Topics in Current Chemistry

, 374:81 | Cite as

Non-Invasive and Non-Destructive Examination of Artistic Pigments, Paints, and Paintings by Means of X-Ray Methods

  • Koen Janssens
  • Geert Van der Snickt
  • Frederik Vanmeert
  • Stijn Legrand
  • Gert Nuyts
  • Matthias Alfeld
  • Letizia Monico
  • Willemien Anaf
  • Wout De Nolf
  • Marc Vermeulen
  • Jo Verbeeck
  • Karolien De Wael
Part of the following topical collections:
  1. Analytical Chemistry for Cultural Heritage


Recent studies are concisely reviewed, in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples, and/or entire paintings from the seventeenth to the early twentieth century painters. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging, as well as with the combined use of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Microscopic XRF is a variant of the method that is well suited to visualize the elemental distribution of key elements, mostly metals, present in paint multi-layers, on the length scale from 1 to 100 μm inside micro-samples taken from paintings. In the context of the characterization of artists’ pigments subjected to natural degradation, the use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS and μ-XRD have proven themselves to be very suitable for such studies. Their use is often combined with microscopic Fourier transform infra-red spectroscopy and/or Raman microscopy since these methods deliver complementary information of high molecular specificity at more or less the same length scale as the X-ray microprobe techniques. Since microscopic investigation of a relatively limited number of minute paint samples, taken from a given work of art, may not yield representative information about the entire artefact, several methods for macroscopic, non-invasive imaging have recently been developed. Those based on XRF scanning and full-field hyperspectral imaging appear very promising; some recent published results are discussed.


X-ray fluorescence X-ray diffraction X-ray absorption Synchrotron radiation Paintings Pigments 


  1. 1.
    Cotte M, Checroun E, De Nolf W, Taniguchi Y, De Viguerie L, Burghammer M, Walter P, Rivard C, Salomé M, Janssens K, Susini J (2016) Lead soaps in paintings: friends or foes? Stud Conserv. doi: 10.1080/00393630.2016.1232529 Google Scholar
  2. 2.
    Hendriks E (2011) Van Gogh’s working practice: a technical study. In: Van Tilborgh L, Hendriks E (eds) Vincent Van Gogh Paintings 2: Antwerp & Paris, 1885–1888. Lund Humphries Publishers Ltd., London, pp 90–143Google Scholar
  3. 3.
    Jansen L, Luijten H, Bakker N (2009) Vincent van Gogh—The Letters. Thames & Hudson Ltd., London
  4. 4.
    Janssens K, Alfeld M, Van der Snickt G, De Nolf W, Vanmeert F, Radepont M, Monico L, Dik J, Cotte M, Falkenberg G, Miliani C, Brunetti BG (2013) The use of synchrotron radiation for the characterization of artists’ pigments and paintings. Ann Rev Anal Chem 6(6):399–425CrossRefGoogle Scholar
  5. 5.
    Colombini MP, Modugno F (2004) Characterisation of proteinaceous binders in artistic paintings by chromatographic techniques. J Sep Sci 27:147–160CrossRefGoogle Scholar
  6. 6.
    Vandenabeele P, Wehling B, Moens L, Dekeyzer B, Cardon B, von Bohlen A, Klockenkamper R (1999) Pigment investigation of a late-medieval manuscript with total reflection X-ray fluorescence and micro-Raman spectroscopy. Analyst 124:169–172CrossRefGoogle Scholar
  7. 7.
    Wess TJ, Drakopoulos M, Snigirev A, Wouters J, Paris O, Fratzl P, Collins M, Hiller J, Nielsen K (2001) The use of small-angle X-ray diffraction studies for the analysis of structural features in archaeological samples. Archaeometry 43:117–129CrossRefGoogle Scholar
  8. 8.
    Cesaratto A, D’Andrea C, Nevin A, Valentini G, Tassone F, Alberti R, Frizzi T, Comelli D (2014) Analysis of cadmium-based pigments with time-resolved photoluminescence. Anal Methods 6:130–138CrossRefGoogle Scholar
  9. 9.
    Antunes V, Jose Oliveira M, Vargas H, Serrao V, Candeias A, Carvalho ML, Coroado J, Mirao J, Dias L, Longelin S, Seruya AI (2014) Characterization of glue sizing under calcium carbonate ground layers in Flemish and Luso-Flemish painting—analysis by SEM-EDS, mu-XRD and mu-Raman spectroscopy. Anal Methods 6:710–717CrossRefGoogle Scholar
  10. 10.
    Lluveras A, Boularand S, Roque J, Cotte M, Giraldez P, Vendrell-Saz M (2008) Weathering of gilding decorations investigated by SR: development and distribution of calcium oxalates in the case of Sant Benet de Bages (Barcelona, Spain). Appl Phys Mater Sci Process 90:23–33CrossRefGoogle Scholar
  11. 11.
    Bell IM, Clark RJH, Gibbs PJ (1997) Raman spectroscopic library of natural and synthetic pigments (pre-similar to 1850 AD). Spectrochim Acta Part A Mol Biomol Spectrosc 53:2159–2179CrossRefGoogle Scholar
  12. 12.
    Van Der Snickt G, De Nolf W, Vekemans B, Janssens K (2008) mu-XRF/mu-RS vs. SR mu-XRD for pigment identification in illuminated manuscripts. Appl Phys A Mater Sci Process 92:59–68CrossRefGoogle Scholar
  13. 13.
    Andreotti A, Bonaduce I, Colombini MP, Gautier G, Modugno F, Ribechini E (2006) Combined GC/MS analytical procedure for the characterization of glycerolipid, waxy, resinous, and proteinaceous materials in a unique paint microsample. Anal Chem 78:4490–4500CrossRefGoogle Scholar
  14. 14.
    Colombini MP, Andreotti A, Bonaduce I, Modugno F, Ribechini E (2010) Analytical strategies for characterizing organic paint media using gas chromatography/mass spectrometry. Acc Chem Res 43:715–727CrossRefGoogle Scholar
  15. 15.
    Degano I, Ribechini E, Modugno F, Colombini MP (2009) Analytical methods for the characterization of organic dyes in artworks and in historical textiles. Appl Spectrosc Rev 44:363–410CrossRefGoogle Scholar
  16. 16.
    Janssens K, Adams F, Rindby A (2000) Microscopic X-ray fluorescence analysis. Wiley, ChichesterGoogle Scholar
  17. 17.
    Cotte M, Susini J, Dik J, Janssens K (2010) Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward. Acc Chem Res 43:705–714CrossRefGoogle Scholar
  18. 18.
    De Nolf W, Janssens K (2010) Micro X-ray diffraction and fluorescence tomography for the study of multilayered automotive paints. Surf Interface Anal 42:411–418CrossRefGoogle Scholar
  19. 19.
    Thoury M, Echard JP, Refregiers M, Berrie B, Nevin A, Jamme F, Bertrand L (2011) Synchrotron UV-visible multispectral luminescence microimaging of historical samples. Anal Chem 83:1737–1745CrossRefGoogle Scholar
  20. 20.
    Bertrand L, Robinet L, Thoury M, Janssens K, Cohen SX, Schoder S (2012) Cultural heritage and archaeology materials studied by synchrotron spectroscopy and imaging. Appl Phys A Mater Sci Process 106:377–396CrossRefGoogle Scholar
  21. 21.
    Janssens K, Legrand S, Van der Snickt G, Vanmeert F (2016) Virtual archaeology of altered paintings: multiscale chemical imaging tools. Elements 12:39–44CrossRefGoogle Scholar
  22. 22.
    Janssens K, Dik J, Cotte M, Susini J (2010) Photon-based techniques for nondestructive subsurface analysis of painted cultural heritage artifacts. Acc Chem Res 43:814–825CrossRefGoogle Scholar
  23. 23.
    Alfeld M, Broekaert JAC (2013) Mobile depth profiling and sub-surface imaging techniques for historical paintings—a review. Spectrochim Acta Part B 88:211–230CrossRefGoogle Scholar
  24. 24.
    Miliani C, Rosi F, Brunetti BG, Sgamellotti A (2010) In situ noninvasive study of artworks: the MOLAB multitechnique approach. Acc Chem Res 43:728–738CrossRefGoogle Scholar
  25. 25.
    Daffara C, Parisotto S, Mariotti PI (2015) Mid-infrared thermal imaging for an effective mapping of surface materials and sub-surface detachments in mural paintings: integration of thermography and thermal quasi-reflectography. In: Pezzati L, Targowski P (eds) Optics for arts, architecture, and archaeology VGoogle Scholar
  26. 26.
    Alfeld M, Janssens K, Dik J, de Nolf W, van der Snickt G (2011) Optimization of mobile scanning macro-XRF systems for the in situ investigation of historical paintings. J Anal At Spectrom 26:899–909CrossRefGoogle Scholar
  27. 27.
    Dooley KA, Conover DM, Glinsman LD, Delaney JK (2014) Complementary standoff chemical imaging to map and identify artist materials in an early italian renaissance panel painting. Angew Chem Int Edit 53:13775–13779CrossRefGoogle Scholar
  28. 28.
    De Nolf W, Dik J, Van der Snickt G, Wallert A, Janssens K (2011) High energy X-ray powder diffraction for the imaging of (hidden) paintings. J Anal At Spectrom 26:910–916CrossRefGoogle Scholar
  29. 29.
    Legrand S, Alfeld M, Vanmeert F, De Nolf W, Janssens K (2014) Macroscopic Fourier transform infrared scanning in reflection mode (MA-rFTIR), a new tool for chemical imaging of cultural heritage artefacts in the mid-infrared range. Analyst 139:2489–2498CrossRefGoogle Scholar
  30. 30.
    Daffara C, Pampaloni E, Pezzati L, Barucci M, Fontana R (2010) Scanning multispectral IR reflectography SMIRR: an advanced tool for art diagnostics. Acc Chem Res 43:847–856CrossRefGoogle Scholar
  31. 31.
    Beckhoff B, Kanngiesser B, Langhoff N, Rainer W, Helmut W (2006) Handbook of practical X-ray fluorescence analysis. Springer, BerlinCrossRefGoogle Scholar
  32. 32.
    Vincze L, Somogyi A, Osan J, Vekemans B, Torok S, Janssens K, Adams F (2002) Quantitative trace element analysis of individual fly ash particles by means of X-ray microfluorescence. Anal Chem 74:1128–1135CrossRefGoogle Scholar
  33. 33.
    Vincze L, Janssens K, Adams F, Jones KW (1995) A general monte carlo simulation of energy-dispersive X-ray fluorescence spectrometers.3. Polarized polychromatic radiation, homogeneous samples. Spectrochim Acta Part B At Spectrosc 50:1481–1500CrossRefGoogle Scholar
  34. 34.
    Vincze L, Janssens K, Vekemans B, Adams F (1999) Monte Carlo simulation of X-ray fluorescence spectra: part 4. Photon scattering at high X-ray energies. Spectrochim Acta Part B At Spectrosc 54:1711–1722CrossRefGoogle Scholar
  35. 35.
    Lahanier C, Amsel G, Heitz C, Menu M, Andersen HH (1986) Proceedings of the international workshop on ion-beam analysis in the arts and archaeology—Pont-A-Mousson, Abbaye Des Premontres, France, February 18–20, 1985—Editorial. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 14: R7–R8Google Scholar
  36. 36.
    Van Grieken R, Markowicz A (2002) Handbook of X-ray spectrometry. Marcel Dekker, New YorkGoogle Scholar
  37. 37.
    Van der Linden V, Meesdom E, Devos A, Van Dooren R, Nieuwdorp H, Janssen E, Balace S, Vekemans B, Vincze L, Janssens K (2011) PXRF, mu-XRF, Vacuum mu-XRF, and EPMA Analysis of Email Champleve Objects Present in Belgian Museums. Microsc Microanal 17:674–685CrossRefGoogle Scholar
  38. 38.
    Carvalho ML, Karydas A, Piorek S (2010) Special issue: the use and application of handheld and portable XRF spectrometers. X-Ray Spectrom 39:77CrossRefGoogle Scholar
  39. 39.
    Potts PJ, Ramsey MH, Carlisle J (2002) Portable X-ray fluorescence in the characterisation of arsenic contamination associated with industrial buildings at a heritage arsenic works site near Redruth, Cornwall, UK. J Environ Monit 4:1017–1024CrossRefGoogle Scholar
  40. 40.
    Jones MC, Williams-Thorpe O, Potts PJ, Webb PC (2005) Using field-portable XRF to assess geochemical variations within and between dolerite outcrops of Preseli, south Wales. Geostand Geoanal Res 29:251–269CrossRefGoogle Scholar
  41. 41.
    Piorek S (1997) Field-portable X-ray fluorescence spectrometry: past, present, and future. Field Anal Chem Technol 1:317–329CrossRefGoogle Scholar
  42. 42.
    Piorek S (2004) Ieee, Portable X-ray fluorescence analyzer for the first level screening of materials for prohibited substances, 2005 International Conference on Asian Green Electronics: Design for Manufacturability and Reliability, Proceedings, pp 7–13Google Scholar
  43. 43.
    Piorek S, Puusaari E, Piorek E, McCann B (1999) Identification and quantitative analysis of alloys using x-ray fluorescence analyzer with a silicon “p-i-n” diode detector. In: Fernandez JE, Tartari A (eds) EDXRS-98: Proceedings of the European Conference on Energy Dispersive X-Ray Spectrometry 1998. Editrice Compositori, Bologna, p 280Google Scholar
  44. 44.
    Pages-Camagna S, Laval E, Vigears D, Duran A (2010) Non-destructive and in situ analysis of Egyptian wall paintings by X-ray diffraction and X-ray fluorescence portable systems. Appl Phys A Mater Sci Process 100:671–681CrossRefGoogle Scholar
  45. 45.
    Eveno M, Moignard B, Castaing J (2011) Portable apparatus for in situ X-ray diffraction and fluorescence analyses of artworks. Microsc Microanal 17:667–673CrossRefGoogle Scholar
  46. 46.
    Kriznar A, Munoz V, de la Paz F, Respaldiza MA, Vega M (2011) Portable XRF study of pigments applied in Juan Hispalense’s 15th century panel painting. X-Ray Spectrom 40:96–100CrossRefGoogle Scholar
  47. 47.
    Migliori A, Bonanni P, Carraresi L, Grassi N, Mando PA (2011) A novel portable XRF spectrometer with range of detection extended to low-Z elements. X-Ray Spectrom 40:107–112CrossRefGoogle Scholar
  48. 48.
    Kenna TC, Nitsche FO, Herron MM, Mailloux BJ, Peteet D, Sritrairat S, Sands E, Baumgarten J (2011) Evaluation and calibration of a Field Portable X-Ray Fluorescence spectrometer for quantitative analysis of siliciclastic soils and sediments. J Anal At Spectrom 26:395–405CrossRefGoogle Scholar
  49. 49.
    Tykot RH (2016) Using nondestructive portable X-ray fluorescence spectrometers on stone, ceramics, metals, and other materials in museums: advantages and limitations. Appl Spectrosc 70:42–56CrossRefGoogle Scholar
  50. 50.
    Galli A, Bonizzoni L (2014) True versus forged in the cultural heritage materials: the role of PXRF analysis. X-Ray Spectrom 43:22–28CrossRefGoogle Scholar
  51. 51.
    Beck L, Rousseliere H, Castaing J, Duran A, Lebon M, Moignard B, Plassard F (2014) First use of portable system coupling X-ray diffraction and X-ray fluorescence for in situ analysis of prehistoric rock art. Talanta 129:459–464CrossRefGoogle Scholar
  52. 52.
    Pitarch A, Ruiz JF, de Vallejuelo SFO, Hernanz A, Maguregui M, Madariaga JM (2014) In situ characterization by Raman and X-ray fluorescence spectroscopy of post-Paleolithic blackish pictographs exposed to the open air in Los Chaparros shelter (Albalate del Arzobispo, Teruel, Spain). Anal Methods 6:6641–6650CrossRefGoogle Scholar
  53. 53.
    Dayer L, d’Errico F, Garcia-Moreno R (2014) Searching for consistencies in Chatelperronian pigment use. J Archaeol Sci 44:180–193CrossRefGoogle Scholar
  54. 54.
    Bracci S, Caruso O, Galeotti M, Iannaccone R, Magrini D, Picchi D, Pinna D, Porcinai S (2015) Multidisciplinary approach for the study of an Egyptian coffin (late 22nd/early 25th dynasty): combining imaging and spectroscopic techniques. Spectrochim Acta Part A Mol Biomol Spectrosc 145:511–522CrossRefGoogle Scholar
  55. 55.
    Madariaga JM, Maguregui M, Castro K, Knuutinen U, Martinez-Arkarazo I (2016) Portable Raman, DRIFTS, and XRF analysis to diagnose the conservation state of two wall painting panels from pompeii deposited in the Naples National Archaeological Museum (Italy). Appl Spectrosc 70:137–146CrossRefGoogle Scholar
  56. 56.
    Madariaga JM (2015) Analytical chemistry in the field of cultural heritage. Anal Methods 7:4848–4876CrossRefGoogle Scholar
  57. 57.
    Crupi V, Galli G, La Russa MF, Longo F, Maisano G, Majolino D, Malagodi M, Pezzino A, Ricca M, Rossi B, Ruffolo SA, Venuti V (2015) Multi-technique investigation of Roman decorated plasters from Villa dei Quintili (Rome, Italy). Appl Surf Sci 349:924–930CrossRefGoogle Scholar
  58. 58.
    Gomez-Moron MA, Ortiz P, Martin-Ramirez JM, Ortiz R, Castaing J (2016) A new insight into the vaults of the kings in the Alhambra (Granada, Spain) by combination of portable XRD and XRF. Microchem J 125:260–265CrossRefGoogle Scholar
  59. 59.
    Syta O, Rozum K, Choinska M, Zielinska D, Zukowska GZ, Kijowska A, Wagner B (2014) Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy. Spectrochim Acta Part B At Spectrosc 101:140–148CrossRefGoogle Scholar
  60. 60.
    Daveri A, Doherty B, Moretti P, Grazia C, Romani A, Fiorin E, Brunetti BG, Vagnini M (2015) An uncovered XIII century icon: particular use of organic pigments and gilding techniques highlighted by analytical methods. Spectrochim Acta Part A Mol Biomol Spectrosc 135:398–404CrossRefGoogle Scholar
  61. 61.
    Cechak T, Trojek T, Sefcu R, Chlumska S, Trestikova A, Kotrly M, Turkova I (2015) The use of powdered bismuth in Late Gothic painting and sculpture polychromy. J Cult Herit 16:747–752CrossRefGoogle Scholar
  62. 62.
    Hradil D, Hradilova J, Bezdicka P, Svarcova S, Cermakova Z, Kosarova V, Nemec I (2014) Crocoite PbCrO4 and mimetite Pb5(AsO4)3Cl: rare minerals in highly degraded mediaeval murals in Northern Bohemia. J Raman Spectrosc 45:848–858CrossRefGoogle Scholar
  63. 63.
    Van der Snickt G, Miliani C, Janssens K, Brunetti BG, Romani A, Rosi F, Walter P, Castaing J, De Nolf W, Klaassen L, Labarque I, Wittermann R (2011) Material analyses of ‘Christ with singing and music-making Angels’, a late 15th-C panel painting attributed to Hans Memling and assistants: part I. non-invasive in situ investigations. J Anal At Spectrom 26:2216–2229CrossRefGoogle Scholar
  64. 64.
    Duran A, Lopez-Montes A, Castaing J, Espejo T (2014) Analysis of a royal 15th century illuminated parchment using a portable XRF-XRD system and micro-invasive techniques. J Archaeol Sci 45:52–58CrossRefGoogle Scholar
  65. 65.
    Van de Voorde L, Van Pevenage J, De Langhe K, De Wolf R, Vekemans B, Vincze L, Vandenabeele P, Martens MPJ (2014) Non-destructive in situ study of “Mad Meg” by Pieter Bruegel the Elder using mobile X-ray fluorescence, X-ray diffraction and Raman spectrometers. Spectrochim Acta Part B At Spectrosc 97:1–6CrossRefGoogle Scholar
  66. 66.
    Veiga A, Teixeira DM, Candeias AJ, Mirao J, Manhita A, Miguel C, Rodrigues P, Teixeira JG (2015) Micro-analytical study of two seventeenth century gilded miniature portraits on copper. Microchem J 123:51–61CrossRefGoogle Scholar
  67. 67.
    Roldan C, Juanes D, Ferrazza L, Carballo J (2016) Characterization of Sorolla’s gouache pigments by means of spectroscopic techniques. Radiat Phys Chem 119:253–263CrossRefGoogle Scholar
  68. 68.
    Van der Snickt G, Janssens K, Schalm O, Aibeo C, Kloust H, Alfeld M (2010) James Ensor’s pigment use: artistic and material evolution studied by means of portable X-ray fluorescence spectrometry. X-Ray Spectrom 39:103–111CrossRefGoogle Scholar
  69. 69.
    Kosarova V, Hradil D, Hradilova J, Cermakova Z, Nemec I, Schreiner M (2016) The efficiency of micro-Raman spectroscopy in the analysis of complicated mixtures in modern paints: munch’s and Kupka’s paintings under study. Spectrochim Acta Part A Mol Biomol Spectrosc 156:36–46CrossRefGoogle Scholar
  70. 70.
    Kajiya EAM, Campos P, Rizzutto MA, Appoloni CR, Lopes F (2014) Evaluation of the veracity of one work by the artist Di Cavalcanti through non-destructive techniques: XRF, imaging and brush stroke analysis. Radiat Phys Chem 95:373–377CrossRefGoogle Scholar
  71. 71.
    Cardeira AM, Longelin S, Costa S, Candeias A, Carvalho ML, Manso M (2014) Multi-analytical characterisation of D’Apres Cormon by Jose Veloso Salgado. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 331:271–274CrossRefGoogle Scholar
  72. 72.
    Izzo FC, Capogrosso V, Gironda M, Alberti R, Mazzei C, Nodari L, Gambirasi A, Zendri E, Nevin A (2015) Multi-analytical non-invasive study of modern yellow paints from postwar Italian paintings from the International Gallery of Modern Art Ca Pesaro, Venice. X-Ray Spectrom 44:296–304CrossRefGoogle Scholar
  73. 73.
    Trojek T, Trojkova D (2015) Several approaches to the investigation of paintings with the use of portable X-ray fluorescence analysis. Radiat Phys Chem 116:321–325CrossRefGoogle Scholar
  74. 74.
    Cardeira AM, Longelin S, Costa S, Candeias A, Carvalho ML, Manso M (2016) Analytical characterization of academic nude paintings by Jose Veloso Salgado. Spectrochim Acta Part A Mol Biomol Spectrosc 153:379–385CrossRefGoogle Scholar
  75. 75.
    Epley BA, Rogge CE (2015) Prior states: evolution of composition and color in two Barnett Newman paintings. Appl Phys A Mater Sci Process 121:987–998CrossRefGoogle Scholar
  76. 76.
    Janssens K, Vekemans B, Vincze L, Adams F, Rindby A (1996) A micro-XRF spectrometer based on a rotating anode generator and capillary optics. Spectrochim Acta Part B At Spectrosc 51:1661–1678CrossRefGoogle Scholar
  77. 77.
    Vincze L, Janssens K, Adams F, Rindby A, Engstrom P (1998) Interpretation of capillary generated spatial and angular distributions of x rays: theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line. Rev Sci Instrum 69:3494–3503CrossRefGoogle Scholar
  78. 78.
    Schroer CG, Boye P, Feldkamp JM, Patommel J, Samberg D, Schropp A, Schwab A, Stephan S, Falkenberg G, Wellenreuther G, Reimers N (2010) Hard X-ray nanoprobe at beamline P06 at PETRA III. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 616:93–97CrossRefGoogle Scholar
  79. 79.
    Lengeler B, Schroer CG, Benner B, Gerhardus A, Gunzler TF, Kuhlmann M, Meyer J, Zimprich C (2002) Parabolic refractive X-ray lenses. J Synchrotron Radiat 9:119–124CrossRefGoogle Scholar
  80. 80.
    Gorelick S, Vila-Comamala J, Guzenko VA, Barrett R, Salome M, David C (2011) High-Efficiency Gold Fresnel Zone Plates for Multi-keV X-rays. In: McNulty I, Eyberger C, Lai B (eds) 10th International Conference on X-Ray Microscopy, pp 88–91Google Scholar
  81. 81.
    Sarkar SS, Sahoo PK, Solak HH, David C, Van der Veen JF (2008) Fabrication of Fresnel zone plates by holography in the extreme ultraviolet region. J Vac Sci Technol B 26:2160–2163CrossRefGoogle Scholar
  82. 82.
    Alianelli L, Sawhney KJS, Barrett R, Pape I, Malik A, Wilson MC (2011) High efficiency nano-focusing kinoform optics for synchrotron radiation. Opt Express 19:11120–11127CrossRefGoogle Scholar
  83. 83.
    Barrett R, Baker R, Cloetens P, Dabin Y, Morawe C, Suhonen H, Tucoulou R, Vivo A, Zhang L (2011) Dynamically-figured mirror system for high-energy nanofocusing at the ESRF. In: Proceedings of SPIE, Advances in X-Ray/EUV optics and components VI, vol 8139, p 813904. doi: 10.1117/12.894735
  84. 84.
    Bichlmeier S, Janssens K, Heckel J, Gibson D, Hoffmann P, Ortner HM (2001) Component selection for a compact micro-XRF spectrometer. X-Ray Spectrom 30:8–14CrossRefGoogle Scholar
  85. 85.
    Trentelman K, Bouchard M, Ganio M, Namowicz C, Patterson CS, Walton M (2010) The examination of works of art using in situ XRF line and area scans. X-Ray Spectrom 39:159–166CrossRefGoogle Scholar
  86. 86.
    Buzanich G, Wobrauschek P, Streli C, Markowicz A, Wegrzynek D, Chinea-Cano E, Griesser M, Uhlir K (2010) PART II (Portable ART analyzer)—development of a XRF spectrometer adapted for the study of artworks in the Kunsthistorisches Museum, Vienna. X-Ray Spectrom 39:98–102CrossRefGoogle Scholar
  87. 87.
    Vittiglio G, Bichhneier S, Klinger P, Heckel J, Fuzhong W, Vincze L, Janssens K, Engstrom P, Rindby A, Dietrich K, Jembrih-Simburger D, Schreiner M, Denis D, Lakdar A, Lamotte A (2004) A compact mu-XRF spectrometer for (in situ) analyses of cultural heritage and forensic materials. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 213:693–698CrossRefGoogle Scholar
  88. 88.
    Bronk H, Rohrs S, Bjeoumikhov A, Langhoff N, Schmalz J, Wedell R, Gorny HE, Herold A, Waldschlager U (2001) ArtTAX—a new mobile spectrometer for energy-dispersive micro X-ray fluorescence spectrometry on art and archaeological objects. Fresenius J Anal Chem 371:307–316CrossRefGoogle Scholar
  89. 89.
    Rabin I, Hahn O (2013) Characterization of the Dead Sea Scrolls by advanced analytical techniques. Anal Methods 5:4648–4654CrossRefGoogle Scholar
  90. 90.
    Wolff T, Rabin I, Mantouvalou I, Kanngiesser B, Malzer W, Kindzorra E, Hahn O (2012) Provenance studies on Dead Sea scrolls parchment by means of quantitative micro-XRF. Anal Bioanal Chem 402:1493–1503CrossRefGoogle Scholar
  91. 91.
    Valerio P, Silva RJC, Araujo MF, Soares AMM, Barros L (2012) A multianalytical approach to study the Phoenician bronze technology in the Iberian Peninsula-A view from Quinta do Almaraz. Mater Charact 67:74–82CrossRefGoogle Scholar
  92. 92.
    Figueiredo E, Araujo MF, Silva RJC, Senna-Martinez JC, Vaz JLI (2011) Characterisation of Late Bronze Age large size shield nails by EDXRF, micro-EDXRF and X-ray digital radiography. Appl Radiat Isot 69:1205–1211CrossRefGoogle Scholar
  93. 93.
    Herm C (2008) Mobile micro-X-ray fluorescence analysis (XRF) on medieval paintings. Chimia 62:887–898CrossRefGoogle Scholar
  94. 94.
    Cheng L, Li MT, Youshi K, Fan CS, Wang SH, Pan QL, Liu ZG, Li RW (2011) The study of chemical composition and elemental mappings of colored over-glaze porcelain fired in Qing Dynasty by micro-X-ray fluorescence. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 269:239–243CrossRefGoogle Scholar
  95. 95.
    Dietz G, Ketelsen T, Hoss M, Simon O, Wintermann C, Wolff T, Rabin I, Hahn O (2012) The Egmont Master phenomenon: X-ray fluorescence spectrometric and paper studies for art history research. Anal Bioanal Chem 402:1505–1515CrossRefGoogle Scholar
  96. 96.
    Sun TX, Ding XL (2015) Confocal X-ray technology based on capillary X-ray optics. Rev Anal Chem 34:45–59CrossRefGoogle Scholar
  97. 97.
    Janssens K, Proost K, Falkenberg G (2004) Confocal microscopic X-ray fluorescence at the HASYLAB microfocus beamline: characteristics and possibilities. Spectrochim Acta Part B At Spectrosc 59:1637–1645CrossRefGoogle Scholar
  98. 98.
    Woll AR, Agyeman-Budu D, Choudhury S, Coulthard I, Finnefrock AC, Gordon R, Hallin E, Mass J (2014) Lithographically-fabricated channel arrays for confocal X-ray fluorescence microscopy and XAFS. In: Arp U, Reversz P, Williams GP (eds) 17th Pan-American Synchrotron Radiation Instrumentation Conference (SRI 2013)Google Scholar
  99. 99.
    Bjeoumikhov A, Erko M, Bjeoumikhova S, Erko A, Snigireva I, Snigirev A, Wolff T, Mantouvalou I, Malzer W, Kanngiesser B (2008) Capillary mu Focus X-ray lenses with parabolic and elliptic profile. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 587:458–463CrossRefGoogle Scholar
  100. 100.
    Luhl L, Mantouvalou I, Schaumann I, Vogt C, Kanngiesser B (2013) Three-dimensional chemical mapping with a confocal xrf setup. Anal Chem 85:3682–3689CrossRefGoogle Scholar
  101. 101.
    Woll AR, Agyeman-Budu D, Bilderback DH, Dale D, Kazimirov AY, Pfeifer M, Plautz T, Szebenyi T, Untracht G (2012) 3D X-ray fluorescence microscopy with 1.7 mu m resolution using lithographically fabricated micro-channel arrays. In: Goto S, Morawe C, Khounsary AM (eds.) Proceedings of SPIE, Advances in X-Ray/EUV optics and components VII, vol 8502, p 85020K. doi: 10.1117/12.944365
  102. 102.
    Beckhoff B, Fliegauf R, Ulm G, Weser J, Pepponi G, Streli C, Wobrauschek P, Ehmann T, Fabry L, Mantler C, Pahlke S, Kanngiesser B, Malzer W (2003) Ultra-trace analysis of light elements and speciation of minute organic contaminants on silicon wafer surfaces by means of TXRF in combination with NEXAFS. International Society for Optical Engineering, pp 120–128Google Scholar
  103. 103.
    Woll AR, Bilderback DH, Gruner S, Gao N, Huang R, Bisulca C, Mass J (2005) Confocal x-ray fluorescence (XRF) microscopy: a new technique for the nondestructive compositional depth profiling of paintings. In: Vandiver PB, Mass JL, Murray A (eds) Materials issues in art and archaeology VIIGoogle Scholar
  104. 104.
    Woll AR, Mass J, Bisulca C, Huang R, Bilderback DH, Gruner S, Gao N (2006) Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source. Appl Phys A Mater Sci Process 83:235–238Google Scholar
  105. 105.
    Smit Z, Janssens K, Proost K, Langus I (2004) Confocal mu-XRF depth analysis of paint layers. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 219:35–40CrossRefGoogle Scholar
  106. 106.
    Tsuji K, Matsuno T, Takimoto Y, Yamanashi M, Kometani N, Sasaki YC, Hasegawa T, Kato S, Yamada T, Shoji T, Kawahara N (2015) New developments of X-ray fluorescence imaging techniques in laboratory. Spectrochim Acta Part B At Spectrosc 113:43–53CrossRefGoogle Scholar
  107. 107.
    Polese C, Cappuccio G, Dabagov SB, Hampai D, Liedl A, Pace E (2015) 2D and 3D micro-XRF based on polycapillary optics at XLab Frascati. In: Goto S, Morawe C, Khounsary AM (eds) Proceedings of SPIE, Advances in X-Ray/EUV optics and components X, vol 9588, p 95880E. doi: 10.1117/12.2189632
  108. 108.
    Smolek S, Nakazawa T, Tabe A, Nakano K, Tsuji K, Streli C, Wobrauschek P (2014) Comparison of two confocal micro-XRF spectrometers with different design aspects. X-Ray Spectrom 43:93–101CrossRefGoogle Scholar
  109. 109.
    Nakazawa T, Tsuji K (2013) Development of a high-resolution confocal micro-XRF instrument equipped with a vacuum chamber. X-Ray Spectrom 42:374–379CrossRefGoogle Scholar
  110. 110.
    Mantouvalou I, Lange K, Wolff T, Grotzsch D, Luhl L, Haschke M, Hahn O, Kanngiesser B (2010) A compact 3D micro X-ray fluorescence spectrometer with X-ray tube excitation for archaeometric applications. J Anal At Spectrom 25:554–561CrossRefGoogle Scholar
  111. 111.
    Tsuji K, Tabe A, Wobrauscheck P, Streli C (2015) Secondary excitation process for quantitative confocal 3D-XRF analysis. Powder Diffr 30:109–112CrossRefGoogle Scholar
  112. 112.
    Wrobel P, Wegrzynek D, Czyzycki M, Lankosz M (2014) Depth profiling of element concentrations in stratified materials by confocal microbeam X-ray fluorescence spectrometry with polychromatic excitation. Anal Chem 86:11275–11280CrossRefGoogle Scholar
  113. 113.
    Mantouvalou I, Wolff T, Seim C, Stoytschew V, Malzer W, Kanngiesser B (2014) Reconstruction of confocal micro-X-ray fluorescence spectroscopy depth scans obtained with a laboratory setup. Anal Chem 86:9774–9780CrossRefGoogle Scholar
  114. 114.
    Czyzycki M, Wrobel P, Lankosz M (2014) Confocal X-ray fluorescence micro-spectroscopy experiment in tilted geometry. Spectrochim Acta Part B At Spectrosc 97:99–104CrossRefGoogle Scholar
  115. 115.
    Huber C, Smolek S, Streli C (2014) Simulation of layer measurement with confocal micro-XRF. X-Ray Spectrom 43:175–179CrossRefGoogle Scholar
  116. 116.
    Wrobel P, Czyzycki M (2013) Direct deconvolution approach for depth profiling of element concentrations in multi-layered materials by confocal micro-beam X-ray fluorescence spectrometry. Talanta 113:62–67CrossRefGoogle Scholar
  117. 117.
    Mantouvalou I, Malzer W, Kanngiesser B (2012) Quantification for 3D micro X-ray fluorescence. Spectrochim Acta Part B At Spectrosc 77:9–18CrossRefGoogle Scholar
  118. 118.
    Schoonjans T, Silversmit G, Vekemans B, Schmitz S, Burghammer M, Riekel C, Brenker FE, Vincze L (2012) Fundamental parameter based quantification algorithm for confocal nano-X-ray fluorescence analysis. Spectrochim Acta Part B At Spectrosc 67:32–42CrossRefGoogle Scholar
  119. 119.
    Laclavetine K, Ager FJ, Arquillo J, Respaldiza MA, Scrivano S (2016) Characterization of the new mobile confocal micro X-ray fluorescence (CXRF) system for in situ non-destructive cultural heritage analysis at the CNA: mu XRF-CONCHA. Microchem J 125:62–68CrossRefGoogle Scholar
  120. 120.
    Reiche I, Muller K, Mysak E, Eveno M, Mottin B (2015) Toward a three-dimensional vision of the different compositions and the stratigraphy of the painting L’Homme bless, by G. Courbet: coupling SEM-EDX and confocal micro-XRF. Appl Phys A Mater Sci Process 121:903–913CrossRefGoogle Scholar
  121. 121.
    Sun TX, Liu ZG, Wang GF, Ma YZ, Peng S, Sun WY, Li FZ, Sun XP, Ding XL (2014) Application of confocal X-ray fluorescence micro-spectroscopy to the investigation of paint layers. Appl Radiat Isot 94:109–112CrossRefGoogle Scholar
  122. 122.
    Woll AR, Mass J, Bisulca C, Cushi-Nan M, Griggs C, Wanzy T, Ocon N (2008) The Unique History of The Armorer’s Shop an application of confocal x-ray fluorescence microscopy. Stud Conserv 53:93–109CrossRefGoogle Scholar
  123. 123.
    Kanngiesser B, Malzer W, Mantouvalou I, Sokaras D, Karydas AG (2012) A deep view in cultural heritage-confocal micro X-ray spectroscopy for depth resolved elemental analysis. Appl Phys A Mater Sci Process 106:325–338CrossRefGoogle Scholar
  124. 124.
    Reiche I, Mueller K, Eveno M, Itie E, Menu M (2012) Depth profiling reveals multiple paint layers of Louvre Renaissance paintingsusing non-invasive compact confocal micro-X-ray fluorescence. J Anal At Spectrom 27:1715–1724CrossRefGoogle Scholar
  125. 125.
    Yi LT, Liu ZG, Wang K, Lin X, Chen M, Peng SQ, Yang K, Wang JB (2016) Combining depth analysis with surface morphology analysis to analyse the prehistoric painted pottery from Majiayao Culture by confocal 3D-XRF. Appl Phys A Mater Sci Process 122Google Scholar
  126. 126.
    Choudhury S, Hormes J, Agyeman-Budu DN, Woll AR, George GN, Coulthard I, Pickering IJ (2015) Application of a spoked channel array to confocal X-ray fluorescence imaging and X-ray absorption spectroscopy of medieval stained glass. J Anal At Spectrom 30:759–766CrossRefGoogle Scholar
  127. 127.
    Kanngiesser B, Mantouvalou I, Malzer W, Wolff T, Hahn O (2008) Non-destructive, depth resolved investigation of corrosion layers of historical glass objects by 3D Micro X-ray fluorescence analysis. J Anal At Spectrom 23:814–819CrossRefGoogle Scholar
  128. 128.
    Yagi R, Tsuji K (2015) Confocal micro-XRF analysis of light elements with Rh X-ray tube and its application for painted steel sheet. X-Ray Spectrom 44:186–189CrossRefGoogle Scholar
  129. 129.
    Li FZ, Liu ZG, Sun TX, Yi LT, Zhao WG, He JL, Peng S, Wang LL, Zhao GC, Ding XL (2015) Application of three dimensional confocal micro X-Ray fluorescence technology based on polycapillary X-Ray lens in analysis of rock and mineral samples. Spectrosc Spectr Anal 35:2487–2491Google Scholar
  130. 130.
    Janssens K, Vittiglio G, Deraedt I, Aerts A, Vekemans B, Vincze L, Wei F, Deryck I, Schalm O, Adams F, Rindby A, Knochel A, Simionovici A, Snigirev A (2000) Use of microscopic XRF for non-destructive analysis in art and archaeometry. X-Ray Spectrom 29:73–91CrossRefGoogle Scholar
  131. 131.
    Terzano R, Spagnuolo M, Vekemans B, De Nolf W, Janssens K, Falkenberg G, Flore S, Ruggiero P (2007) Assessing the origin and fate of Cr, Ni, Cu, Zn, Ph, and V in industrial polluted soil by combined microspectroscopic techniques and bulk extraction methods. Environ Sci Technol 41:6762–6769CrossRefGoogle Scholar
  132. 132.
    Janssens K, De Nolf W, Van Der Snickt G, Vincze L, Vekemans B, Terzano R, Brenker F (2010) Recent trends in quantitative aspects of microscopic X-ray fluorescence analysis. Trac Trends Anal Chem 29:464–478CrossRefGoogle Scholar
  133. 133.
    Fittschen UEA, Falkenberg G (2011) Trends in environmental science using microscopic X-ray fluorescence. Spectrochim Acta Part B At Spectrosc 66:567–580CrossRefGoogle Scholar
  134. 134.
    Salome M, Bleuet P, Bohic S, Cauzid J, Chalmin E, Cloetens P, Cotte M, De Andrade V, Martinez-Criado G, Petitgirard S, Rak M, Tresserras JAS, Szlachetko J, Tucoulou R, Susini J (2009) Fluorescence X-ray micro-spectroscopy activities at ESRF. In: David C, Nolting F, Quitmann C, Stampanoni M, Pfeiffer F (eds) 9th International Conference on X-Ray MicroscopyZurich, Switserland, pp 012014Google Scholar
  135. 135.
    Hahn O, Oltrogge D, Bevers H (2004) Coloured prints of the 16th century: non-destructive analyses on coloured engravings from Albrecht Durer and contemporary artists. Archaeometry 46:273–282CrossRefGoogle Scholar
  136. 136.
    Paternoster G, Rinzivillo R, Nunziata F, Castellucci EM, Lofrumento C, Zoppi A, Felici AC, Fronterotta G, Nicolais C, Piacentini M, Sciuti S, Vendittelli M (2005) Study on the technique of the Roman age mural paintings by micro-XRF with Polycapillary Conic Collimator and micro-Raman analyses. J Cult Herit 6:21–28CrossRefGoogle Scholar
  137. 137.
    Bertrand L, Cotte M, Stampanoni M, Thoury M, Marone F, Schoeder S (2012) Development and trends in synchrotron studies of ancient and historical materials. Phys Rep Rev Sect Phys Lett 519:51–96Google Scholar
  138. 138.
    Gervais C, Thoury M, Reguer S, Gueriau P, Mass J (2015) Radiation damages during synchrotron X-ray micro-analyses of Prussian blue and zinc white historic paintings: detection, mitigation and integration. Appl Phys A Mater Sci Process 121:949–955CrossRefGoogle Scholar
  139. 139.
    Bertrand L, Schoeeder S, Anglos D, Breese MBH, Janssens K, Moini M, Simon A (2015) Mitigation strategies for radiation damage in the analysis of ancient materials. Trac Trends Anal Chem 66:128–145CrossRefGoogle Scholar
  140. 140.
    Nuyts G, Cagno S, Bugani S, Janssens K (2015) Micro-XANES study on Mn browning: use of quantitative valence state maps. J Anal At Spectrom 30:642–650CrossRefGoogle Scholar
  141. 141.
    Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRefGoogle Scholar
  142. 142.
    Dik J, Janssens K, Van der Snickt G, van der Loeff L, Rickers K, Cotte M (2008) Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal Chem 80:6436–6442CrossRefGoogle Scholar
  143. 143.
    Alfeld M, Janssens K (2015) Strategies for processing mega-pixel X-ray fluorescence hyperspectral data: a case study on a version of Caravaggio’s painting Supper at Emmaus. J Anal At Spectrom 30:777–789CrossRefGoogle Scholar
  144. 144.
    Dik J, Wallert A, Van der Snickt G, Janssens K (2008) Silverpoint underdrawing? A note on its visualization with synchrotron radiation based x-ray fluorescence analysis. Zeitschrift für Kunsttechnologie und Konservierung 22:381–384Google Scholar
  145. 145.
    Struick van der Loeff L, Alfeld M, Meedendorp T, Dik J, Hendriks E, van der Snickt G, Janssens K, Chavennes M (2012) Rehabilitation of a flower still life in the Kröller-Müller Museum and a lost Antwerp painting by Van Gogh. In: van Tilborgh L (ed) Van Gogh: new findings. Van Gogh Museum, AmsterdamGoogle Scholar
  146. 146.
    Alfeld M, Janssens K, Appel K, Thijsse B, Blaas J, Dik J (2011) A portrait by Philipp Otto Runge—visualizing modifications to the painting using synchrotron-based X-ray fluorescence elemental scanning. Zeitschrift für Kunsttechnologie und Konservierung 25:157–163Google Scholar
  147. 147.
    Howard DL, de Jonge MD, Lau D, Hay D, Varcoe-Cocks M, Ryan CG, Kirkham R, Moorhead G, Paterson D, Thurrowgood D (2012) High-Definition X-ray fluorescence elemental mapping of paintings. Anal Chem 84:3278–3286CrossRefGoogle Scholar
  148. 148.
    Alfeld M, Siddons DP, Janssens K, Dik J, Woll A, Kirkham R, van de Wetering E (2013) Visualizing the 17th century underpainting in Portrait of an Old Man by Rembrandt van Rijn using synchrotron-based scanning macro-XRF. Appl Phys A Mater Sci Process 111:157–164CrossRefGoogle Scholar
  149. 149.
    Alfeld M, Pedroso JV, Hommes MVE, Van der Snickt G, Tauber G, Blaas J, Haschke M, Erler K, Dik J, Janssens K (2013) A mobile instrument for in situ scanning macro-XRF investigation of historical paintings. J Anal At Spectrom 28:760–767CrossRefGoogle Scholar
  150. 150.
    Alfeld M, De Nolf W, Cagno S, Appel K, Siddons DP, Kuczewski A, Janssens K, Dik J, Trentelman K, Walton M, Sartorius A (2013) Revealing hidden paint layers in oil paintings by means of scanning macro-XRF: a mock-up study based on Rembrandt’s “An old man in military costume”. J Anal At Spectrom 28:40–51CrossRefGoogle Scholar
  151. 151.
    Trentelman K, Janssens K, van der Snickt G, Szafran Y, Woollett AT, Dik J (2015) Rembrandt’s An Old Man in Military Costume: the underlying image re-examined. Appl Phys A Mater Sci Process 121:801–811CrossRefGoogle Scholar
  152. 152.
    Janssens K, Van der Snickt G, Alfeld M, Noble P, van Loon A, Delaney J, Conover D, Zeibel J, Dik J (2016) Rembrandt’s ‘Saul and David’ (c. 1652): use of multiple types of smalt evidenced by means of non-destructive imaging. Microchem J 126:515–523CrossRefGoogle Scholar
  153. 153.
    Noble P, van Loon A, Alfeld M, Janssens K, Dik J (2012) Rembrandt and/or Studio, Saul and David, c. 1655: visualising the curtain using cross-section analyses and X-ray fluorescence imaging. Technè 36:35–45Google Scholar
  154. 154.
    Verslype I (2012) The restoration of Woman in Blue Reading a Letter by Johannes Vermeer. Rijksmuseum Bull 60:2–19Google Scholar
  155. 155.
    Bull D, Krekeler A, Alfeld M, Dik J, Janssens K (2011) An intrusive portrait by Goya. Burlingt Mag 153:668–673Google Scholar
  156. 156.
    Monico L, Janssens K, Hendriks E, Vanmeert F, Van der Snickt G, Cotte M, Falkenberg G, Brunetti BG, Miliani C (2015) Evidence for degradation of the chrome yellows in van gogh’s sunflowers: a study using noninvasive in situ methods and synchrotron-radiation-based X-ray techniques. Angew Chem Int Edit 54:13923–13927CrossRefGoogle Scholar
  157. 157.
    Van der Snickt G, Martins A, Delaney J, Janssens K, Zeibel J, Duffy M, McGlinchey C, Van Driel B, Dik J (2016) Exploring a hidden painting below the surface of Rene Magritte’s Le Portrait. Appl Spectrosc 70:57–67CrossRefGoogle Scholar
  158. 158.
    Martins A, Albertson C, McGlinchey C, Dik J (2016) Piet Mondrian’s Broadway Boogie Woogie: non invasive analysis using macro X-ray fluorescence mapping (MA-XRF) and multivariate curve resolution-alternating least square (MCR-ALS). Herit Sci 4:22. doi: 10.1186/s40494-016-0091-4 CrossRefGoogle Scholar
  159. 159.
    Martins A, Coddington J, Van der Snickt G, Van Driel B, McGlinchey C, Dahlberg D, Janssens K, Dik J (2016) Jackson Pollock’s Number 1A, 1948: a non-invasive study using macro-x-ray fluorescence mapping (MA-XRF) and multivariate curve resolution—alternating least squares (MCR-ALS) analysis. Herit Sci 4:33. doi: 10.1186/s40494-016-0105-2
  160. 160.
    Ravaud E, Pichon L, Laval E, Gonzalez V, Eveno M, Calligaro T (2016) Development of a versatile XRF scanner for the elemental imaging of paintworks. Appl Phys A Mater Sci Process 122Google Scholar
  161. 161.
    Anaf W, Schalm O, Janssens K, De Wael K (2015) Understanding the (in)stability of semiconductor pigments by a thermodynamic approach. Dyes Pigm 113:409–415CrossRefGoogle Scholar
  162. 162.
    Da Pieve F, Stankowski M, Hogan C (2014) Electronic structure calculations of mercury mobilization from mineral phases and photocatalytic removal from water and the atmosphere. Sci Total Environ 493:596–605CrossRefGoogle Scholar
  163. 163.
    Vanmeert F, Van der Snickt G, Janssens K (2015) Plumbonacrite identified by X-ray powder diffraction tomography as a missing link during degradation of red lead in a Van Gogh painting. Angew Chem Int Edit 54:3607–3610CrossRefGoogle Scholar
  164. 164.
    Anaf W, Trashin S, Schalm O, van Dorp D, Janssens K, De Wael K (2014) Electrochemical photodegradation study of semiconductor pigments: influence of environmental parameters. Anal Chem 86:9742–9748CrossRefGoogle Scholar
  165. 165.
    Hogan C, Da Pieve F (2015) Colour degradation of artworks: an ab initio approach to X-ray, electronic and optical spectroscopy analyses of vermilion photodarkening. J Anal At Spectrom 30:588–598CrossRefGoogle Scholar
  166. 166.
    Emslie SD, Brasso R, Patterson WP, Valera AC, McKenzie A, Silva AM, Gleason JD, Blum JD (2015) Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar. Sci Rep 5Google Scholar
  167. 167.
    Radepont M, de Nolf W, Janssens K, Van der Snickt G, Coquinot Y, Klaassen L, Cotte M (2011) The use of microscopic X-ray diffraction for the study of HgS and its degradation products corderoite (α-Hg3S2Cl2), kenhsuite (γ-Hg3S2Cl2) and calomel (Hg2Cl2) in historical paintings. J Anal At Spectrom 26:959–968CrossRefGoogle Scholar
  168. 168.
    Cotte M, Susini J, Metrich N, Moscato A, Gratziu C, Bertagnini A, Pagano M (2006) Blackening of Pompeian cinnabar paintings: X-ray microspectroscopy analysis. Anal Chem 78:7484–7492CrossRefGoogle Scholar
  169. 169.
    Cotte M, Susini J, Sole VA, Taniguchi Y, Chillida J, Checroun E, Walter P (2008) Applications of synchrotron-based micro-imaging techniques to the chemical analysis of ancient paintings. J Anal At Spectrom 23:820–828CrossRefGoogle Scholar
  170. 170.
    Radepont M, Coquinot Y, Janssens K, Ezrati J-J, de Nolf W, Cotte M (2015) Thermodynamic and experimental study of the degradation of the red pigment mercury sulfide. J Anal At Spectrom 30:599–612CrossRefGoogle Scholar
  171. 171.
    Keune K, Boon JJ (2005) Analytical imaging studies clarifying the process of the darkening of vermilion in paintings. Anal Chem 77:4742–4750CrossRefGoogle Scholar
  172. 172.
    Da Pieve F, Hogan C, Lamoen D, Verbeeck J, Vanmeert F, Radepont M, Cotte M, Janssens K, Gonze X, Van Tendeloo G (2013) Casting light on the darkening of colors in historical paintings. Phys Rev Lett 111Google Scholar
  173. 173.
    Anaf W, Janssens K, De Wael K (2013) Formation of Metallic Mercury During Photodegradation/Photodarkening of alpha-HgS: electrochemical Evidence. Angew Chem Int Ed 52:12568–12571CrossRefGoogle Scholar
  174. 174.
    Neiman MK, Balonis M, Kakoulli I (2015) Cinnabar alteration in archaeological wall paintings: an experimental and theoretical approach. Appl Phys A Mater Sci Process 121:915–938CrossRefGoogle Scholar
  175. 175.
    Uda M (2004) In situ characterization of ancient plaster and pigments on tomb walls in Egypt using energy dispersive X-ray diffraction and fluorescence. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 226:75–82CrossRefGoogle Scholar
  176. 176.
    Daniels V, Leach B (2004) The occurrence and alteration of realgar on ancient Egyptian papyri. Stud Conserv 49:73–84CrossRefGoogle Scholar
  177. 177.
    Muralha VSF, Burgio L, Clark RJH (2012) Raman spectroscopy analysis of pigments on 16-17th c. Persian manuscripts. Spectrochim Acta Part A Mol Biomol Spectrosc 92:21–28CrossRefGoogle Scholar
  178. 178.
    Deneckere A, De Reu M, Martens MPJ, De Coene K, Vekemans B, Vincze L, De Maeyer P, Vandenabeele P, Moens L (2011) The use of a multi-method approach to identify the pigments in the 12th century manuscript Liber Floridus. Spectrochim Acta Part A Mol Biomol Spectrosc 80:125–132CrossRefGoogle Scholar
  179. 179.
    Brown KL, Clark RJH (2004) The Lindisfarne Gospels and two other 8th century Anglo-Saxon/Insular manuscripts: pigment identification by Raman microscopy. J Raman Spectrosc 35:4–12CrossRefGoogle Scholar
  180. 180.
    Keune K, Mass J, Meirer F, Pottasch C, van Loon A, Hull A, Church J, Pouyet E, Cotte M, Mehta A (2015) Tracking the transformation and transport of arsenic sulfide pigments in paints: synchrotron-based X-ray micro-analyses. J Anal At Spectrom 30:813–827CrossRefGoogle Scholar
  181. 181.
    Vermeulen M, Sanyova J, Janssens K (2015) Identification of artificial orpiment in the interior decorations of the Japanese tower in Laeken, Brussels, Belgium. Herit Sci 3:9CrossRefGoogle Scholar
  182. 182.
    Trentelman K, Stodulski L, Pavlosky M (1996) Characterization of pararealgar and other light-induced transformation products from realgar by Raman microspectroscopy. Anal Chem 68:1755–1761CrossRefGoogle Scholar
  183. 183.
    MunizMiranda M, Sbrana G, Bonazzi P, Menchetti S, Pratesi G (1996) Spectroscopic investigation and normal mode analysis of As4S4 polymorphs. Spectrochim Acta Part A Mol Biomol Spectrosc 52:1391–1401CrossRefGoogle Scholar
  184. 184.
    Bindi L, Bonazzi P (2007) Light-induced alteration of arsenic sulfides: a new product with an orthorhombic crystal structure. Am Miner 92:617–620CrossRefGoogle Scholar
  185. 185.
    Kyono A, Kimata M, Hatta T (2005) Light-induced degradation dynamics in realgar: in situ structural investigation using single-crystal X-ray diffraction study and X-ray photoelectron spectroscopy. Am Miner 90:1563–1570CrossRefGoogle Scholar
  186. 186.
    Macchia A, Cesaro SN, Campanella L, Maras A, Rocchia M, Roscioli G (2013) Which light for cultural heritage: comparison of light sources with respect to realgar photodegradation. J Appl Spectrosc 80:637–643CrossRefGoogle Scholar
  187. 187.
    Vermeulen M, Nuyts G, Sanyova J, Vila A, Buti D, Suuronen JP, Janssens K (2016) Visualization of As(III) and As(V) distributions in degraded paint micro-samples from Baroque- and Rococo-era paintings. J Anal At Spectrom 31:1913–1921CrossRefGoogle Scholar
  188. 188.
    Boon JJ, Keune K, van der Weerd J, Geldof M, de Boer J (2001) Imaging microspectroscopic, secondary ion mass spectrometric and electron microscopic studies on discoloured and partially discoloured smalt in cross-sections of 16th century paintings. Chimia 55:952–960Google Scholar
  189. 189.
    Panighello S, Kavcic A, Vogel-Mikus K, Tennent NH, Wallert A, Hocevar SB, van Elteren JT (2016) Investigation of smalt in cross-sections of 17th century paintings using elemental mapping by laser ablation ICP-MS. Microchem J 125:105–115CrossRefGoogle Scholar
  190. 190.
    Spring M, Higgitt C, Saunders D (2005) Investigation of Pigment-Medium Interaction Processes in Oil Paint containing Degraded Smalt. Natl Gallery Tech Bull 26:56–70Google Scholar
  191. 191.
    Robinet L, Spring M, Pages-Camagna S, Vantelon D, Trcera N (2011) Investigation of the discoloration of smalt pigment in historic paintings by micro-X-ray absorption spectroscopy at the Co K-Edge. Anal Chem 83:5145–5152CrossRefGoogle Scholar
  192. 192.
    Robinet L, Spring M, Pages-Camagna S (2013) Vibrational spectroscopy correlated with elemental analysis for the investigation of smalt pigment and its alteration in paintings. Anal Methods 5:4628–4638CrossRefGoogle Scholar
  193. 193.
    Cianchetta I, Colantoni I, Talarico F, d’Acapito F, Trapananti A, Maurizio C, Fantacci S, Davoli I (2012) Discoloration of the smalt pigment: experimental studies and ab initio calculations. J Anal At Spectrom 27:1941–1948CrossRefGoogle Scholar
  194. 194.
    Miliani C, Daveri A, Brunetti BG, Sgamellotti A (2008) CO(2) entrapment in natural ultramarine blue. Chem Phys Lett 466:141–148CrossRefGoogle Scholar
  195. 195.
    Gambardella AA, Patterson CMS, Webb SM, Walton MS (2016) Sulfur K-edge XANES of lazurite: toward determining the provenance of lapis lazuli. Microchem J 125:299–307CrossRefGoogle Scholar
  196. 196.
    Salvado N, Buti S, Aranda MAG, Pradell T (2014) New insights on blue pigments used in 15th century paintings by synchrotron radiation-based micro-FTIR and XRD. Anal Methods 6:3610–3621CrossRefGoogle Scholar
  197. 197.
    Pintus V, Wei SY, Schreiner M (2016) Accelerated UV ageing studies of acrylic, alkyd, and polyvinyl acetate paints: influence of inorganic pigments. Microchem J 124:949–961CrossRefGoogle Scholar
  198. 198.
    Del Federico E, Shofberger W, Schelvis J, Kapetanaki S, Tyne L, Jerschow A (2006) Insight into framework destruction in ultramarine pigments. Inorg Chem 45:1270–1276CrossRefGoogle Scholar
  199. 199.
    Cato E, Borca C, Huthwelker T, Ferreira ESB (2016) Aluminium X-ray absorption near-edge spectroscopy analysis of discoloured ultramarine blue in 20th century oil paintings. Microchem J 126:18–24CrossRefGoogle Scholar
  200. 200.
    Monico L, Van der Snickt G, Janssens K, De Nolf W, Miliani C, Verbeeck J, Tian H, Tan H, Dik J, Radepont M, Cotte M (2011) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods. 1. Artificially aged model samples. Anal Chem 83:1214–1223CrossRefGoogle Scholar
  201. 201.
    Monico L, Van der Snickt G, Janssens K, De Nolf W, Miliani C, Dik J, Radepont M, Hendriks E, Geldof M, Cotte M (2011) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods. 2. Original paint layer samples. Anal Chem 83:1224–1231CrossRefGoogle Scholar
  202. 202.
    Monico L, Janssens K, Miliani C, Brunetti BG, Vagnini M, Vanmeert F, Falkenberg G, Abakumov A, Lu Y, Tian H, Verbeeck J, Radepont M, Cotte M, Hendriks E, Geldof M, van der Loeff L, Salvant J, Menu M (2013) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. 3. Synthesis, characterization, and detection of different crystal forms of the chrome yellow pigment. Anal Chem 85:851–859CrossRefGoogle Scholar
  203. 203.
    Monico L, Janssens K, Miliani C, Van der Snickt G, Brunetti BG, Guidi MC, Radepont M, Cotte M (2013) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. 4. Artificial aging of model samples of co-precipitates of lead chromate and lead sulfate. Anal Chem 85:860–867CrossRefGoogle Scholar
  204. 204.
    Monico L, Janssens K, Vanmeert F, Cotte M, Brunetti BG, Van der Snickt G, Leeuwestein M, Plisson JS, Menu M, Miliani C (2014) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. Part 5. Effects of nonoriginal surface coatings into the nature and distribution of chromium and sulfur species in chrome yellow paints. Anal Chem 86:10804–10811CrossRefGoogle Scholar
  205. 205.
    Monico L, Janssens K, Cotte M, Romani A, Sorace L, Grazia C, Brunetti BG, Miliani C (2015) Synchrotron-based X-ray spectromicroscopy and electron paramagnetic resonance spectroscopy to investigate the redox properties of lead chromate pigments under the effect of visible light. J Anal At Spectrom 30:1500–1510CrossRefGoogle Scholar
  206. 206.
    Monico L, Janssens K, Cotte M, Sorace L, Vanmeert F, Brunetti BG, Miliani C (2016) Chromium speciation methods and infrared spectroscopy for studying the chemical reactivity of lead chromate-based pigments in oil medium. Microchem J 124:272–282CrossRefGoogle Scholar
  207. 207.
    Tan H, Tian H, Verbeeck J, Monico L, Janssens K, Van Tendeloo G (2013) Nanoscale investigation of the degradation mechanism of a historical chrome yellow paint by quantitative EELS mapping of Cr species. Angew Chem Int Ed 52:11360–11363CrossRefGoogle Scholar
  208. 208.
    Monico L, Janssens K, Hendriks E, Brunetti BG, Miliani C (2014) Raman study of different crystalline forms of PbCrO4 and PbCr1-xSxO4 solid solutions for the noninvasive identification of chrome yellows in paintings: a focus on works by Vincent van Gogh. J Raman Spectrosc 45:1034–1045CrossRefGoogle Scholar
  209. 209.
    Monico L, Janssens K, Alfeld M, Cotte M, Vanmeert F, Ryan CG, Falkenberg G, Howard DL, Brunetti BG, Miliani C (2015) Full spectral XANES imaging using the Maia detector array as a new tool for the study of the alteration process of chrome yellow pigments in paintings by Vincent van Gogh. J Anal At Spectrom 30:613–626CrossRefGoogle Scholar
  210. 210.
    Otero V, Pinto JV, Carlyle L, Vilarigues M, Cotte M, Melo MJ (2016) Nineteenth century chrome yellow and chrome deep from Windsor & Newton. Stud Conserv 61:1–27CrossRefGoogle Scholar
  211. 211.
    Amat A, Miliani C, Fantacci S (2016) Structural and electronic properties of the PbCrO4 chrome yellow pigment and of its light sensitive sulfate-substituted compounds. RSC Adv 6:36336–36344Google Scholar
  212. 212.
    Munoz-Garcia AB, Massaro A, Pavone M (2016) Ab Initio Study of PbCr(1-x)SxO4 Solid Solution: an Inside Look at Van Gogh Yellow Degradation. Chem Sci 7:4197–4203CrossRefGoogle Scholar
  213. 213.
    Casadio F, Xie S, Rukes SC, Myers B, Gray KA, Warta R, Fiedler I (2011) Electron energy loss spectroscopy elucidates the elusive darkening of zinc potassium chromate in Georges Seurat’s A Sunday on La Grande Jatte-1884. Anal Bioanal Chem 399:2909–2920CrossRefGoogle Scholar
  214. 214.
    Zanella L, Casadio F, Gray KA, Warta R, Ma Q, Gaillard J-F (2011) The darkening of zinc yellow: XANES speciation of chromium in artist’s paints after light and chemical exposures. J Anal At Spectrom 26:1090–1097CrossRefGoogle Scholar
  215. 215.
    Rosi F, Grazia C, Gabrieli F, Romani A, Paolantoni M, Vivani R, Brunetti BG, Colomban P, Miliani C (2016) UV–Vis-NIR and micro Raman spectroscopies for the non destructive identification of Cd1-xZnxS solid solutions in cadmium yellow pigments. Microchem J 124:856–867CrossRefGoogle Scholar
  216. 216.
    Grazia C, Rosi F, Gabrieli F, Romani A, Paolantoni M, Vivani R, Brunetti BG, Colomban P, Miliani C (2016) UV–Vis-NIR and microRaman spectroscopies for investigating the composition of ternary CdS1-xSex solid solutions employed as artists’ pigments. Microchem J 125:279–289CrossRefGoogle Scholar
  217. 217.
    Van der Snickt G, Dik J, Cotte M, Janssens K, Jaroszewicz J, De Nolf W, Groenewegen J, Van der Loeff L (2009) Characterization of a degraded cadmium yellow (CdS) pigment in an oil painting by means of synchrotron radiation based X-ray techniques. Anal Chem 81:2600–2610CrossRefGoogle Scholar
  218. 218.
    Van der Snickt G, Janssens K, Dik J, De Nolf W, Vanmeert F, Jaroszewicz J, Cotte M, Falkenberg G, Van der Loeff L (2012) Combined use of synchrotron radiation based micro-X-ray fluorescence, Micro-X-ray Diffraction, Micro-X-ray absorption near-edge, and micro-fourier transform infrared spectroscopies for revealing an alternative degradation pathway of the pigment cadmium yellow in a painting by Van Gogh. Anal Chem 84:10221–10228CrossRefGoogle Scholar
  219. 219.
    Mass J, Sedlmair J, Patterson CS, Carson D, Buckley B, Hirschmugl C (2013) SR-FTIR imaging of the altered cadmium sulfide yellow paints in Henri Matisse’s Le Bonheur de vivre (1905–6)—examination of visually distinct degradation regions. Analyst 138:6032–6043CrossRefGoogle Scholar
  220. 220.
    Mass JL, Opila R, Buckley B, Cotte M, Church J, Mehta A (2013) The photodegradation of cadmium yellow paints in Henri Matisse’s Le Bonheur de vivre (1905–1906). Appl Phys A Mater Sci Process 111:59–68CrossRefGoogle Scholar
  221. 221.
    Uffelman ES, Hobbs PA, Barisas DAG, Mass JL (2013) pXRF analyses of Louise Herreshoff’s paintings in relation to CdS and other pigment degradation issues. Appl Phys A Mater Sci Process 111:9–14CrossRefGoogle Scholar
  222. 222.
    Pouyet E, Cotte M, Fayard B, Salome M, Meirer F, Mehta A, Uffelman ES, Hull A, Vanmeert F, Kieffer J, Burghammer M, Janssens K, Sette F, Mass J (2015) 2D X-ray and FTIR micro-analysis of the degradation of cadmium yellow pigment in paintings of Henri Matisse. Appl Phys A Mater Sci Process 121:967–980CrossRefGoogle Scholar
  223. 223.
    Voras ZE, deGhetaldi K, Wiggins MB, Buckley B, Baade B, Mass JL, Beebe TP Jr (2015) ToF-SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse. Appl Phys A Mater Sci Process 121:1015–1030CrossRefGoogle Scholar
  224. 224.
    Ayalew E, Janssens K, De Wael K (2016) Unraveling the reactivity of minium toward bicarbonate and the role of lead oxides therein. Anal Chem 88:1564–1569CrossRefGoogle Scholar
  225. 225.
    Vila A, Monrad K, Wadum J, Filtenborg T (2014) As time passed by came sunset. Christen Købke’s ‘View of Lake Sortedam’, its genesis and colour changes. In: Sgamellotti A, Brunetti BG, Miliani C (eds) Science and art. The painted surface. Royal Society of Chemistry, London, pp 354–372Google Scholar
  226. 226.
    Samain L, Silversmit G, Sanyova J, Vekemans B, Salomon H, Gilbert B, Grandjean F, Long GJ, Hermann RP, Vincze L, Strivay D (2011) Fading of modern Prussian blue pigments in linseed oil medium. J Anal At Spectrom 26:930–941CrossRefGoogle Scholar
  227. 227.
    Samain L, Gilbert B, Grandjean F, Long GJ, Strivay D (2013) Redox reactions in Prussian blue containing paint layers as a result of light exposure. J Anal At Spectrom 28:524–535CrossRefGoogle Scholar
  228. 228.
    Samain L, Grandjean F, Long GJ, Martinetto P, Bordet P, Strivay D (2013) Relationship between the synthesis of prussian blue pigments, their color, physical properties, and their behavior in paint layers. J Phys Chem C 117:9693–9712CrossRefGoogle Scholar
  229. 229.
    Samain L, Grandjean F, Long GJ, Martinetto P, Bordet P, Sanyova J, Strivay D (2013) Synthesis and fading of eighteenth-century Prussian blue pigments: a combined study by spectroscopic and diffractive techniques using laboratory and synchrotron radiation sources. J Synchrotron Radiat 20:460–473CrossRefGoogle Scholar
  230. 230.
    Gervais C, Languille M-A, Reguer S, Gillet M, Pelletier S, Garnier C, Vicenzi EP, Bertrand L (2013) Why does Prussian blue fade? Understanding the role(s) of the substrate. J Anal At Spectrom 28:1600–1609CrossRefGoogle Scholar
  231. 231.
    Cotter MJ, Meyers P, Vanzelst L, Sayre EV (1973) Authentication of paintings by Blakelock, RA through neutron-activation autoradiography. J Radioanal Chem 15:265–285CrossRefGoogle Scholar
  232. 232.
    Alfeld M, Laurenze-Landsberg C, Denker A, Janssens K, Noble P (2015) Neutron activation autoradiography and scanning macro-XRF of Rembrandt van Rijn’s Susanna and the Elders (Gemaldegalerie Berlin): a comparison of two methods for imaging of historical paintings with elemental contrast. Appl Phys A Mater Sci Process 119:795–805CrossRefGoogle Scholar
  233. 233.
    Seim C, Laurenze-Landsberg C, Schroeder-Smeibidl B, Mantouvalou I, de Boer C, Kanngiesser B (2014) Old traces, read anew—’The Reading Hermit’ painting in the light of X-ray fluorescence. J Anal At Spectrom 29:1354–1360CrossRefGoogle Scholar
  234. 234.
    Van der Snickt G, Legrand S, Caen J, Vanmeert F, Alfeld M, Janssens K (2016) Chemical imaging of stained-glass windows by means of macro X-ray fluorescence (MA-XRF) scanning. Microchem J 124:615–622CrossRefGoogle Scholar
  235. 235.
    Ricciardi P, Legrand S, Bertolotti G, Janssens K (2016) Macro X-ray fluorescence (MA-XRF) scanning of illuminated manuscript fragments: potentialities and challenges. Microchem J 124:785–791CrossRefGoogle Scholar
  236. 236.
    Targowski P, Pronobis-Gajdzis M, Surmak A, Iwanicka M, Kaszewska EA, Sylwestrzak M (2015) The application of macro-X-ray fluorescence and optical coherence tomography for examination of parchment manuscripts. Stud Conserv 60:S167–S177CrossRefGoogle Scholar
  237. 237.
    Jackall Y, Delaney JK, Swicklik M (2015) ‘Portrait of a woman with a book’: a ‘newly discovered fantasy figure’ by Fragonard at the National Gallery of Art, Washington. Burlingt Mag 157:248–254Google Scholar
  238. 238.
    Bacci M, Picollo M (1996) Non-destructive spectroscopic detection of cobalt(II) in paintings and glass. Stud Conserv 41:136–144Google Scholar
  239. 239.
    Bacci M, Picollo M, Trumpy G, Tsukada M, Kunzelman D (2007) Non-invasive identification of white pigments on 20th-century oil paintings by using fiber optic reflectance spectroscopy. J Am Inst Conserv 46:27–37CrossRefGoogle Scholar
  240. 240.
    Delaney JK, Zeibel JG, Thoury M, Littleton R, Palmer M, Morales KM, de la Rie ER, Hoenigswald A (2010) Visible and infrared imaging spectroscopy of picasso’s harlequin musician: mapping and identification of artist materials in situ. Appl Spectrosc 64:584–594CrossRefGoogle Scholar
  241. 241.
    Gautier G, Bezur A, Muir K, Casadio F, Fiedler I (2009) Chemical fingerprinting of ready-mixed house paints of relevance to artistic production in the first half of the twentieth century. Part I: Inorganic and organic pigments. Appl Spectrosc 63:597–603CrossRefGoogle Scholar
  242. 242.
    Green AA, Berman M, Switzer P, Craig MD (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens 26:65–74CrossRefGoogle Scholar
  243. 243.
    Nielsen AA (2011) Kernel maximum autocorrelation factor and minimum noise fraction transformations. IEEE Trans Image Process 20:612–624CrossRefGoogle Scholar
  244. 244.
    Thurrowgood D, Paterson D, de Jonge MD, Kirkham R, Thurrowgood Howard D (2016) A hidden portrait by Edgar Degas. Scientific Reports 6:29594. doi: 10.1038/srep29594

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Koen Janssens
    • 1
  • Geert Van der Snickt
    • 1
    • 2
  • Frederik Vanmeert
    • 1
  • Stijn Legrand
    • 1
  • Gert Nuyts
    • 1
  • Matthias Alfeld
    • 1
    • 3
  • Letizia Monico
    • 1
    • 4
  • Willemien Anaf
    • 1
    • 5
    • 7
  • Wout De Nolf
    • 1
    • 6
  • Marc Vermeulen
    • 1
    • 7
  • Jo Verbeeck
    • 8
  • Karolien De Wael
    • 1
  1. 1.AXES Research Group, Department of ChemistryUniversity of AntwerpAntwerpBelgium
  2. 2.Conservation/Restauration DepartmentUniversity of AntwerpAntwerpBelgium
  3. 3.Laboratoire d’Archéologie Moléculaire et StructuralePierre and Marie CurieParisFrance
  4. 4.Department of Chemistry, Biology and Biotechnologies, Centro SMAART and CNR-ISTMUniversity of PerugiaPerugiaItaly
  5. 5.Royal Museum of Fine Arts, BrusselsBrusselsBelgium
  6. 6.Experimental DivisionEuropean Synchrotron Radiation FacilityGrenobleFrance
  7. 7.Royal Institute for Cultural HeritageBrusselsBelgium
  8. 8.EMAT Research Group, Department of PhysicsUniversity of AntwerpAntwerpBelgium

Personalised recommendations