Topics in Current Chemistry

, 374:82 | Cite as

Challenges and Prospect of Non-aqueous Non-alkali (NANA) Metal–Air Batteries

Review
Part of the following topical collections:
  1. Electrochemical Energy Storage

Abstract

Non-aqueous non-alkali (NANA) metal–air battery technologies promise to provide electrochemical energy storage with the highest specific energy density. Metal–air battery technology is particularly advantageous being implemented in long-range electric vehicles. Up to now, almost all the efforts in the field are focused on Li–air cells, but other NANA metal–air battery technologies emerge. The major concern, which the research community should be dealing with, is the limited and rather poor rechargeability of these systems. The challenges we are covering in this review are related to the initial limited discharge capacities and cell performances. By comprehensively reviewing the studies conducted so far, we show that the implementation of advanced materials is a promising approach to increase metal–air performance and, particularly, metal surface activation as a prime achievement leading to respectful discharge currents. In this review, we address the most critical areas that need careful research attention in order to achieve progress in the understanding of the physical and electrochemical processes in non-aqueous electrolytes applied in beyond lithium and zinc air generation of metal–air battery systems.

Keywords

Metal–air batteries Non-aqueous Magnesium–air Aluminum–air Silicon–air 

Notes

Acknowledgements

This research work was financially supported by the Israel Science Foundation (ISF) Grant No. 1701/12, by Israel National Center for Electrochemical Propulsion (INREP-ISF) and by the Nancy and Stephen Grand Technion Energy Program (GTEP).

References

  1. 1.
    Kraytsberg A, Ein-Eli Y (2013) The impact of nano-scaled materials on advanced metal–air battery systems. Nano Energy 2(4):468–480CrossRefGoogle Scholar
  2. 2.
    Li Y, Dai H (2014) Recent advances in zinc–air batteries. Chem Soc Rev 43(15):5257–5275CrossRefGoogle Scholar
  3. 3.
    Linda D, Reddy T (2001) Handbook of batteries, 3rd edn. McGraw-Hill Companies Inc., MaidenheachGoogle Scholar
  4. 4.
    Zhang XG (1996) Corrosion and electrochemistry of zinc. Springer, USACrossRefGoogle Scholar
  5. 5.
    Goldstein J, Brown I, Koretz B (1999) New developments in the Electric Fuel Ltd. zinc/air system. J Power Sources 80(1):171–179CrossRefGoogle Scholar
  6. 6.
    Kar M, Simons TJ, Forsyth M, MacFarlane DR (2014) Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective. Phys Chem Chem Phys 16(35):18658–18674CrossRefGoogle Scholar
  7. 7.
    Balaish M, Kraytsberg A, Ein-Eli Y (2014) A critical review on lithium–air battery electrolytes. Phys Chem Chem Phys 16(7):2801–2822CrossRefGoogle Scholar
  8. 8.
    Girishkumar G, McCloskey B, Luntz A, Swanson S, Wilcke W (2010) Lithium–air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203CrossRefGoogle Scholar
  9. 9.
    Kraytsberg A, Ein-Eli Y (2011) Review on Li–air batteries—opportunities, limitations and perspective. J Power Sources 196(3):886–893CrossRefGoogle Scholar
  10. 10.
    Abraham K, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1–5CrossRefGoogle Scholar
  11. 11.
    Choi R, Jung J, Kim G et al (2014) Ultra-low overpotential and high rate capability in Li–O2 batteries through surface atom arrangement of PdCu nanocatalysts. Energy Environ Sci 7(4):1362–1368CrossRefGoogle Scholar
  12. 12.
    Kowalczk I, Read J, Salomon M (2007) Li–air batteries: a classic example of limitations owing to solubilities. Pure Appl Chem 79(5):851–860CrossRefGoogle Scholar
  13. 13.
    Peled E, Golodnitsky D, Mazor H, Goor M, Avshalomov S (2011) Parameter analysis of a practical lithium- and sodium–air electric vehicle battery. J Power Sources 196(16):6835–6840CrossRefGoogle Scholar
  14. 14.
    Read J, Mutolo K, Ervin M et al (2003) Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J Electrochem Soc 150(10):A1351–A1356CrossRefGoogle Scholar
  15. 15.
    Wu D, Guo Z, Yin X et al (2014) Metal-organic frameworks as cathode materials for Li–O2 batteries. Adv Mater 26(20):3258–3262CrossRefGoogle Scholar
  16. 16.
    Caramia V, Bozzini B (2014) Materials science aspects of zinc–air batteries: a review. Mater Renew Sustain Energy 3(2):1–12CrossRefGoogle Scholar
  17. 17.
    Chakkaravarthy C, Waheed A, Udupa H (1981) Zinc–air alkaline batteries—a review. J Power Sources 6(3):203–228CrossRefGoogle Scholar
  18. 18.
    Cheng F, Chen J (2012) Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41(6):2172–2192CrossRefGoogle Scholar
  19. 19.
    Lee J, Tai Kim S, Cao R et al (2011) Metal–air batteries with high energy density: Li–air versus Zn–air. Adv Energy Mater 1(1):34–50CrossRefGoogle Scholar
  20. 20.
    Rahman MA, Wang X, Wen C (2013) High energy density metal–air batteries: a review. J Electrochem Soc 160(10):A1759–A1771CrossRefGoogle Scholar
  21. 21.
    Cao R, Lee J, Liu M, Cho J (2012) Recent progress in Non-precious catalysts for metal–air batteries. Adv Energy Mater 2(7):816–829CrossRefGoogle Scholar
  22. 22.
    Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. M. Pourbaix, published 1974 by NACE, p 644Google Scholar
  23. 23.
    Hartmann P, Bender CL, Vračar M et al (2013) A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 12(3):228–232CrossRefGoogle Scholar
  24. 24.
    Kang S, Mo Y, Ong SP, Ceder G (2014) Nanoscale stabilization of sodium oxides: implications for Na–O2 batteries. Nano Lett 14(2):1016–1020CrossRefGoogle Scholar
  25. 25.
    Liu W, Sun Q, Yang Y, Xie J, Fu Z (2013) An enhanced electrochemical performance of a sodium–air battery with graphene nanosheets as air electrode catalysts. Chem Commun 49(19):1951–1953CrossRefGoogle Scholar
  26. 26.
    Xia C, Black R, Fernandes R, Adams B, Nazar LF (2015) The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat Chem 7(6):496–501CrossRefGoogle Scholar
  27. 27.
    Aurbach D, Lu Z, Schechter A et al (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727CrossRefGoogle Scholar
  28. 28.
    Muldoon J, Bucur CB, Oliver AG et al (2012) Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ Sci 5(3):5941–5950CrossRefGoogle Scholar
  29. 29.
    Aurbach D, Weissman I, Gofer Y, Levi E (2003) Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem Rec 3(1):61–73CrossRefGoogle Scholar
  30. 30.
    Amir N, Vestfrid Y, Chusid O, Gofer Y, Aurbach D (2007) Progress in nonaqueous magnesium electrochemistry. J Power Sources 174(2):1234–1240CrossRefGoogle Scholar
  31. 31.
    Howlett P, Khoo T, Mooketsi G, Efthimiadis J, MacFarlane D, Forsyth M (2010) The effect of potential bias on the formation of ionic liquid generated surface films on mg alloys. Electrochim Acta 55(7):2377–2383CrossRefGoogle Scholar
  32. 32.
    Luder D, Kraytsberg A, Ein-Eli Y (2014) Catalyst-free electrochemical Grignard reagent synthesis with room-temperature ionic liquids. ChemElectroChem 1(2):362–365CrossRefGoogle Scholar
  33. 33.
    Luder D, Ein-Eli Y (2014) Electrochemical Grignard reagent synthesis for ionic-liquid-based magnesium–air batteries. ChemElectroChem 1(8):1319–1326CrossRefGoogle Scholar
  34. 34.
    Egan D, Ponce de León C, Wood R, Jones R, Stokes K, Walsh F (2013) Developments in electrode materials and electrolytes for aluminium–air batteries. J Power Sources 236:293–310CrossRefGoogle Scholar
  35. 35.
    Li Q, Bjerrum NJ (2002) QR aluminum as anode for energy storage and conversion: a review. J Power Sources 110(1):1–10CrossRefGoogle Scholar
  36. 36.
    Mokhtar M, Talib MZM, Majlan EH et al (2015) Recent developments in materials for aluminum–air batteries: a review. J Ind Eng Chem 32:1–20CrossRefGoogle Scholar
  37. 37.
    Gelman D, Lasman I, Elfimchev S, Starosvetsky D, Ein-Eli Y (2015) Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications. J Power Sources 285:100–108CrossRefGoogle Scholar
  38. 38.
    Licht S, Levitin G, Yarnitzky C, Tel-Vered R (1999) The organic phase for aluminum batteries. Electrochem Solid State Lett 2(6):262–264CrossRefGoogle Scholar
  39. 39.
    Licht S, Tel-Vered R, Levitin G, Yarnitzky C (2000) Solution activators of aluminum electrochemistry in organic media. J Electrochem Soc 147(2):496–501CrossRefGoogle Scholar
  40. 40.
    Rybalka K, Beketaeva L (1993) Anodic dissolution of aluminium in nonaqueous electrolytes. J Power Sources 42(3):377–380CrossRefGoogle Scholar
  41. 41.
    Geng L, Lv G, Xing X, Guo J (2015) Reversible electrochemical intercalation of aluminum in Mo6S8. Chem Mater 27(14):4926–4929CrossRefGoogle Scholar
  42. 42.
    Jayaprakash N, Das SK, Archer LA (2011) The rechargeable aluminum-ion battery. Chem Commun 47(47):12610–12612CrossRefGoogle Scholar
  43. 43.
    Lin M, Gong M, Lu B et al (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520:324–328CrossRefGoogle Scholar
  44. 44.
    Rani JV, Kanakaiah V, Dadmal T, Rao MS, Bhavanarushi S (2013) Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum–ion battery. J Electrochem Soc 160(10):A1781–A1784CrossRefGoogle Scholar
  45. 45.
    Wang W, Jiang B, Xiong W et al (2013) A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci Rep 3:3383CrossRefGoogle Scholar
  46. 46.
    Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114(23):11683–11720CrossRefGoogle Scholar
  47. 47.
    Revel R, Audichon T, Gonzalez S (2014) Non-aqueous aluminium–air battery based on ionic liquid electrolyte. J Power Sources 272:415–421CrossRefGoogle Scholar
  48. 48.
    Endres F, El Abedin SZ (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8(18):2101–2116CrossRefGoogle Scholar
  49. 49.
    Gelman D, Shvartsev B, Ein-Eli Y (2014) Aluminum–air battery based on an ionic liquid electrolyte. J Mater Chem A 2(47):20237–20242CrossRefGoogle Scholar
  50. 50.
    Zhang XG (2001) Electrochemistry of silicon and its oxide. Springer, New YorkGoogle Scholar
  51. 51.
    Seidel H, Csepregi L, Heuberger A, Baumgärtel H (1990) Anisotropic etching of crystalline silicon in alkaline solutions II. influence of dopants. J Electrochem Soc 137(11):3626–3632CrossRefGoogle Scholar
  52. 52.
    Glembocki O, Palik E, De Guel G, Kendall D (1991) Hydration model for the molarity dependence of the etch rate of Si in aqueous alkali hydroxides. J Electrochem Soc 138(4):1055–1063CrossRefGoogle Scholar
  53. 53.
    Raz O, Starosvetsky D, Tsuda T, Nohira T, Hagiwara R, Ein-Eli Y (2007) Macroporous silicon formation on N-Si in room-temperature fluorohydrogenate ionic liquid. Electrochem Solid State Lett 10(3):D25–D28CrossRefGoogle Scholar
  54. 54.
    Raz O, Shmueli Z, Hagiwara R, Ein-Eli Y (2010) Porous silicon formation in fluorohydrogenate ionic liquids. J Electrochem Soc 157(3):H281–H286CrossRefGoogle Scholar
  55. 55.
    Cohn G, Eichel RA, Ein-Eli Y (2013) New insight into the discharge mechanism of silicon–air batteries using electrochemical impedance spectroscopy. Phys Chem Chem Phys 15(9):3256–3263CrossRefGoogle Scholar
  56. 56.
    Cohn G, Altberg A, Macdonald DD, Ein-Eli Y (2011) A silicon–air battery utilizing a composite polymer electrolyte.  Electrochim Acta 58:161–164CrossRefGoogle Scholar
  57. 57.
    Cohn G, Starosvetsky D, Hagiwara R, Macdonald DD, Ein-Eli Y (2009) Silicon–air batteries. Electrochem Commun 11(10):1916–1918CrossRefGoogle Scholar
  58. 58.
    Cohn G, Ein-Eli Y (2010) Study and development of non-aqueous silicon–air battery. J Power Sources 195(15):4963–4970CrossRefGoogle Scholar
  59. 59.
    Cohn G, MacDonald DD, Ein-Eli Y (2011) Remarkable impact of water on the discharge performance of a silicon–air battery. ChemSusChem 4(8):1124–1129CrossRefGoogle Scholar
  60. 60.
    Jakes P, Cohn G, Ein-Eli Y, Scheiba F, Ehrenberg H, Eichel R (2012) Limitation of discharge capacity and mechanisms of air-electrode deactivation in silicon–air batteries. ChemSusChem 5(11):2278–2285CrossRefGoogle Scholar
  61. 61.
    Blurton KF, Sammells AF (1979) Metal/air batteries: their status and potential—a review. J Power Sources 4(4):263–279CrossRefGoogle Scholar
  62. 62.
    Sathyanarayana S, Munichandraiah N (1981) A new magnesium–air cell for long-life applications. J Appl Electrochem 11(1):33–39CrossRefGoogle Scholar
  63. 63.
    Aurbach D, Schechter A, Moshkovich M, Cohen Y (2001) On the mechanisms of reversible magnesium deposition processes. J Electrochem Soc 148(9):A1004–A1014CrossRefGoogle Scholar
  64. 64.
    Aurbach D, Suresh GS, Levi E et al (2007) Progress in rechargeable magnesium battery technology. Adv Mater 19(23):4260–4267CrossRefGoogle Scholar
  65. 65.
    Sawyer DT, Valentine JS (1981) How super is superoxide? Acc Chem Res 14(12):393–400CrossRefGoogle Scholar
  66. 66.
    Mohamed M, Yabe T, Baasandash C et al (2008) Laser-induced magnesium production from magnesium oxide using reducing agents. J Appl Phys 104(11):113110CrossRefGoogle Scholar
  67. 67.
    Rongti L, Wei P, Sano M (2003) Kinetics and mechanism of carbothermic reduction of magnesia. Metall Mater Trans B 34(4):433–437CrossRefGoogle Scholar
  68. 68.
    Aurbach D (1999) Nonaqueous electrochemistry. CRC Press, Boca RatonCrossRefGoogle Scholar
  69. 69.
    Peled E, Straze H (1977) The kinetics of the magnesium electrode in thionyl chloride solutions. J Electrochem Soc 124(7):1030–1035CrossRefGoogle Scholar
  70. 70.
    Lu Z, Schechter A, Moshkovich M, Aurbach D (1999) On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J Electroanal Chem 466(2):203–217CrossRefGoogle Scholar
  71. 71.
    Peled E (1979) The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc 126(12):2047–2051CrossRefGoogle Scholar
  72. 72.
    Aurbach D, Moshkovich M, Schechter A, Turgeman R (2000) Magnesium deposition and dissolution processes in ethereal Grignard salt solutions using simultaneous EQCM-EIS and in situ FTIR spectroscopy. Electrochem Solid State Lett 3(1):31–34CrossRefGoogle Scholar
  73. 73.
    Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley, New YorkGoogle Scholar
  74. 74.
    Gofer Y, Chusid O, Gizbar H et al (2006) Improved electrolyte solutions for rechargeable magnesium batteries. Electrochem Solid State Lett 9(5):A257–A260CrossRefGoogle Scholar
  75. 75.
    Mizrahi O, Amir N, Pollak E et al (2008) Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries. J Electrochem Soc 155(2):A103–A109CrossRefGoogle Scholar
  76. 76.
    Shiga T, Hase Y, Kato Y, Inoue M, Takechi K (2013) A rechargeable non-aqueous Mg–O2 battery. Chem Commun 49(80):9152–9154CrossRefGoogle Scholar
  77. 77.
    Feng Z, NuLi Y, Wang J, Yang J (2006) Study of key factors influencing electrochemical reversibility of magnesium deposition and dissolution. J Electrochem Soc 153(10):C689–C693CrossRefGoogle Scholar
  78. 78.
    NuLi Y, Yang J, Wang J, Xu J, Wang P (2005) Electrochemical magnesium deposition and dissolution with high efficiency in ionic liquid. Electrochem Solid State Lett 8(11):C166–C169CrossRefGoogle Scholar
  79. 79.
    NuLi Y, Yang J, Wu R (2005) Reversible deposition and dissolution of magnesium from BMIMBF 4 ionic liquid. Electrochem Commun 7(11):1105–1110CrossRefGoogle Scholar
  80. 80.
    NuLi Y, Yang J, Wang P (2006) Electrodeposition of magnesium film from BMIMBF 4 ionic liquid. Appl Surf Sci 252(23):8086–8090CrossRefGoogle Scholar
  81. 81.
    Wang P, NuLi Y, Yang J, Feng Z (2006) Mixed ionic liquids as electrolyte for reversible deposition and dissolution of magnesium. Surf Coat Technol 201(6):3783–3787CrossRefGoogle Scholar
  82. 82.
    Cheek G, O’Grady W, El Abedin SZ, Moustafa E, Endres F (2008) Studies on the electrodeposition of magnesium in ionic liquids. J Electrochem Soc 155(1):D91–D95CrossRefGoogle Scholar
  83. 83.
    Kakibe T, Yoshimoto N, Egashira M, Morita M (2010) Optimization of cation structure of imidazolium-based ionic liquids as ionic solvents for rechargeable magnesium batteries. Electrochem Commun 12(11):1630–1633CrossRefGoogle Scholar
  84. 84.
    Yoshimoto N, Matsumoto M, Egashia M, Morita M (2010) Mixed electrolyte consisting of ethylmagnesiumbromide with ionic liquid for rechargeable magnesium electrode. J Power Sources 195(7):2096–2098CrossRefGoogle Scholar
  85. 85.
    Yoshimoto N, Hotta K, Egashira M, Morita M (2012) Electrochemical behavior of magnesium in mixed solutions consisting of ionic liquid and alkylmagnesiumbromides with different alkyl-chains. Electrochemistry 80(10):774–776CrossRefGoogle Scholar
  86. 86.
    Khoo T, Howlett PC, Tsagouria M, MacFarlane DR, Forsyth M (2011) The potential for ionic liquid electrolytes to stabilise the magnesium interface for magnesium/air batteries. Electrochim Acta 58:583–588CrossRefGoogle Scholar
  87. 87.
    Khoo T, Somers A, Torriero AA, MacFarlane DR, Howlett PC, Forsyth M (2013) Discharge behaviour and interfacial properties of a magnesium battery incorporating trihexyl (tetradecyl) phosphonium based ionic liquid electrolytes. Electrochim Acta 87:701–708CrossRefGoogle Scholar
  88. 88.
    Abraham K (2008) A brief history of non-aqueous metal–air batteries. ECS Trans 3(42):67–71CrossRefGoogle Scholar
  89. 89.
    Curto VF, Scheuermann S, Owens RM et al (2014) Probing the specific ion effects of biocompatible hydrated choline ionic liquids on lactate oxidase biofunctionality in sensor applications. Phys Chem Chem Phys 16(5):1841–1849CrossRefGoogle Scholar
  90. 90.
    Fukaya Y, Iizuka Y, Sekikawa K, Ohno H (2007) Bio ionic liquids: room temperature ionic liquids composed wholly of biomaterials. Green Chem 9(11):1155–1157CrossRefGoogle Scholar
  91. 91.
    Vijayaraghavan R, Thompson B, MacFarlane D et al (2009) Biocompatibility of choline salts as crosslinking agents for collagen based biomaterials. Chem Commun 46(2):294–296CrossRefGoogle Scholar
  92. 92.
    Weaver KD, Kim HJ, Sun J, MacFarlane DR, Elliott GD (2010) Cyto-toxicity and biocompatibility of a family of choline phosphate ionic liquids designed for pharmaceutical applications. Green Chem 12(3):507–513CrossRefGoogle Scholar
  93. 93.
    Jia X, Yang Y, Wang C et al (2014) Biocompatible ionic Liquid-Biopolymer electrolyte-enabled thin and compact magnesium–air batteries. ACS Appl Mater Interfaces 6(23):21110–21117CrossRefGoogle Scholar
  94. 94.
    Inoishi A, Ju Y, Ida S, Ishihara T (2013) Mg–air oxygen shuttle batteries using a ZrO2-based oxide ion-conducting electrolyte. Chem Commun 49(41):4691–4693CrossRefGoogle Scholar
  95. 95.
    Yang S, Knickle H (2002) Design and analysis of aluminum/air battery system for electric vehicles. J Power Sources 112(1):162–173CrossRefGoogle Scholar
  96. 96.
    Pistoia G (2014) Lithium-ion batteries: advances and applications. Elsevier, AmsterdamGoogle Scholar
  97. 97.
    Wang J, Wang J, Shao H, Zhang J, Cao C (2007) The corrosion and electrochemical behaviour of pure aluminium in alkaline methanol solutions. J Appl Electrochem 37(6):753–758CrossRefGoogle Scholar
  98. 98.
    Abd-El-Nabey B, Khalil N, Khamis E (1984) Alkaline corrosion of aluminium in water-organic solvent mixtures. Surf Technol 22(4):367–376CrossRefGoogle Scholar
  99. 99.
    Shao H, Wang J, Wang X, Zhang J, Cao C (2004) Anodic dissolution of aluminum in KOH ethanol solutions. Electrochem Commun 6(1):6–9CrossRefGoogle Scholar
  100. 100.
    Mukherjee A, Basumallick IN (1996) Complex behaviour of aluminium dissolution in alkaline aqueous 2-propanol solution. J Power Sources 58(2):183–187CrossRefGoogle Scholar
  101. 101.
    Wang J, Wang J, Shao H et al (2009) The corrosion and electrochemical behavior of pure aluminum in additive-containing alkaline methanol–water mixed solutions. Mater Corros 60(4):269–273CrossRefGoogle Scholar
  102. 102.
    Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9(21):2654–2675CrossRefGoogle Scholar
  103. 103.
    Lai SC, Koper MT (2009) Ethanol electro-oxidation on platinum in alkaline media. Phys Chem Chem Phys 11(44):10446–10456CrossRefGoogle Scholar
  104. 104.
    Meng H, Shen PK (2006) Novel Pt-free catalyst for oxygen electroreduction. Electrochem Commun 8(4):588–594CrossRefGoogle Scholar
  105. 105.
    Li C, Ji W, Chen J, Tao Z (2007) Metallic aluminum nanorods: synthesis via vapor-deposition and applications in Al/air batteries. Chem Mater 19(24):5812–5814CrossRefGoogle Scholar
  106. 106.
    Zein El Abedin S, Moustafa E, Hempelmann R, Natter H, Endres F (2006) RAA 25 electrodeposition of nano-and microcrystalline aluminium in three different air and water stable ionic liquids. ChemPhysChem 7(7):1535–1543CrossRefGoogle Scholar
  107. 107.
    Galova M (1980) Electrodeposition of aluminium from organic aprotic solvents. Surf Technol 11(5):357–369CrossRefGoogle Scholar
  108. 108.
    Moustafa E, Zein El Abedin S, Shkurankov A et al (2007) Electrodeposition of al in 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) amide and 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide ionic liquids: in situ STM and EQCM studies. J Phys Chem B 111(18):4693–4704CrossRefGoogle Scholar
  109. 109.
    Abbott AP, Qiu F, Abood HM, Ali MR, Ryder KS (2010) Double layer, diluent and anode effects upon the electrodeposition of aluminium from chloroaluminate based ionic liquids. Phys Chem Chem Phys 12(8):1862–1872CrossRefGoogle Scholar
  110. 110.
    Jiang T, Chollier Brym M, Dubé G, Lasia A, Brisard G (2006) RAA179 electrodeposition of aluminium from ionic liquids: part i—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl < sub > 3)–1-ethyl-3-methylimidazolium chloride ([EMIm] cl) ionic liquids. Surf Coat Technol 201(1):1–9CrossRefGoogle Scholar
  111. 111.
    Zhao Y, VanderNoot T (1997) RAA 180 electrodeposition of aluminium from nonaqueous organic electrolytic systems and room temperature molten salts. Electrochim Acta 42(1):3–13CrossRefGoogle Scholar
  112. 112.
    Zhao Y, VanderNoot T (1997) Electrodeposition of aluminium from room temperature AlCl 3-TMPAC molten salts. Electrochim Acta 42(11):1639–1643CrossRefGoogle Scholar
  113. 113.
    Gilliam R, Graydon J, Kirk D, Thorpe S (2007) A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. Int J Hydrog Energy 32(3):359–364CrossRefGoogle Scholar
  114. 114.
    See DM, White RE (1997) Temperature and concentration dependence of the specific conductivity of concentrated solutions of potassium hydroxide. J Chem Eng Data 42(6):1266–1268CrossRefGoogle Scholar
  115. 115.
    El Abedin SZ, Moustafa E, Hempelmann R, Natter H, Endres F (2005) Additive free electrodeposition of nanocrystalline aluminium in a water and air stable ionic liquid. Electrochem Commun 7(11):1111–1116CrossRefGoogle Scholar
  116. 116.
    Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150CrossRefGoogle Scholar
  117. 117.
    Zhang J, Xu W, Li X, Liu W (2010) Air dehydration membranes for nonaqueous lithium–air batteries. J Electrochem Soc 157(8):A940–A946CrossRefGoogle Scholar
  118. 118.
    Reed L, Ortiz S, Xiong M, Menke E (2015) A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte. Chem Commun 51(76):14397–14400CrossRefGoogle Scholar
  119. 119.
    Inoishi A, Kim H, Sakai T, Ju Y, Ida S, Ishihara T (2015) Discharge performance of solid-state oxygen shuttle metal–air battery using ca-stabilized ZrO2 electrolyte. ChemSusChem 8(7):1264–1269CrossRefGoogle Scholar
  120. 120.
    Isaacs J, Taricco F, Michaud V, Mortensen A (1991) Chemical stability of zirconia-stabilized alumina fibers during pressure infiltration by aluminum. Metall Trans A 22(12):2855–2862CrossRefGoogle Scholar
  121. 121.
    Shvartsev B, Cohn G, Shasha H, Eichel R, Ein-Eli Y (2013) Reference electrode assembly and its use in the study of fluorohydrogenate ionic liquid silicon electrochemistry. Phys Chem Chem Phys 15(41):17837–17845CrossRefGoogle Scholar
  122. 122.
    Rotariu L, Zamfir L, Bala C (2010) Low potential thiocholine oxidation at carbon nanotube-ionic liquid gel sensor. Sens Actuators B Chem 150(1):73–79CrossRefGoogle Scholar
  123. 123.
    Wang Y (2009) Recent research progress on polymer electrolytes for dye-sensitized solar cells. Solar Energy Mater Solar Cells 93(8):1167–1175CrossRefGoogle Scholar
  124. 124.
    Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195(15):4554–4569CrossRefGoogle Scholar
  125. 125.
    Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42(1):21–42CrossRefGoogle Scholar
  126. 126.
    Egashira M, Todo H, Yoshimoto N, Morita M (2008) Lithium ion conduction in ionic liquid-based gel polymer electrolyte. J Power Sources 178(2):729–735CrossRefGoogle Scholar
  127. 127.
    Kumar D, Hashmi S (2010) Ionic liquid based sodium ion conducting gel polymer electrolytes. Solid State Ionics 181(8):416–423CrossRefGoogle Scholar
  128. 128.
    Ferrari S, Quartarone E, Mustarelli P et al (2010) Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl)-imide ionic liquid. J Power Sources 195(2):559–566CrossRefGoogle Scholar
  129. 129.
    Tsuda T, Nohira T, Nakamori Y, Matsumoto K, Hagiwara R, Ito Y (2002) A highly conductive composite electrolyte consisting of polymer and room temperature molten fluorohydrogenates. Solid State Ion 149(3):295–298CrossRefGoogle Scholar
  130. 130.
    Zhong X, Zhang H, Liu Y et al (2012) High-capacity silicon–air battery in alkaline solution. ChemSusChem 5(1):177–180CrossRefGoogle Scholar
  131. 131.
    Inoishi A, Sakai T, Ju Y, Ida S, Ishihara T (2013) A rechargeable Si–air solid state oxygen shuttle battery incorporating an oxide ion conductor. J Mater Chem A 1(48):15212–15215CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.The Nancy and Stephen Grand Technion Energy ProgramTechnion-Israeli Institute of TechnologyHaifaIsrael
  2. 2.Department of Materials Science and EngineeringTechnion-Israeli Institute of TechnologyHaifaIsrael

Personalised recommendations