Topics in Current Chemistry

, 374:73 | Cite as

Semiconductor Quantum Dots with Photoresponsive Ligands

  • Lorenzo Sansalone
  • Sicheng Tang
  • Yang Zhang
  • Ek Raj Thapaliya
  • Françisco M. Raymo
  • Jaume Garcia-Amorós
Part of the following topical collections:
  1. Photoactive Semiconductor Nanocrystal Quantum Dots


Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.


Electron transfer Energy transfer Photocages Photochromism Quantum dots 



The National Science Foundation (CHE-1049860) is acknowledged for financial support.


  1. 1.
    Graham-Rowe D (2008) Nat Photonics 3:307–309CrossRefGoogle Scholar
  2. 2.
    Tartakovskii A (2012) Quantum dots: optics, electron transport and future applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. 3.
    Masumoto Y, Takagahara T (2002) Semiconductor quantum dots. Physics, spectroscopy and applications. Springer-Verlag, HeidelbergGoogle Scholar
  4. 4.
    Woggon U (2013) Optical properties of semiconductor quantum dots. Springer-Verlag, HeidelbergGoogle Scholar
  5. 5.
    Karmakar S (2014) Fabrication, modeling and application. Novel three-state quantum dot gate field effect transistor. Springer, New DelhiCrossRefGoogle Scholar
  6. 6.
    Wu J, Wang ZM (2014) Quantum dot solar cells. Springer, New YorkCrossRefGoogle Scholar
  7. 7.
    Wang ZM (2012) Quantum dot devices. Springer, New YorkCrossRefGoogle Scholar
  8. 8.
    Ustinov VM, Zhukov AE, Egorov AY, Maleev NA (2003) Quantum dot lasers. Oxford University Press, OxfordCrossRefGoogle Scholar
  9. 9.
    Rafailov EU, Cataluna MA, Avrutin EA (2011) Ultrafast lasers based on quantum dot structures: physics and devices. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  10. 10.
    Stolze J, Suter D (2004) Quantum computing. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  11. 11.
    Hoath SD (2016) Fundamentals of inkjet printing. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  12. 12.
    Grumezescu AM (2016) Nanobiomaterials in medical imaging. Applications of nanobiomaterials. Elsevier, OxfordGoogle Scholar
  13. 13.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New YorkCrossRefGoogle Scholar
  14. 14.
    Algar Russ W, Kim H, Medintz IL, Hildebrandt N (2014) Coord Chem Rev 263–264:65–85CrossRefGoogle Scholar
  15. 15.
    Wegner DK, Hildebrandt N (2015) Chem Soc Rev 44:4792–4834CrossRefGoogle Scholar
  16. 16.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Nat Methods 5:763–775CrossRefGoogle Scholar
  17. 17.
    Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Curr Opin Biotech 13:40–46CrossRefGoogle Scholar
  18. 18.
    Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker AJ, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Nat Biotech 22:93–97CrossRefGoogle Scholar
  19. 19.
    Hardman R (2006) Environ Health Perspect 114:165–172CrossRefGoogle Scholar
  20. 20.
    Kavarnos GJ (1993) Fundamentals of photoinduced electron transfer. Wiley-VCH, WeinheimGoogle Scholar
  21. 21.
    Willard DM, Van Orden A (2003) Nat Materials 2:575–576CrossRefGoogle Scholar
  22. 22.
    Medintz IL, Mattoussi H (2009) Phys Chem Chem Phys 165:17–45CrossRefGoogle Scholar
  23. 23.
    Algar WR, Tavares AJ, Krull UJ (2010) Anal Chim Acta 673:1–25CrossRefGoogle Scholar
  24. 24.
    Bouas-Laurent H, Durr H (2001) Pure Appl Chem 73:639–665CrossRefGoogle Scholar
  25. 25.
    Crano JC, Guglielmetti RJ (1999) Organic photochromic and thermochromic compounds: main photochromic families. Springer, BerlinGoogle Scholar
  26. 26.
    Crano JC, Guglielmetti RJ (2006) Organic photochromic and thermochromic compounds: physicochemical studies, biological applications, and thermochromism. Springer, BerlinGoogle Scholar
  27. 27.
    Durr H, Bouas-Laurent H (1990) Photochromism: molecules and systems. Elsevier, AmsterdamGoogle Scholar
  28. 28.
    Klajn R (2014) Chem Soc Rev 43:148–184CrossRefGoogle Scholar
  29. 29.
    Medintz IL, Trammell SA, Mattoussi H, Mauro JM (2004) J Am Chem Soc 126:30–31CrossRefGoogle Scholar
  30. 30.
    Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Nat Mater 2:630–638CrossRefGoogle Scholar
  31. 31.
    Medintz IL, Goldman ER, Lassman ME, Mauro JM (2003) Bioconjugate Chem 14:909–918CrossRefGoogle Scholar
  32. 32.
    Tomasulo M, Yildiz I, Raymo FM (2006) Aust J Chem 59:175–178CrossRefGoogle Scholar
  33. 33.
    Zhu L, Zhu M-Q, Hurst JK, Li ADQ (2005) J Am Chem Soc 127:8968–8970CrossRefGoogle Scholar
  34. 34.
    Giordano L, Jovin TM, Irie M, Jares-Erijman EA (2002) J Am Chem Soc 124:7481–7489CrossRefGoogle Scholar
  35. 35.
    Erno Z, Yildiz I, Gorodetsky B, Raymo FM, Branda NR (2010) Photochem Photobiol Sci 9:249–253CrossRefGoogle Scholar
  36. 36.
    Díaz SA, Menéndez GO, Etchehon MH, Giordano L, Jovin TM, Jares-Erijman EA (2011) ACS Nano 5:2795–2805CrossRefGoogle Scholar
  37. 37.
    Diaz SA, Gillanders F, Jares-Erijman EA, Jovin TM (2015) Nat Commun 6 6036:1–11Google Scholar
  38. 38.
    Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Chem Rev 114:12174–12277CrossRefGoogle Scholar
  39. 39.
    Raymo FM (2013) Phys Chem Chem Phys 15:14840–14850CrossRefGoogle Scholar
  40. 40.
    Huang B, Bates M, Zhuang X (2009) Ann Rev Biochem 78:993–1016CrossRefGoogle Scholar
  41. 41.
    Fernández-Suárez M, Ting AY (2008) Nat Rev Mol Cell Biol 9:929–943CrossRefGoogle Scholar
  42. 42.
    Heilemann MJ (2010) Biotech. 149:243–251Google Scholar
  43. 43.
    Banala S, Maurel D, Manley S, Johnsson K (2012) ACS Chem Biol 7:289–293CrossRefGoogle Scholar
  44. 44.
    Zhang Y, Swaminathan S, Tang S, Garcia-Amorós J, Boulina M, Captain B, Baker JD, Raymo FM (2015) J Am Chem Soc 137:4709–4719CrossRefGoogle Scholar
  45. 45.
    Zhao Y, Zheng Q, Dakin K, Xu K, Martínez ML, Li WH (2004) J Am Chem Soc 126:4653–4663Google Scholar
  46. 46.
    Ellis-Davies GCR (2007) Nat Methods 4:619–628CrossRefGoogle Scholar
  47. 47.
    Shao Q, Xing B (2010) Chem Soc Rev 39:2835–2846CrossRefGoogle Scholar
  48. 48.
    Yu CYY, Kwok RTK, Mei J, Hong Y, Chen S, Lam JWY, Tang BZ (2014) Chem Commun 50:8134–8136CrossRefGoogle Scholar
  49. 49.
    Shaban Ragab S, Swaminathan S, Garcia-Amorós J, Captain B, Raymo FM (2015) New J Chem 39:1570–1573CrossRefGoogle Scholar
  50. 50.
    Gang Han TM, Ajo-Franklin C, Cohen BE (2008) J Am Chem Soc 130:15811–15813CrossRefGoogle Scholar
  51. 51.
    Miesch C, Emrick T (2014) J Coll Interf Sci 425:152–158CrossRefGoogle Scholar
  52. 52.
    Impellizzeri S, McCaughan B, Callan JF, Raymo FM (2012) J Am Chem Soc 134:2276–2283CrossRefGoogle Scholar
  53. 53.
    Wink DA, Grisham MB, Mitchell JB, Ford P (1996) Methods Enzymol 268:12–31CrossRefGoogle Scholar
  54. 54.
    Davis KL, Martin E, Turko IV, Murad F (2001) Annu Rev Pharmacol Toxicol 41:203–206CrossRefGoogle Scholar
  55. 55.
    Murad F (1999) Angew Chem Int Ed 38:1856–1868CrossRefGoogle Scholar
  56. 56.
    Furchgott RF (1999) Angew Chem Int Ed 38:1870–1880CrossRefGoogle Scholar
  57. 57.
    Ignarro LJ (1999) Angew Chem Int Ed 38:1882–1892CrossRefGoogle Scholar
  58. 58.
    Seabra AB, Duran N (2010) J Mater Chem 20:1624–1637CrossRefGoogle Scholar
  59. 59.
    Sonveaux P, Jordan BF, Gallez B, Feron O (2009) Eur J Cancer 45:1352–1369CrossRefGoogle Scholar
  60. 60.
    Cheng H, Wang L, Mollica M, Re AT, Wu S, Zuo L (2014) Cancer Lett 353:1–7CrossRefGoogle Scholar
  61. 61.
    Huerta S (2015) Future Sci OA 1(1):FS044-1–9Google Scholar
  62. 62.
    Keefer LK, Nims RW, Davies KM, Wink DA (1996) Methods Enzymol 268:281–293CrossRefGoogle Scholar
  63. 63.
    Wang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk AJ (2002) Chem Rev 102:1091–1134CrossRefGoogle Scholar
  64. 64.
    Schloßbauer A, Sauer AM, Cauda V, Schmidt A, Engelke H, Rothbauer U, Zolghadr K, Leonhardt H, Bräuchle C, Bein T (2012) Adv Healthcare Mater 1:316–320CrossRefGoogle Scholar
  65. 65.
    Ford PC (2013) Nitric Oxide 34:56–64CrossRefGoogle Scholar
  66. 66.
    Jacques SL (2013) Phys Med Biol 58:R37–R61CrossRefGoogle Scholar
  67. 67.
    Neuman D, Ostrowsky AD, Absalonson RO, Strouse GF, Ford PC (2007) J Am Chem Soc 129:4146–4147CrossRefGoogle Scholar
  68. 68.
    Neuman D, Ostrowsky AD, Mikhailovsky AA, Absalonson RO, Strouse GF, Ford PC (2008) J Am Chem Soc 130:168–175CrossRefGoogle Scholar
  69. 69.
    Burks PT, Ostrowski AD, Mikhailovsky AA, Chan EM, Wagenknecht PS, Ford PC (2012) J Am Chem Soc 134:13266–13275CrossRefGoogle Scholar
  70. 70.
    Franco LP, Cicillini AS, Biazzotto JC, Schiavon MA, Mikhailovsky A, Burks P, Garcia J, Ford PC, da Silva RS (2014) J Phys Chem A 118:12184–12191CrossRefGoogle Scholar
  71. 71.
    Tan L, Wan A, Zhu X, Li H (2014) Analyst 139:3398–3406CrossRefGoogle Scholar
  72. 72.
    Tan L, Wan A, Zhu X, Li H (2014) Chem Commun 50:5725–5728CrossRefGoogle Scholar
  73. 73.
    Xu Z, Wu Z, Sun J, Gui RJ (2015) Mat Chem Phys 162:286–290CrossRefGoogle Scholar
  74. 74.
    Jin H, Gui R, Sun J, Wang Y (2016) Anal Chim Acta 922:48–54CrossRefGoogle Scholar
  75. 75.
    Ratanatawanate C, Chyao A, Balkus KJ Jr (2011) J Am Chem Soc 133:3492–3497CrossRefGoogle Scholar
  76. 76.
    Tasker HS, Jones HO (1909) J Chem Soc 95:1910–1918CrossRefGoogle Scholar
  77. 77.
    Williams DLH (1996) Chem Commun 1085–1091Google Scholar
  78. 78.
    Singh SP, Wishnok JS, Keshive M, Deen WM, Tannenbaum SR (1996) Proc Natl Acad Sci 93:14428–14433CrossRefGoogle Scholar
  79. 79.
    Ratanatawanate C, Tao Y, Balkus KJ Jr (2009) J Phys Chem C 113:10755–10760CrossRefGoogle Scholar
  80. 80.
    Tan L, Wan A, Li H (2013) ACS Appl Mat Interf 5:11163–11171CrossRefGoogle Scholar
  81. 81.
    Tan L, Wan A, Li H (2013) Langmuir 29:15032–15042CrossRefGoogle Scholar
  82. 82.
    Callari FL, Sortino S (2008) Chem Commun 1971–1973Google Scholar
  83. 83.
    Caruso EB, Petralia S, Conoci S, Giuffrida S, Sortino S (2007) J Am Chem Soc 129:480–481CrossRefGoogle Scholar
  84. 84.
    Fowley C, McHale AP, McCaughan B, Fraix A, Sortino S, Callan JF (2015) Chem Commun 51:81–84CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lorenzo Sansalone
    • 1
  • Sicheng Tang
    • 1
  • Yang Zhang
    • 1
  • Ek Raj Thapaliya
    • 1
  • Françisco M. Raymo
    • 1
  • Jaume Garcia-Amorós
    • 1
    • 2
  1. 1.Laboratory for Molecular Photonics, Department of ChemistryUniversity of MiamiCoral GablesUSA
  2. 2.Grup de Materials Orgànics, Departament de Química Inorgànica I Orgànica (Secció de Química Orgànica), Institut de Nanociència i Nanotecnologia (IN2UB)Universitat de BarcelonaBarcelonaSpain

Personalised recommendations