Topics in Current Chemistry

, 374:83 | Cite as

Organic Cocrystals: New Strategy for Molecular Collaborative Innovation

  • Yu Wang
  • Weigang Zhu
  • Huanli Dong
  • Xiaotao Zhang
  • Rongjin Li
  • Wenping Hu
Part of the following topical collections:
  1. Molecular-Scale Electronics: Current Status and Perspective


Organic cocrystals that are composed of two or more components usually exhibit novel, unpredictable, and even unique properties rather than a simple combination of the properties of their components, such as white-light emission, ambipolar charge transport, nonlinear optics, and ferroelectricity. Since cocrystal engineering represents a novel strategy for synthesizing multifunctional materials, which opens the door for molecular collaborative innovation, it has aroused much attention in recent years. However, as it is also a relatively new research field, it is only in its early stages of development. In order to provide readers with an understanding of the future design of cocrystals for potential applications, a brief review of organic cocrystals is presented here, including an introduction to organic cocrystals as well as discussions of cocrystal preparation, methods and techniques of characterization, and multifunctional applications of cocrystals. Moreover, the outlook for further studies and applications of cocrystal engineering is considered.


Cocrystals Optoelectronics Organic materials Crystal engineering 



W. Hu and H. Dong acknowledge the National Natural Science Foundation of China (91,222,203, 91233205, and 91433115), the Ministry of Science and Technology of China (2013CB933403, 2013CB933504), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12030300), the Beijing NOVA Program (Z131101000413038), and the Beijing Local College Innovation Team Improve Plan (IDHT20140512).


  1. 1.
    Dong H, Wang C, Hu W (2010) Chem Commun 46(29):5211–5222CrossRefGoogle Scholar
  2. 2.
    Dong H, Fu X, Liu J, Wang Z, Hu W (2013) Adv Mater 25(43):6158–6182CrossRefGoogle Scholar
  3. 3.
    Zhang C, Chen P, Hu W (2015) Chem Soc Rev 44(8):2087–2107CrossRefGoogle Scholar
  4. 4.
    Wang C, Dong H, Hu W, Liu Y, Zhu D (2012) Chem Rev 112(4):2208–2267CrossRefGoogle Scholar
  5. 5.
    Wakahara T, D’Angelo P, Miyazawa KI, Nemoto Y, Ito O, Tanigaki N, Bradley DDC, Anthopoulos TD (2012) J Am Chem Soc 134(17):7204–7206CrossRefGoogle Scholar
  6. 6.
    Wu H, Wang F, Xiao Y, Pan G (2013) J Mater Chem C 1(12):2286–2289CrossRefGoogle Scholar
  7. 7.
    Black H, Perepichka D (2014) Angew Chem Int Ed 53(8):2138–2142CrossRefGoogle Scholar
  8. 8.
    Rupasinghe T, Hutchins K, Bandaranayake B, Ghorai S, Karunatilake C, Bucar D, Swenson D, Arnold M, MacGillivray L, Tivanski A (2015) J Am Chem Soc 137(40):12768–12771CrossRefGoogle Scholar
  9. 9.
    Zhao Y, Fu H, Peng A, Ma Y, Liao Q, Yao J (2010) Acc Chem Res 43(3):409–418CrossRefGoogle Scholar
  10. 10.
    Yan D, Delori A, Lloyd GO, Friscic T, Day GM, Jones W, Lu J, Wei M, Evans DG, Duan X (2011) Angew Chem Int Ed 50(52):12483–12486CrossRefGoogle Scholar
  11. 11.
    Lei YL, Liao LS, Lee ST (2013) J Am Chem Soc 135(10):3744–3747CrossRefGoogle Scholar
  12. 12.
    Xiao J, Yin Z, Li H, Zhang Q, Boey F, Zhang H, Zhang Q (2010) J Am Chem Soc 132(20):6926–6928CrossRefGoogle Scholar
  13. 13.
    Wöhler F (1844) Justus Liebigs Annalen der Chemie 51(2):145–163CrossRefGoogle Scholar
  14. 14.
    Ferraris J, Walatka V, Perlstei JH, Cowan DO (1973) J Am Chem Soc 95(3):948–949CrossRefGoogle Scholar
  15. 15.
    Odom SA, Caruso MM, Finke AD, Prokup AM, Ritchey JA, Leonard JH, White SR, Sottos NR, Moore JS (2010) Adv Funct Mater 20(11):1721–1727CrossRefGoogle Scholar
  16. 16.
    Hasegawa T, Mattenberger K, Takeya J, Batlogg B (2004) Phys Rev B 69(24):245115CrossRefGoogle Scholar
  17. 17.
    Tayi AS, Kaeser A, Matsumoto M, Aida T, Stupp SI (2015) Nature Chem 7(4):281–294CrossRefGoogle Scholar
  18. 18.
    Collet E, Lemee-Cailleau MH, Buron-Le Cointe M, Cailleau H, Wulff M, Luty T, Koshihara SY, Meyer M, Toupet L, Rabiller P, Techert S (2003) Science 300(5619):612–615CrossRefGoogle Scholar
  19. 19.
    Wuest JD (2012) Nature Chem 4(2):74–75CrossRefGoogle Scholar
  20. 20.
    Davey R, Garside J (2001) From molecules to crystallizers: an introduction to crystallization. Oxford Chemistry Primers. Oxford University Press, New YorkGoogle Scholar
  21. 21.
    Herbstein FH (2003) Acta Crystallogr Sect B 59:303–304Google Scholar
  22. 22.
    Dunitz JD (2003) CrystEngComm 5:506CrossRefGoogle Scholar
  23. 23.
    Desiraju GR (2003) CrystEngComm 5:466–467CrossRefGoogle Scholar
  24. 24.
    Aakeroy CB, Salmon DJ (2005) CrystEngComm 7:439–448CrossRefGoogle Scholar
  25. 25.
    Bond AD (2007) CrystEngComm 9(9):833–834CrossRefGoogle Scholar
  26. 26.
    Stahly GP (2009) Cryst Growth Des 9(10):4212–4229CrossRefGoogle Scholar
  27. 27.
    Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR, Desiraju GR, Dikundwar AG, Dubey R, Duggirala N, Ghogale PP, Ghosh S, Goswami PK, Goud NR, Jetti RRKR, Karpinski P, Kaushik P, Kumar D, Kumar V, Moulton B, Mukherjee A, Mukherjee G, Myerson AS, Puri V, Ramanan A, Rajamannar T, Reddy CM, Rodriguez-Hornedo N, Rogers RD, Row TNG, Sanphui P, Shan N, Shete G, Singh A, Sun CC, Swift JA, Thaimattam R, Thakur TS, Thaper RK, Thomas SP, Tothadi S, Vangala VR, Variankaval N, Vishweshwar P, Weyna DR, Zaworotko MJ (2012) Cryst Growth Des 12(5):2147–2152CrossRefGoogle Scholar
  28. 28.
    Zhu W, Zhen Y, Dong H, Fu H, Hu W (2014) Prog Chem 26(8):1292–1306Google Scholar
  29. 29.
    Zhu W, Yi Y, Zhen Y, Hu W (2015) Small 11:2150–2156CrossRefGoogle Scholar
  30. 30.
    Dillon RJ, Bardeen CJ (2012) J Phys Chem A 116(21):5145–5150CrossRefGoogle Scholar
  31. 31.
    Lee TH, Li JH, Huang WS, Hu B, Huang JCA, Guo TF, Wen TC (2011) Appl Phys Lett 99:073307Google Scholar
  32. 32.
    Epstein AJ, Etemad S, Garito AF, Heeger AJ (1972) Phys Rev B 5(3):952–977CrossRefGoogle Scholar
  33. 33.
    Butler MA, Wudl F, Soos ZG (1975) Phys Rev B 12(11):4708–4719CrossRefGoogle Scholar
  34. 34.
    Hobi M, Zurcher S, Gramlich V, Burckhardt U, Mensing C, Spahr M, Togni A (1996) Organometallics 15(25):5342–5346CrossRefGoogle Scholar
  35. 35.
    Krishnan A, Pal SK, Nandakumar P, Samuelson AG, Das PK (2001) Chem Phys 265(3):313–322CrossRefGoogle Scholar
  36. 36.
    Claessens CG, Stoddart JF (1997) J Phys Org Chem 10(5):254–272CrossRefGoogle Scholar
  37. 37.
    Perez EM, Martin N (2015) Chem Soc Rev 44(18):6425–6433CrossRefGoogle Scholar
  38. 38.
    Zhang J, Tan J, Ma Z, Xu W, Zhao G, Geng H, Di CA, Hu W, Shuai Z, Singh K, Zhu D (2013) J Am Chem Soc 135(2):558–561CrossRefGoogle Scholar
  39. 39.
    Etter MC (1991) J Phys Chem 95(12):4601–4610CrossRefGoogle Scholar
  40. 40.
    Bosshard C, Pan F, Wong MS, Manetta S, Spreiter R, Cai CZ, Gunter P, Gramlich V (1999) Chem Phys 245(1–3):377–394CrossRefGoogle Scholar
  41. 41.
    Harris KDM, Stainton NM, Callan AM, Howie RA (1993) J Mater Chem 3(9):947–952CrossRefGoogle Scholar
  42. 42.
    Fourmigue M (2008) Struct Bond 126:181–207CrossRefGoogle Scholar
  43. 43.
    Theobald JA, Oxtoby NS, Phillips MA, Champness NR, Beton PH (2003) Nature 424(6952):1029–1031CrossRefGoogle Scholar
  44. 44.
    Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) Chem Rev 116(4):2478–2601CrossRefGoogle Scholar
  45. 45.
    Catalano L, Cavallo G, Metrangolo P, Resnati G, Terraneo G (2016) Top Curr Chem 373:289–309. doi: 10.1007/128_2015_666
  46. 46.
    Zheng Q-N, Liu X-H, Chen T, Yan H-J, Cook T, Wang D, Stang PJ, Wan L-J (2015) J Am Chem Soc 137(19):6128–6131CrossRefGoogle Scholar
  47. 47.
    Goetz KP, Vermeulen D, Payne ME, Kloc C, McNeil LE, Jurchescu OD (2014) J Mater Chem C 2(17):3065–3076CrossRefGoogle Scholar
  48. 48.
    Jiang H, Yang X, Cui Z, Liu Y, Li H, Hu W (2009) Appl Phys Lett 94(12):123308CrossRefGoogle Scholar
  49. 49.
    Kobayashi H, Nakayama J (1981) Bull Chem Soc Jpn 54(8):2408–2411CrossRefGoogle Scholar
  50. 50.
    Konarev DV, Lyubovskaya RN, Drichko NV, Yudanova EI, Shul’ga YM, Litvinov AL, Semkin VN, Tarasov BP (2000) J Mater Chem 10(4):803–818CrossRefGoogle Scholar
  51. 51.
    Olmstead MM, de Bettencourt-Dias A, Lee HM, Pham D, Balch AL (2003) Dalton Trans 16:3227–3232CrossRefGoogle Scholar
  52. 52.
    Reinheimer EW, Zhao H, Dunbar KR (2010) J Chem Crystallogr 40(6):514–519CrossRefGoogle Scholar
  53. 53.
    Menard E, Podzorov V, Hur SH, Gaur A, Gershenson ME, Rogers JA (2004) Adv Mater 16(23–24):2097–2101CrossRefGoogle Scholar
  54. 54.
    Iwata S, Tanaka J, Nagakura S (1966) J Am Chem Soc 88(5):894–902CrossRefGoogle Scholar
  55. 55.
    El-Khouly ME, Ito O, Smith PM, D’Souza F (2004) J Photochem Photobio C 5(1):79–104CrossRefGoogle Scholar
  56. 56.
    Kawase T, Kurata H (2006) Chem Rev 106(12):5250–5273CrossRefGoogle Scholar
  57. 57.
    Buurma AJC, Jurchescu OD, Shokaryev I, Baas J, Meetsma A, de Wijs GA, de Groot RA, Palstra TTM (2007) J Phys Chem C 111(8):3486–3489Google Scholar
  58. 58.
    Emge TJ, Wiygul FM, Chappell JS, Bloch AN, Ferraris JP, Cowan DO, Kistenmacher TJ (1982) Mol Cryst Liq Cryst 87(1–2):137–161CrossRefGoogle Scholar
  59. 59.
    Yoshida Y, Kumagai Y, Mizuno M, Isomura K, Nakamura Y, Kishida H, Saito G (2015) Cryst Growth Des 15(11):5513–5518CrossRefGoogle Scholar
  60. 60.
    Zhu L, Yi Y, Li Y, Kim E-G, Coropceanu V, Bredas J-L (2012) J Am Chem Soc 134(4):2340–2347CrossRefGoogle Scholar
  61. 61.
    Torrance JB (1979) Acc Chem Res 12(3):79–86CrossRefGoogle Scholar
  62. 62.
    Torrance JB (1985) Mol Cryst Liq Cryst 126(1):55–67CrossRefGoogle Scholar
  63. 63.
    Torrance JB, Vazquez JE, Mayerle JJ, Lee VY (1981) Phys Rev Lett 46(4):253–257CrossRefGoogle Scholar
  64. 64.
    Shokaryev I, Buurma AJC, Jurchescu OD, Uijttewaal MA, de Wijs GA, Palstra TTM, de Groot RA (2008) J Phys Chem A 112(11):2497–2502CrossRefGoogle Scholar
  65. 65.
    Lei YL, Jin Y, Zhou DY, Gu W, Shi XB, Liao LS, Lee ST (2012) Adv Mater 24(39):5345–5351CrossRefGoogle Scholar
  66. 66.
    Liu C, Minari T, Lu X, Kumatani A, Takimiya K, Tsukagoshi K (2011) Adv Mater 23(4):523–526CrossRefGoogle Scholar
  67. 67.
    Mahns B, Kataeva O, Islamov D, Hampel S, Steckel F, Hess C, Knupfer M, Buechner B, Himcinschi C, Hahn T, Renger R, Kortus J (2014) Cryst Growth Des 14(3):1338–1346CrossRefGoogle Scholar
  68. 68.
    Braga D, Maini L, Grepioni F (2013) Chem Soc Rev 42(18):7638–7648CrossRefGoogle Scholar
  69. 69.
    Friscic T, Jones W (2009) Cryst Growth Des 9(3):1621–1637CrossRefGoogle Scholar
  70. 70.
    Thordarson P (2011) Chem Soc Rev 40(3):1305–1323CrossRefGoogle Scholar
  71. 71.
    Grimm B, Santos J, Illescas BM, Munoz A, Guldi DM, Martin N (2010) J Am Chem Soc 132(49):17387–17389CrossRefGoogle Scholar
  72. 72.
    Li Y, Wang W, Leow WR, Zhu B, Meng F, Zheng L, Zhu J, Chen X (2014) Small 10(14):2776–2781 (2740) CrossRefGoogle Scholar
  73. 73.
    Molina-Ontoria A, Fernandez G, Wielopolski M, Atienza C, Sanchez L, Gouloumis A, Clark T, Martin N, Guldi DM (2009) J Am Chem Soc 131(34):12218–12229CrossRefGoogle Scholar
  74. 74.
    Aoki T, Sakai H, Ohkubo K, Sakanoue T, Takenobu T, Fukuzumi S, Hasobe T (2015) Chem Sci 6(2):1498–1509CrossRefGoogle Scholar
  75. 75.
    Zhang J, Geng H, Virk TS, Zhao Y, Tan J, Di C-a XuW, Singh K, Hu W, Shuai Z, Liu Y, Zhu D (2012) Adv Mater 24(19):2603–2607CrossRefGoogle Scholar
  76. 76.
    Yu W, Wang XY, Li J, Li ZT, Yan YK, Wang W, Pei J (2013) Chem Commun 49(1):54–56CrossRefGoogle Scholar
  77. 77.
    Wang J, Wang D, Miller EK, Moses D, Bazan GC, Heeger AJ (2000) Macromolecules 33(14):5153–5158CrossRefGoogle Scholar
  78. 78.
    Matte HSSR, Subrahmanyam KS, Rao KV, George SJ, Rao CNR (2011) Chem Phys Lett 506(4–6):260–264CrossRefGoogle Scholar
  79. 79.
    Vogt FG, Clawson JS, Strohmeier M, Edwards AJ, Pham TN, Watson SA (2009) Cryst Growth Des 9(2):921–937CrossRefGoogle Scholar
  80. 80.
    Zhu W, Zheng R, Fu X, Fu H, Shi Q, Zhen Y, Dong H, Hu W (2015) Angew Chem Int Ed 54(23):6785–6789CrossRefGoogle Scholar
  81. 81.
    Qin Y, Zhang J, Zheng X, Geng H, Zhao G, Xu W, Hu W, Shuai Z, Zhu D (2014) Adv Mater 26(24):4093–4099CrossRefGoogle Scholar
  82. 82.
    Coulon C, Clerac R (2004) Chem Rev 104(11):5655–5687CrossRefGoogle Scholar
  83. 83.
    Assour JM (1965) J Chem Phys 43(7):2477–2489CrossRefGoogle Scholar
  84. 84.
    Moriyama H, Kobayashi H, Kobayashi A, Watanabe T (1993) J Am Chem Soc 115(3):1185–1187CrossRefGoogle Scholar
  85. 85.
    Umland TC, Allie S, Kuhlmann T, Coppens P (1988) J Phys Chem 92(22):6456–6460CrossRefGoogle Scholar
  86. 86.
    Kistenmacher TJ, Emge TJ, Bloch AN, Cowan DO (1982) Acta Crystallogr Sect B 38(APR):1193–1199Google Scholar
  87. 87.
    Flandrois S, Chasseau D (1977) Acta Crystallogr Sect B 33(SEP15):2744–2750Google Scholar
  88. 88.
    Goetz KP, Fonari A, Vermeulen D, Hu P, Jiang H, Diemer PJ, Ward JW, Payne ME, Day CS, Kloc C, Coropceanu V, McNeil LE, Jurchescu OD (2014) Nat Commun 5:5642CrossRefGoogle Scholar
  89. 89.
    Liu G, Liu J, Liu Y, Tao X (2014) J Am Chem Soc 136(2):590–593CrossRefGoogle Scholar
  90. 90.
    Ichida M, Nakamura A, Shinohara H, Saitoh Y (1998) Chem Phys Lett 289(5–6):579–585CrossRefGoogle Scholar
  91. 91.
    El-Khouly ME, Rogers LM, Zandler ME, Suresh G, Fujitsuka M, Ito O, D’Souza F (2003) ChemPhysChem 4(5):474–481CrossRefGoogle Scholar
  92. 92.
    D’Souza F, Ito O (2009) Chem Commun 33:4913–4928CrossRefGoogle Scholar
  93. 93.
    Tsutsumi J, Matsui H, Yamada T, Kumai R, Hasegawa T (2012) J Phys Chem C 116(45):23957–23964CrossRefGoogle Scholar
  94. 94.
    Gotoh T, Kondoh T, Egawa K, Kubodera K (1989) J Opt Soc Am B Opt Phys 6(4):703–706CrossRefGoogle Scholar
  95. 95.
    Hasegawa T, Mochida T, Kondo R, Kagoshima S, Iwasa Y, Akutagawa T, Nakamura T, Saito G (2000) Phys Rev B 62(15):10059–10066CrossRefGoogle Scholar
  96. 96.
    Nguyen HL, Horton PN, Hursthouse MB, Legon AC, Bruce DW (2004) J Am Chem Soc 126(1):16–17CrossRefGoogle Scholar
  97. 97.
    Tang Q, Li H, Liu Y, Hu W (2006) J Am Chem Soc 128(45):14634–14639CrossRefGoogle Scholar
  98. 98.
    Tang Q, Li L, Song Y, Liu Y, Li H, Xu W, Liu Y, Hu W, Zhu D (2007) Adv Mater 19(18):2624–2628CrossRefGoogle Scholar
  99. 99.
    Dong H, Zhu H, Meng Q, Gong X, Hu W (2012) Chem Soc Rev 41(5):1754–1808CrossRefGoogle Scholar
  100. 100.
    Horiuchi S, Tokura Y (2008) Nat Mater 7(5):357–366Google Scholar
  101. 101.
    Kunkel DA, Hooper J, Bradley B, Schlueter L, Rasmussen T, Costa P, Beniwal S, Ducharme S, Zurek E, Enders A (2016) J Phys Chem Lett 7(3):435–440CrossRefGoogle Scholar
  102. 102.
    Kumai R, Horiuchi S, Sagayama H, Arima T-h, Watanabe M, Noda Y, Tokura Y (2007) J Am Chem Soc 129(43):12920–12921CrossRefGoogle Scholar
  103. 103.
    Torrance JB, Girlando A, Mayerle JJ, Crowley JI, Lee VY, Batail P, LaPlaca SJ (1981) Phys Rev Lett 47(24):1747–1750CrossRefGoogle Scholar
  104. 104.
    Horiuchi S, Ishii F, Kumai R, Okimoto Y, Tachibana H, Nagaosa N, Tokura Y (2005) Nat Mater 4(2):163–166Google Scholar
  105. 105.
    Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Luessem B, Leo K (2009) Nature 459(7244):234–238Google Scholar
  106. 106.
    Thompson J, Blyth RIR, Mazzeo M, Anni M, Gigli G, Cingolani R (2001) Appl Phys Lett 79(5):560CrossRefGoogle Scholar
  107. 107.
    Zhu W, Zheng R, Zhen Y, Yu Z, Dong H, Fu H, Shi Q, Hu W (2015) J Am Chem Soc 137(34):11038–11046CrossRefGoogle Scholar
  108. 108.
    Pan F, Wong MS, Gramlich V, Bosshard C, Gunter P (1996) J Am Chem Soc 118(26):6315–6316CrossRefGoogle Scholar
  109. 109.
    Bosshard C, Wong MS, Pan F, Gunter P, Gramlich V (1997) Adv Mater 9(7):554–557Google Scholar
  110. 110.
    Gong Y, Chen G, Peng Q, Yuan WZ, Xie Y, Li S, Zhang Y, Tang BZ (2015) Adv Mater 27(40):6195–6201CrossRefGoogle Scholar
  111. 111.
    Bolton O, Lee K, Kim HJ, Lin KY, Kim J (2011) Nature Chem 3(3):205–210CrossRefGoogle Scholar
  112. 112.
    Gao HY, Zhao XR, Wang H, Pang X, Jin WJ (2012) Cryst Growth Des 12(9):4377–4387CrossRefGoogle Scholar
  113. 113.
    Park SK, Varghese S, Kim JH, Yoon SJ, Kwon OK, An BK, Gierschner J, Park SY (2013) J Am Chem Soc 135(12):4757–4764CrossRefGoogle Scholar
  114. 114.
    Zhu W, Dong H, Zhen Y, Hu W (2015) Sci China Mater 58(11):854–859CrossRefGoogle Scholar
  115. 115.
    Gagniere E, Mangin D, Puel F, Rivoire A, Monnier O, Garcia E, Klein JR (2009) J Cryst Growth 311(9):2689–2695CrossRefGoogle Scholar
  116. 116.
    Blagden N, Berry DJ, Parkin A, Javed H, Ibrahim A, Gavan PT, De Matos LL, Seaton CC (2008) New J Chem 32(10):1659CrossRefGoogle Scholar
  117. 117.
    Wakahara T, Sathish M, Miyazawa KI, Hu C, Tateyama Y, Nemoto Y, Sasaki T, Ito O (2009) J Am Chem Soc 131(29):9940–9944CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of ScienceTianjin University & Collaborative Innovation Center of Chemical Science and EngineeringTianjinPeople’s Republic of China
  2. 2.Laboratory of Organic Solids, Institute of ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations