reduction of nitroarenes under combined microwave and ultrasound irradiation. Sustain Chem Process 2:14–19

    Article  Google Scholar 

  36. Wu Z, Cherkasov N, Cravotto G, Borretto E, Ibhadon AO, Medlock J, Bonrath W (2015) Ultrasound- and microwave-assisted preparation of lead-free palladium catalysts: effects on the kinetics of diphenylacetylene semi-hydrogenation. ChemCatChem 7:952–959

    Article  CAS  Google Scholar 

  37. Zhu HT, Zhang CY, Tang YM, Wang JX (2007) Novel synthesis and thermal conductivity of CuO nanofluid. J Phys Chem C 111:1646–1650

    Article  CAS  Google Scholar 

  38. Shen X-F (2009) Combining microwave and ultrasound irradiation for rapid synthesis of nanowires: a case study on Pb(OH)Br. J Chem Technol Biotechnol 84:1811–1817

    Article  CAS  Google Scholar 

  39. Guo QJ, Ford GM, Yang WC, Walker BC, Stach EA, Hillhouse HW, Agrawal R (2010) Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc 132:17384–17386

    Article  CAS  Google Scholar 

  40. Zhou YL, Zhou WH, Du YF, Li M, Wu SX (2011) Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method. Mater Lett 65:1535–1537

    Article  CAS  Google Scholar 

  41. Wang Y, Gong H (2011) Cu2ZnSnS4 synthesized through a green and economic process. J Alloy Compd 509:9627–9630

    Article  CAS  Google Scholar 

  42. Madiraju VA, Taneja K, Kumar M, Seelaboyina R (2016) CZTS synthesis in aqueous media by microwave irradiation. J Mater Sci: Mater Electron 27:3152–3157

    CAS  Google Scholar 

  43. Wang W, Shen H, Yao H, Li J, Jiao J (2015) Influence of solution temperature on the properties of Cu2ZnSnS4 nanoparticles by ultrasound-assisted microwave irradiation. J Mater Sci Mater El 26:1449–1454

    Article  CAS  Google Scholar 

  44. Long F, Chi S, He J, Wang J, Wu X, Mo S, Zou Z (2015) Synthesis of hexagonal wurtzite Cu2ZnSnS4 prisms by an ultrasound-assisted microwave solvothermal method. J Solid State Chem 229:228–234

    Article  CAS  Google Scholar 

  45. Zheng Y, Tan J, Huang L, Tan D, Li Y, Lin X, Huo S, Lin J, Wang Q (2013) Sonochemistry-assisted microwave synthesis of nano-sized lanthanide activated phosphors with luminescence and different microstructures. Mater Lett 113:90–92

    Article  CAS  Google Scholar 

  46. Si W, Ding C, Ding S (2014) Synthesis and characterization of YAG nanoparticles by ultrasound-assisted and ultrasound-microwave-assisted alkoxide hydrolysis precipitation methods. J Nanomater 2014:8, Art ID 408910. doi:10.1155/2014/408910

  47. Li H, Liu E, Chan FYF, Lu Z, Chen R (2011) Fabrication of ordered flower-like ZnO nanostructures by a microwave and ultrasonic combined technique and their enhanced photocatalytic activity. Mater Lett 65:3440–3443

    Article  CAS  Google Scholar 

  48. Luo C-X, Liu J-K, Lu Y, Du C-S (2012) Controllable preparation and sterilization activity of zinc aluminium oxide nanoparticles. Mater Sci Eng C 32:680–684

    Article  CAS  Google Scholar 

  49. Zhang Y, Li G, Yang X, Yang H, Lu Z, Chen R (2013) Monoclinic BiVO4 micro-/nanostructures: microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities. J Alloy Compd 551:544–550

    Article  CAS  Google Scholar 

  50. Tai G, Guo W (2008) Sonochemistry-assisted microwave synthesis and optical study of single-crystalline CdS nanoflowers. Ultrason Sonochem 15:350–356

    Article  CAS  Google Scholar 

  51. Ma J, Tai G, Guo W (2010) Ultrasound-assisted microwave preparation of Ag-doped CdS nanoparticles. Ultrason Sonochem 17:534–540

    Article  CAS  Google Scholar 

  52. Xu Z, Yu Y, Fang D, Xu J, Liang J, Zhou L (2015) Microwave–ultrasound assisted synthesis of β-FeOOH and its catalytic property in a photo-Fenton-like process. Ultrason Sonochem 27:287–295

    Article  CAS  Google Scholar 

  53. Dey A, Panja S, Sikder AK, Chattopadhyay S (2015) One pot green synthesis of graphene–iron oxide nanocomposite (GINC): an efficient material for enhancement of thermoelectric performance. RSC Adv 5:10358–10364

    Article  CAS  Google Scholar 

  54. Dey A, Hadavale S, Khan MAS, More P, Khanna PK, Sikder AK, Chattopadhyay S (2015) S Polymer based graphene/titanium dioxide nanocomposite (GTNC): an emerging and efficient thermoelectric material. Dalton Trans 44:19248–19255

    Article  CAS  Google Scholar 

  55. Dey A, Nangare V, More PV, Shageeuulla Khna MA, Khanna PV, Kanti Sikder A, Chattopadhyay S (2015) A graphene titanium dioxide nanocomposite (GTNC): one pot green synthesis and its application in a solid rocket propellant. RSC Adv 5:63777–63785

    Article  CAS  Google Scholar 

  56. Fu X, Sheng X, Zhou Y, Fu Z, Zhao S, Zhang Z, Zhang Y (2016) Ultrasonic/microwave synergistic synthesis of well-dispersed hierarchical zeolite Y with improved alkylation catalytic activity. Korean J Chem Eng 33:1931–1937

    Article  CAS  Google Scholar 

  57. Poinerna GEJ, Ghoshc MK, Nga Y-J, Issa TB (2011) Defluoridation behavior of nanostructured hydroxyapatite synthesized throughan ultrasonic and microwave combined technique. J Hazard Mater 185:29–37

    Article  Google Scholar 

  58. Zou Z, Lin K, Chen L, Chang J (2012) Ultrafast synthesis and characterization of carbonated hydroxyl apatite nanopowders via sonochemistry-assisted microwave process. Ultrason Sonochem 19:1174–1179

    Article  CAS  Google Scholar 

  59. Liang T, Qian J, Yuan Y, Liu C (2013) Synthesis of mesoporous hydroxyapatite nanoparticles using a template-free sonochemistry-assisted microwave method. J Mater Sci 48:5334–5341

    Article  CAS  Google Scholar 

  60. Cravotto G, Cintas P (2007) Chapter 3: Extraction of flavourings from natural sources. In: Taylor A, Hort J (eds) Modifying flavour in food. Woodhead Publishing Ltd./CRC Press, Cambridge, pp 41–63. ISBN: 978-1-84569-074-8

    Chapter  Google Scholar 

  61. Chemat F, Abert-Vian M, Cravotto G (2012) Review: green extraction of natural products: concept and principles. Int J Mol Sci 13:8615–8627

    Article  CAS  Google Scholar 

  62. Cravotto G, Boffa L, Mantegna S, Perego P, Avogadro M, Cintas P (2008) Improved extraction of natural matrices under high-intensity ultrasound and microwave, alone or combined. Ultrason Sonochem 15:898–902

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The University of Turin is warmly acknowledged for its financial support (Fondi Ricerca Locale 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Cravotto.

Additional information

This article is part of the Topical Collection “Sonochemistry: From basic principles to innovative applications”; edited by Juan Carlos Colmenares Q., Gregory Chatel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martina, K., Tagliapietra, S., Barge, A. et al. Combined Microwaves/Ultrasound, a Hybrid Technology. Top Curr Chem (Z) 374, 79 (2016). https://doi.org/10.1007/s41061-016-0082-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0082-7

Keywords

Navigation