Skip to main content

Advertisement

Log in

Challenges and Prospect of Non-aqueous Non-alkali (NANA) Metal–Air Batteries

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Non-aqueous non-alkali (NANA) metal–air battery technologies promise to provide electrochemical energy storage with the highest specific energy density. Metal–air battery technology is particularly advantageous being implemented in long-range electric vehicles. Up to now, almost all the efforts in the field are focused on Li–air cells, but other NANA metal–air battery technologies emerge. The major concern, which the research community should be dealing with, is the limited and rather poor rechargeability of these systems. The challenges we are covering in this review are related to the initial limited discharge capacities and cell performances. By comprehensively reviewing the studies conducted so far, we show that the implementation of advanced materials is a promising approach to increase metal–air performance and, particularly, metal surface activation as a prime achievement leading to respectful discharge currents. In this review, we address the most critical areas that need careful research attention in order to achieve progress in the understanding of the physical and electrochemical processes in non-aqueous electrolytes applied in beyond lithium and zinc air generation of metal–air battery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Reprinted from ref. [70]. Copyright 1999, with permission from Elsevier

Fig. 2

Reprinted from ref. [70]. Copyright 1999, with permission from Elsevier

Fig. 3

Reproduced with permission from the Electrochemical Society

Fig. 4

Reproduced with permission from the Electrochemical Society

Fig. 5

Reprinted with permission from ref. [76]. Copyright 2013 Royal Society of Chemistry

Fig. 6

Reprinted from ref. [79]. Copyright 2005, with permission from Elsevier

Fig. 7

Reprinted from ref. [30]. Copyright 2007, with permission from Elsevier

Fig. 8

Reprinted from ref. [83]. Copyright 2010, with permission from Elsevier and reproduced with permission from the Electrochemical Society

Fig. 9

Reprinted with permission from ref. [93]. Copyright 2014 American Chemical Society

Fig. 10

Copyright 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Reproduced with permission from ref. [106]

Fig. 11

Reprinted with permission from ref. [49]. Copyright 2014 Royal Society of Chemistry

Fig. 12

Reprinted from ref. [58]. Copyright 2010, with permission from Elsevier

Fig. 13

Reprinted from ref. [58]. Copyright 2010, with permission from Elsevier

Fig. 14

Copyright 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Reproduced with permission from ref. [59]

Fig. 15

Reprinted with permission from ref. [55]. Copyright 2013 Royal Society of Chemistry

Fig. 16

Reprinted from ref. [56]. Copyright 2011, with permission from Elsevier

Fig. 17

Reprinted with permission from ref. [131]. Copyright 2013 Royal Society of Chemistry

Similar content being viewed by others

References

  1. Kraytsberg A, Ein-Eli Y (2013) The impact of nano-scaled materials on advanced metal–air battery systems. Nano Energy 2(4):468–480

    Article  CAS  Google Scholar 

  2. Li Y, Dai H (2014) Recent advances in zinc–air batteries. Chem Soc Rev 43(15):5257–5275

    Article  CAS  Google Scholar 

  3. Linda D, Reddy T (2001) Handbook of batteries, 3rd edn. McGraw-Hill Companies Inc., Maidenheach

    Google Scholar 

  4. Zhang XG (1996) Corrosion and electrochemistry of zinc. Springer, USA

    Book  Google Scholar 

  5. Goldstein J, Brown I, Koretz B (1999) New developments in the Electric Fuel Ltd. zinc/air system. J Power Sources 80(1):171–179

    Article  CAS  Google Scholar 

  6. Kar M, Simons TJ, Forsyth M, MacFarlane DR (2014) Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective. Phys Chem Chem Phys 16(35):18658–18674

    Article  CAS  Google Scholar 

  7. Balaish M, Kraytsberg A, Ein-Eli Y (2014) A critical review on lithium–air battery electrolytes. Phys Chem Chem Phys 16(7):2801–2822

    Article  CAS  Google Scholar 

  8. Girishkumar G, McCloskey B, Luntz A, Swanson S, Wilcke W (2010) Lithium–air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203

    Article  CAS  Google Scholar 

  9. Kraytsberg A, Ein-Eli Y (2011) Review on Li–air batteries—opportunities, limitations and perspective. J Power Sources 196(3):886–893

    Article  CAS  Google Scholar 

  10. Abraham K, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1–5

    Article  CAS  Google Scholar 

  11. Choi R, Jung J, Kim G et al (2014) Ultra-low overpotential and high rate capability in Li–O2 batteries through surface atom arrangement of PdCu nanocatalysts. Energy Environ Sci 7(4):1362–1368

    Article  CAS  Google Scholar 

  12. Kowalczk I, Read J, Salomon M (2007) Li–air batteries: a classic example of limitations owing to solubilities. Pure Appl Chem 79(5):851–860

    Article  CAS  Google Scholar 

  13. Peled E, Golodnitsky D, Mazor H, Goor M, Avshalomov S (2011) Parameter analysis of a practical lithium- and sodium–air electric vehicle battery. J Power Sources 196(16):6835–6840

    Article  CAS  Google Scholar 

  14. Read J, Mutolo K, Ervin M et al (2003) Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J Electrochem Soc 150(10):A1351–A1356

    Article  CAS  Google Scholar 

  15. Wu D, Guo Z, Yin X et al (2014) Metal-organic frameworks as cathode materials for Li–O2 batteries. Adv Mater 26(20):3258–3262

    Article  CAS  Google Scholar 

  16. Caramia V, Bozzini B (2014) Materials science aspects of zinc–air batteries: a review. Mater Renew Sustain Energy 3(2):1–12

    Article  Google Scholar 

  17. Chakkaravarthy C, Waheed A, Udupa H (1981) Zinc–air alkaline batteries—a review. J Power Sources 6(3):203–228

    Article  CAS  Google Scholar 

  18. Cheng F, Chen J (2012) Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41(6):2172–2192

    Article  CAS  Google Scholar 

  19. Lee J, Tai Kim S, Cao R et al (2011) Metal–air batteries with high energy density: Li–air versus Zn–air. Adv Energy Mater 1(1):34–50

    Article  CAS  Google Scholar 

  20. Rahman MA, Wang X, Wen C (2013) High energy density metal–air batteries: a review. J Electrochem Soc 160(10):A1759–A1771

    Article  CAS  Google Scholar 

  21. Cao R, Lee J, Liu M, Cho J (2012) Recent progress in Non-precious catalysts for metal–air batteries. Adv Energy Mater 2(7):816–829

    Article  CAS  Google Scholar 

  22. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. M. Pourbaix, published 1974 by NACE, p 644

  23. Hartmann P, Bender CL, Vračar M et al (2013) A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 12(3):228–232

    Article  CAS  Google Scholar 

  24. Kang S, Mo Y, Ong SP, Ceder G (2014) Nanoscale stabilization of sodium oxides: implications for Na–O2 batteries. Nano Lett 14(2):1016–1020

    Article  CAS  Google Scholar 

  25. Liu W, Sun Q, Yang Y, Xie J, Fu Z (2013) An enhanced electrochemical performance of a sodium–air battery with graphene nanosheets as air electrode catalysts. Chem Commun 49(19):1951–1953

    Article  CAS  Google Scholar 

  26. Xia C, Black R, Fernandes R, Adams B, Nazar LF (2015) The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat Chem 7(6):496–501

    Article  CAS  Google Scholar 

  27. Aurbach D, Lu Z, Schechter A et al (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727

    Article  CAS  Google Scholar 

  28. Muldoon J, Bucur CB, Oliver AG et al (2012) Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ Sci 5(3):5941–5950

    Article  CAS  Google Scholar 

  29. Aurbach D, Weissman I, Gofer Y, Levi E (2003) Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem Rec 3(1):61–73

    Article  CAS  Google Scholar 

  30. Amir N, Vestfrid Y, Chusid O, Gofer Y, Aurbach D (2007) Progress in nonaqueous magnesium electrochemistry. J Power Sources 174(2):1234–1240

    Article  CAS  Google Scholar 

  31. Howlett P, Khoo T, Mooketsi G, Efthimiadis J, MacFarlane D, Forsyth M (2010) The effect of potential bias on the formation of ionic liquid generated surface films on mg alloys. Electrochim Acta 55(7):2377–2383

    Article  CAS  Google Scholar 

  32. Luder D, Kraytsberg A, Ein-Eli Y (2014) Catalyst-free electrochemical Grignard reagent synthesis with room-temperature ionic liquids. ChemElectroChem 1(2):362–365

    Article  CAS  Google Scholar 

  33. Luder D, Ein-Eli Y (2014) Electrochemical Grignard reagent synthesis for ionic-liquid-based magnesium–air batteries. ChemElectroChem 1(8):1319–1326

    Article  CAS  Google Scholar 

  34. Egan D, Ponce de León C, Wood R, Jones R, Stokes K, Walsh F (2013) Developments in electrode materials and electrolytes for aluminium–air batteries. J Power Sources 236:293–310

    Article  CAS  Google Scholar 

  35. Li Q, Bjerrum NJ (2002) QR aluminum as anode for energy storage and conversion: a review. J Power Sources 110(1):1–10

    Article  CAS  Google Scholar 

  36. Mokhtar M, Talib MZM, Majlan EH et al (2015) Recent developments in materials for aluminum–air batteries: a review. J Ind Eng Chem 32:1–20

    Article  CAS  Google Scholar 

  37. Gelman D, Lasman I, Elfimchev S, Starosvetsky D, Ein-Eli Y (2015) Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications. J Power Sources 285:100–108

    Article  CAS  Google Scholar 

  38. Licht S, Levitin G, Yarnitzky C, Tel-Vered R (1999) The organic phase for aluminum batteries. Electrochem Solid State Lett 2(6):262–264

    Article  CAS  Google Scholar 

  39. Licht S, Tel-Vered R, Levitin G, Yarnitzky C (2000) Solution activators of aluminum electrochemistry in organic media. J Electrochem Soc 147(2):496–501

    Article  CAS  Google Scholar 

  40. Rybalka K, Beketaeva L (1993) Anodic dissolution of aluminium in nonaqueous electrolytes. J Power Sources 42(3):377–380

    Article  CAS  Google Scholar 

  41. Geng L, Lv G, Xing X, Guo J (2015) Reversible electrochemical intercalation of aluminum in Mo6S8. Chem Mater 27(14):4926–4929

    Article  CAS  Google Scholar 

  42. Jayaprakash N, Das SK, Archer LA (2011) The rechargeable aluminum-ion battery. Chem Commun 47(47):12610–12612

    Article  CAS  Google Scholar 

  43. Lin M, Gong M, Lu B et al (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520:324–328

    Article  CAS  Google Scholar 

  44. Rani JV, Kanakaiah V, Dadmal T, Rao MS, Bhavanarushi S (2013) Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum–ion battery. J Electrochem Soc 160(10):A1781–A1784

    Article  CAS  Google Scholar 

  45. Wang W, Jiang B, Xiong W et al (2013) A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci Rep 3:3383

    Article  Google Scholar 

  46. Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114(23):11683–11720

    Article  CAS  Google Scholar 

  47. Revel R, Audichon T, Gonzalez S (2014) Non-aqueous aluminium–air battery based on ionic liquid electrolyte. J Power Sources 272:415–421

    Article  CAS  Google Scholar 

  48. Endres F, El Abedin SZ (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8(18):2101–2116

    Article  CAS  Google Scholar 

  49. Gelman D, Shvartsev B, Ein-Eli Y (2014) Aluminum–air battery based on an ionic liquid electrolyte. J Mater Chem A 2(47):20237–20242

    Article  CAS  Google Scholar 

  50. Zhang XG (2001) Electrochemistry of silicon and its oxide. Springer, New York

    Google Scholar 

  51. Seidel H, Csepregi L, Heuberger A, Baumgärtel H (1990) Anisotropic etching of crystalline silicon in alkaline solutions II. influence of dopants. J Electrochem Soc 137(11):3626–3632

    Article  CAS  Google Scholar 

  52. Glembocki O, Palik E, De Guel G, Kendall D (1991) Hydration model for the molarity dependence of the etch rate of Si in aqueous alkali hydroxides. J Electrochem Soc 138(4):1055–1063

    Article  CAS  Google Scholar 

  53. Raz O, Starosvetsky D, Tsuda T, Nohira T, Hagiwara R, Ein-Eli Y (2007) Macroporous silicon formation on N-Si in room-temperature fluorohydrogenate ionic liquid. Electrochem Solid State Lett 10(3):D25–D28

    Article  CAS  Google Scholar 

  54. Raz O, Shmueli Z, Hagiwara R, Ein-Eli Y (2010) Porous silicon formation in fluorohydrogenate ionic liquids. J Electrochem Soc 157(3):H281–H286

    Article  CAS  Google Scholar 

  55. Cohn G, Eichel RA, Ein-Eli Y (2013) New insight into the discharge mechanism of silicon–air batteries using electrochemical impedance spectroscopy. Phys Chem Chem Phys 15(9):3256–3263

    Article  CAS  Google Scholar 

  56. Cohn G, Altberg A, Macdonald DD, Ein-Eli Y (2011) A silicon–air battery utilizing a composite polymer electrolyte.  Electrochim Acta 58:161–164

    Article  CAS  Google Scholar 

  57. Cohn G, Starosvetsky D, Hagiwara R, Macdonald DD, Ein-Eli Y (2009) Silicon–air batteries. Electrochem Commun 11(10):1916–1918

    Article  CAS  Google Scholar 

  58. Cohn G, Ein-Eli Y (2010) Study and development of non-aqueous silicon–air battery. J Power Sources 195(15):4963–4970

    Article  CAS  Google Scholar 

  59. Cohn G, MacDonald DD, Ein-Eli Y (2011) Remarkable impact of water on the discharge performance of a silicon–air battery. ChemSusChem 4(8):1124–1129

    Article  CAS  Google Scholar 

  60. Jakes P, Cohn G, Ein-Eli Y, Scheiba F, Ehrenberg H, Eichel R (2012) Limitation of discharge capacity and mechanisms of air-electrode deactivation in silicon–air batteries. ChemSusChem 5(11):2278–2285

    Article  CAS  Google Scholar 

  61. Blurton KF, Sammells AF (1979) Metal/air batteries: their status and potential—a review. J Power Sources 4(4):263–279

    Article  CAS  Google Scholar 

  62. Sathyanarayana S, Munichandraiah N (1981) A new magnesium–air cell for long-life applications. J Appl Electrochem 11(1):33–39

    Article  CAS  Google Scholar 

  63. Aurbach D, Schechter A, Moshkovich M, Cohen Y (2001) On the mechanisms of reversible magnesium deposition processes. J Electrochem Soc 148(9):A1004–A1014

    Article  CAS  Google Scholar 

  64. Aurbach D, Suresh GS, Levi E et al (2007) Progress in rechargeable magnesium battery technology. Adv Mater 19(23):4260–4267

    Article  CAS  Google Scholar 

  65. Sawyer DT, Valentine JS (1981) How super is superoxide? Acc Chem Res 14(12):393–400

    Article  CAS  Google Scholar 

  66. Mohamed M, Yabe T, Baasandash C et al (2008) Laser-induced magnesium production from magnesium oxide using reducing agents. J Appl Phys 104(11):113110

    Article  CAS  Google Scholar 

  67. Rongti L, Wei P, Sano M (2003) Kinetics and mechanism of carbothermic reduction of magnesia. Metall Mater Trans B 34(4):433–437

    Article  Google Scholar 

  68. Aurbach D (1999) Nonaqueous electrochemistry. CRC Press, Boca Raton

    Book  Google Scholar 

  69. Peled E, Straze H (1977) The kinetics of the magnesium electrode in thionyl chloride solutions. J Electrochem Soc 124(7):1030–1035

    Article  CAS  Google Scholar 

  70. Lu Z, Schechter A, Moshkovich M, Aurbach D (1999) On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J Electroanal Chem 466(2):203–217

    Article  CAS  Google Scholar 

  71. Peled E (1979) The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc 126(12):2047–2051

    Article  CAS  Google Scholar 

  72. Aurbach D, Moshkovich M, Schechter A, Turgeman R (2000) Magnesium deposition and dissolution processes in ethereal Grignard salt solutions using simultaneous EQCM-EIS and in situ FTIR spectroscopy. Electrochem Solid State Lett 3(1):31–34

    Article  CAS  Google Scholar 

  73. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley, New York

    Google Scholar 

  74. Gofer Y, Chusid O, Gizbar H et al (2006) Improved electrolyte solutions for rechargeable magnesium batteries. Electrochem Solid State Lett 9(5):A257–A260

    Article  CAS  Google Scholar 

  75. Mizrahi O, Amir N, Pollak E et al (2008) Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries. J Electrochem Soc 155(2):A103–A109

    Article  CAS  Google Scholar 

  76. Shiga T, Hase Y, Kato Y, Inoue M, Takechi K (2013) A rechargeable non-aqueous Mg–O2 battery. Chem Commun 49(80):9152–9154

    Article  CAS  Google Scholar 

  77. Feng Z, NuLi Y, Wang J, Yang J (2006) Study of key factors influencing electrochemical reversibility of magnesium deposition and dissolution. J Electrochem Soc 153(10):C689–C693

    Article  CAS  Google Scholar 

  78. NuLi Y, Yang J, Wang J, Xu J, Wang P (2005) Electrochemical magnesium deposition and dissolution with high efficiency in ionic liquid. Electrochem Solid State Lett 8(11):C166–C169

    Article  CAS  Google Scholar 

  79. NuLi Y, Yang J, Wu R (2005) Reversible deposition and dissolution of magnesium from BMIMBF 4 ionic liquid. Electrochem Commun 7(11):1105–1110

    Article  CAS  Google Scholar 

  80. NuLi Y, Yang J, Wang P (2006) Electrodeposition of magnesium film from BMIMBF 4 ionic liquid. Appl Surf Sci 252(23):8086–8090

    Article  CAS  Google Scholar 

  81. Wang P, NuLi Y, Yang J, Feng Z (2006) Mixed ionic liquids as electrolyte for reversible deposition and dissolution of magnesium. Surf Coat Technol 201(6):3783–3787

    Article  CAS  Google Scholar 

  82. Cheek G, O’Grady W, El Abedin SZ, Moustafa E, Endres F (2008) Studies on the electrodeposition of magnesium in ionic liquids. J Electrochem Soc 155(1):D91–D95

    Article  CAS  Google Scholar 

  83. Kakibe T, Yoshimoto N, Egashira M, Morita M (2010) Optimization of cation structure of imidazolium-based ionic liquids as ionic solvents for rechargeable magnesium batteries. Electrochem Commun 12(11):1630–1633

    Article  CAS  Google Scholar 

  84. Yoshimoto N, Matsumoto M, Egashia M, Morita M (2010) Mixed electrolyte consisting of ethylmagnesiumbromide with ionic liquid for rechargeable magnesium electrode. J Power Sources 195(7):2096–2098

    Article  CAS  Google Scholar 

  85. Yoshimoto N, Hotta K, Egashira M, Morita M (2012) Electrochemical behavior of magnesium in mixed solutions consisting of ionic liquid and alkylmagnesiumbromides with different alkyl-chains. Electrochemistry 80(10):774–776

    Article  CAS  Google Scholar 

  86. Khoo T, Howlett PC, Tsagouria M, MacFarlane DR, Forsyth M (2011) The potential for ionic liquid electrolytes to stabilise the magnesium interface for magnesium/air batteries. Electrochim Acta 58:583–588

    Article  CAS  Google Scholar 

  87. Khoo T, Somers A, Torriero AA, MacFarlane DR, Howlett PC, Forsyth M (2013) Discharge behaviour and interfacial properties of a magnesium battery incorporating trihexyl (tetradecyl) phosphonium based ionic liquid electrolytes. Electrochim Acta 87:701–708

    Article  CAS  Google Scholar 

  88. Abraham K (2008) A brief history of non-aqueous metal–air batteries. ECS Trans 3(42):67–71

    Article  Google Scholar 

  89. Curto VF, Scheuermann S, Owens RM et al (2014) Probing the specific ion effects of biocompatible hydrated choline ionic liquids on lactate oxidase biofunctionality in sensor applications. Phys Chem Chem Phys 16(5):1841–1849

    Article  CAS  Google Scholar 

  90. Fukaya Y, Iizuka Y, Sekikawa K, Ohno H (2007) Bio ionic liquids: room temperature ionic liquids composed wholly of biomaterials. Green Chem 9(11):1155–1157

    Article  CAS  Google Scholar 

  91. Vijayaraghavan R, Thompson B, MacFarlane D et al (2009) Biocompatibility of choline salts as crosslinking agents for collagen based biomaterials. Chem Commun 46(2):294–296

    Article  Google Scholar 

  92. Weaver KD, Kim HJ, Sun J, MacFarlane DR, Elliott GD (2010) Cyto-toxicity and biocompatibility of a family of choline phosphate ionic liquids designed for pharmaceutical applications. Green Chem 12(3):507–513

    Article  CAS  Google Scholar 

  93. Jia X, Yang Y, Wang C et al (2014) Biocompatible ionic Liquid-Biopolymer electrolyte-enabled thin and compact magnesium–air batteries. ACS Appl Mater Interfaces 6(23):21110–21117

    Article  CAS  Google Scholar 

  94. Inoishi A, Ju Y, Ida S, Ishihara T (2013) Mg–air oxygen shuttle batteries using a ZrO2-based oxide ion-conducting electrolyte. Chem Commun 49(41):4691–4693

    Article  CAS  Google Scholar 

  95. Yang S, Knickle H (2002) Design and analysis of aluminum/air battery system for electric vehicles. J Power Sources 112(1):162–173

    Article  CAS  Google Scholar 

  96. Pistoia G (2014) Lithium-ion batteries: advances and applications. Elsevier, Amsterdam

    Google Scholar 

  97. Wang J, Wang J, Shao H, Zhang J, Cao C (2007) The corrosion and electrochemical behaviour of pure aluminium in alkaline methanol solutions. J Appl Electrochem 37(6):753–758

    Article  CAS  Google Scholar 

  98. Abd-El-Nabey B, Khalil N, Khamis E (1984) Alkaline corrosion of aluminium in water-organic solvent mixtures. Surf Technol 22(4):367–376

    Article  CAS  Google Scholar 

  99. Shao H, Wang J, Wang X, Zhang J, Cao C (2004) Anodic dissolution of aluminum in KOH ethanol solutions. Electrochem Commun 6(1):6–9

    Article  CAS  Google Scholar 

  100. Mukherjee A, Basumallick IN (1996) Complex behaviour of aluminium dissolution in alkaline aqueous 2-propanol solution. J Power Sources 58(2):183–187

    Article  CAS  Google Scholar 

  101. Wang J, Wang J, Shao H et al (2009) The corrosion and electrochemical behavior of pure aluminum in additive-containing alkaline methanol–water mixed solutions. Mater Corros 60(4):269–273

    Article  CAS  Google Scholar 

  102. Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9(21):2654–2675

    Article  CAS  Google Scholar 

  103. Lai SC, Koper MT (2009) Ethanol electro-oxidation on platinum in alkaline media. Phys Chem Chem Phys 11(44):10446–10456

    Article  CAS  Google Scholar 

  104. Meng H, Shen PK (2006) Novel Pt-free catalyst for oxygen electroreduction. Electrochem Commun 8(4):588–594

    Article  CAS  Google Scholar 

  105. Li C, Ji W, Chen J, Tao Z (2007) Metallic aluminum nanorods: synthesis via vapor-deposition and applications in Al/air batteries. Chem Mater 19(24):5812–5814

    Article  CAS  Google Scholar 

  106. Zein El Abedin S, Moustafa E, Hempelmann R, Natter H, Endres F (2006) RAA 25 electrodeposition of nano-and microcrystalline aluminium in three different air and water stable ionic liquids. ChemPhysChem 7(7):1535–1543

    Article  CAS  Google Scholar 

  107. Galova M (1980) Electrodeposition of aluminium from organic aprotic solvents. Surf Technol 11(5):357–369

    Article  CAS  Google Scholar 

  108. Moustafa E, Zein El Abedin S, Shkurankov A et al (2007) Electrodeposition of al in 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) amide and 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide ionic liquids: in situ STM and EQCM studies. J Phys Chem B 111(18):4693–4704

    Article  CAS  Google Scholar 

  109. Abbott AP, Qiu F, Abood HM, Ali MR, Ryder KS (2010) Double layer, diluent and anode effects upon the electrodeposition of aluminium from chloroaluminate based ionic liquids. Phys Chem Chem Phys 12(8):1862–1872

    Article  CAS  Google Scholar 

  110. Jiang T, Chollier Brym M, Dubé G, Lasia A, Brisard G (2006) RAA179 electrodeposition of aluminium from ionic liquids: part i—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl < sub > 3)–1-ethyl-3-methylimidazolium chloride ([EMIm] cl) ionic liquids. Surf Coat Technol 201(1):1–9

    Article  CAS  Google Scholar 

  111. Zhao Y, VanderNoot T (1997) RAA 180 electrodeposition of aluminium from nonaqueous organic electrolytic systems and room temperature molten salts. Electrochim Acta 42(1):3–13

    Article  CAS  Google Scholar 

  112. Zhao Y, VanderNoot T (1997) Electrodeposition of aluminium from room temperature AlCl 3-TMPAC molten salts. Electrochim Acta 42(11):1639–1643

    Article  CAS  Google Scholar 

  113. Gilliam R, Graydon J, Kirk D, Thorpe S (2007) A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. Int J Hydrog Energy 32(3):359–364

    Article  CAS  Google Scholar 

  114. See DM, White RE (1997) Temperature and concentration dependence of the specific conductivity of concentrated solutions of potassium hydroxide. J Chem Eng Data 42(6):1266–1268

    Article  CAS  Google Scholar 

  115. El Abedin SZ, Moustafa E, Hempelmann R, Natter H, Endres F (2005) Additive free electrodeposition of nanocrystalline aluminium in a water and air stable ionic liquid. Electrochem Commun 7(11):1111–1116

    Article  CAS  Google Scholar 

  116. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150

    Article  CAS  Google Scholar 

  117. Zhang J, Xu W, Li X, Liu W (2010) Air dehydration membranes for nonaqueous lithium–air batteries. J Electrochem Soc 157(8):A940–A946

    Article  CAS  Google Scholar 

  118. Reed L, Ortiz S, Xiong M, Menke E (2015) A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte. Chem Commun 51(76):14397–14400

    Article  CAS  Google Scholar 

  119. Inoishi A, Kim H, Sakai T, Ju Y, Ida S, Ishihara T (2015) Discharge performance of solid-state oxygen shuttle metal–air battery using ca-stabilized ZrO2 electrolyte. ChemSusChem 8(7):1264–1269

    Article  CAS  Google Scholar 

  120. Isaacs J, Taricco F, Michaud V, Mortensen A (1991) Chemical stability of zirconia-stabilized alumina fibers during pressure infiltration by aluminum. Metall Trans A 22(12):2855–2862

    Article  Google Scholar 

  121. Shvartsev B, Cohn G, Shasha H, Eichel R, Ein-Eli Y (2013) Reference electrode assembly and its use in the study of fluorohydrogenate ionic liquid silicon electrochemistry. Phys Chem Chem Phys 15(41):17837–17845

    Article  CAS  Google Scholar 

  122. Rotariu L, Zamfir L, Bala C (2010) Low potential thiocholine oxidation at carbon nanotube-ionic liquid gel sensor. Sens Actuators B Chem 150(1):73–79

    Article  CAS  Google Scholar 

  123. Wang Y (2009) Recent research progress on polymer electrolytes for dye-sensitized solar cells. Solar Energy Mater Solar Cells 93(8):1167–1175

    Article  CAS  Google Scholar 

  124. Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195(15):4554–4569

    Article  CAS  Google Scholar 

  125. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42(1):21–42

    Article  CAS  Google Scholar 

  126. Egashira M, Todo H, Yoshimoto N, Morita M (2008) Lithium ion conduction in ionic liquid-based gel polymer electrolyte. J Power Sources 178(2):729–735

    Article  CAS  Google Scholar 

  127. Kumar D, Hashmi S (2010) Ionic liquid based sodium ion conducting gel polymer electrolytes. Solid State Ionics 181(8):416–423

    Article  CAS  Google Scholar 

  128. Ferrari S, Quartarone E, Mustarelli P et al (2010) Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl)-imide ionic liquid. J Power Sources 195(2):559–566

    Article  CAS  Google Scholar 

  129. Tsuda T, Nohira T, Nakamori Y, Matsumoto K, Hagiwara R, Ito Y (2002) A highly conductive composite electrolyte consisting of polymer and room temperature molten fluorohydrogenates. Solid State Ion 149(3):295–298

    Article  CAS  Google Scholar 

  130. Zhong X, Zhang H, Liu Y et al (2012) High-capacity silicon–air battery in alkaline solution. ChemSusChem 5(1):177–180

    Article  CAS  Google Scholar 

  131. Inoishi A, Sakai T, Ju Y, Ida S, Ishihara T (2013) A rechargeable Si–air solid state oxygen shuttle battery incorporating an oxide ion conductor. J Mater Chem A 1(48):15212–15215

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was financially supported by the Israel Science Foundation (ISF) Grant No. 1701/12, by Israel National Center for Electrochemical Propulsion (INREP-ISF) and by the Nancy and Stephen Grand Technion Energy Program (GTEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yair Ein-Eli.

Additional information

D. Gelman and B. Shvartsev contributed equally to the present study.

This article is part of the Topical Collection "Electrochemical Energy Storage"; edited by Rüdiger A. Eichel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelman, D., Shvartsev, B. & Ein-Eli, Y. Challenges and Prospect of Non-aqueous Non-alkali (NANA) Metal–Air Batteries. Top Curr Chem (Z) 374, 82 (2016). https://doi.org/10.1007/s41061-016-0080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0080-9

Keywords

Navigation