Topics in Current Chemistry

, 374:75 | Cite as

The Role of Ultrasound on Advanced Oxidation Processes

  • Sundaram Ganesh Babu
  • Muthupandian Ashokkumar
  • Bernaurdshaw Neppolian
Part of the following topical collections:
  1. Sonochemistry: From basic principles to innovative applications


This chapter describes the use of ultrasound in remediation of wastewater contaminated with organic pollutants in the absence and presence of other advanced oxidation processes (AOPs) such as sonolysis, sono-ozone process, sonophotocatalysis, sonoFenton systems and sonophoto-Fenton methods in detail. All these methods are explained with the suitable literature illustrations. In most of the cases, hybrid AOPs (combination of ultrasound with one or more AOPs) resulted in superior efficacy to that of individual AOP. The advantageous effects such as additive and synergistic effects obtained by operating the hybrid AOPs are highlighted with appropriate examples. It is worth to mention here that the utilization of ultrasound is not only restricted in preparation of modern active catalysts but also extensively used for the wastewater treatment. Interestingly, ultrasound coupled AOPs are operationally simple, efficient, and environmentally benign, and can be readily applied for large scale industrial processes which make them economically viable.


Ultrasound Advanced oxidation processes Sonophoto process SonoFenton process Additive effect Synergetic effect 


  1. 1.
    Glaze WH (1994) An overview of advanced oxidation processes: current status and kinetic models. Chem Oxid 2:44–57Google Scholar
  2. 2.
    Karthik P, Vinoth R, Babu SG, Wen M, Kamegawa T, Yamashita H, Neppolian B (2015) Synthesis of highly visible light active TiO2-2-Naphthol surface complex and its application in photocatalytic chromium (VI) reduction. RSC Adv 5:39752–39759CrossRefGoogle Scholar
  3. 3.
    Babu SG, Vijayan AS, Neppolian B (2015) SnS2/rGO: an efficient photocatalyst for the complete degradation of organic contaminants. Mater Focus 4:272–276CrossRefGoogle Scholar
  4. 4.
    Kumar PS, Selvakumar M, Babu SG, Jaganathan S, Karuthapandian S (2015) Novel CuO/Chitosan nanocomposite thin film: facile hand picking recoverable, efficient and reusable heterogeneous photocatalyst. RSC Adv 5:57493–57501CrossRefGoogle Scholar
  5. 5.
    Kumar PS, Selvakumar M, Babu SG, Karuthapandian S, Chattopadhyay S (2015) CdO nanospheres: facile synthesis and bandgap modification for the superior photocatalytic activity. Mater Lett 151:45–48CrossRefGoogle Scholar
  6. 6.
    Suslick KS (1988) Ultrasound: its chemical, physical and biological effects. VCH, New YorkGoogle Scholar
  7. 7.
    Mason TJ, Lorimer JP (1988) Sonochemistry: theory, applications and uses of ultrasound in chemistry. Ellis Horwood, ChichesterGoogle Scholar
  8. 8.
    Suslick KS (1989) The chemical effects of ultrasound. Sci Am 260:80–86CrossRefGoogle Scholar
  9. 9.
    Mason TJ, Tiem A (2001) Advances in sonochemistry. JAI, OxfordGoogle Scholar
  10. 10.
    Lifka J, Ondrushka B, Hofmann J (2003) The use of ultrasound for the degradation of pollutants in water: aquasonolysis—a review. Eng Life Sci 3:253–262CrossRefGoogle Scholar
  11. 11.
    Ince NH, Tezcanli G, Belen RK, Apikyan IG (2001) Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. App Cat B Environ 29:167–176CrossRefGoogle Scholar
  12. 12.
    Chowdhury P, Viraraghavan T (2009) Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes—a review. Sci Tot Env 407:2474–2492CrossRefGoogle Scholar
  13. 13.
    Gopiraman M, Babu SG, Khatri Z, Kim BS, Wei K, Karvembu R, Kim IS (2015) Photodegradation of dyes by a novel TiO2/u-RuO2/GNS nanocatalyst derived from Ru/GNS after its use as catalyst in aerial oxidation of primary alcohols (GNS = graphene nanosheets). React Kinet Mech Catal 115:759–772CrossRefGoogle Scholar
  14. 14.
    Glaze WH, Kang JW, Chapin DH (1987) The chemistry of water treatment processes involving ozone, hydrogen peroxide, and ultraviolet radiation. Ozone Sci Eng 9:335–352CrossRefGoogle Scholar
  15. 15.
    Ince NH, Tezcanli G (1999) Treatability of textile dyebath effluents by advanced oxidation: preparation for reuse, water. Sci Technol 40:183–190Google Scholar
  16. 16.
    Babu SG, Vinoth R, Narayana PS, Bahnemann D, Neppolian B (2015) Reduced graphene oxide wrapped Cu2O supported on C3N4: an efficient visible light responsive semiconductor photocatalyst. APL Mater 3:104415–104418CrossRefGoogle Scholar
  17. 17.
    Naffrechoux E, Chanoux S, Petrier C, Suptil J (2000) Sonochemical and photochemical oxidation of organic matter. Ultrason Sonochem 7:255–259CrossRefGoogle Scholar
  18. 18.
    Suslick KS (1990) Sonochemistry. Science 247:1439–1445CrossRefGoogle Scholar
  19. 19.
    Yanagida H, Masubuchi Y, Minagawa K, Ogata T, Takimoto J, Koyama K (1999) A reaction kinetics model of water sonolysis in the presence of a spin-trap. Ultrason Sonochem 5:133–139CrossRefGoogle Scholar
  20. 20.
    Boffito DC, Crocella V, Pirola C, Neppolian B, Cerrato G, Ashokkumar M, Bianchi CL (2013) Ultrasonic enhancement of the acidity, surface area and free fatty acids esterification catalytic activity of sulphated ZrO2–TiO2 systems. J Catal 297:17–26CrossRefGoogle Scholar
  21. 21.
    Joseph JM, Destaillats H, Hung HM, Hoffmann MR (2000) The sonochemical degradation of azobenzene and related azo dyes: rate enhancements via Fenton’s reactions. J Phys Chem A 104:301–307CrossRefGoogle Scholar
  22. 22.
    Vajnhandl S, Le Marechal AM (2005) Ultrasound in textile dyeing and the decolouration/mineralization of textile dyes. Dyes Pigment 65:89–101CrossRefGoogle Scholar
  23. 23.
    Tezcanli-Guyer G, Ince NH (2003) Degradation and toxicity reduction of textile dyestuff by ultrasound. Ultrason Sonochem 10:235–240CrossRefGoogle Scholar
  24. 24.
    Guo W, Wang H, Shi Y, Zhang G (2010) Sonochemical degradation of the antibiotic cephalexin in aqueous solution. Water SA 36:651–654CrossRefGoogle Scholar
  25. 25.
    Koerner R, Soong T (2000) Leachate in landfills: the stability issues. Geotext Geomembr 18:293–309CrossRefGoogle Scholar
  26. 26.
    Kang K, Shin H, Park H (2002) Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Res 36:4023–4032CrossRefGoogle Scholar
  27. 27.
    Mott H, Hartz K, Yonge D (1987) Landfill leachates. J Environ Eng 113:476–485CrossRefGoogle Scholar
  28. 28.
    Tatsi A, Zouboulis A (2002) A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Adv Environ Res 6:207–219CrossRefGoogle Scholar
  29. 29.
    Ehrig H (1984) Treatment of sanitary landfill leachate: biological treatment. Waste Manage Res 2:131–152Google Scholar
  30. 30.
    Trebouet D, Schlumpf J, Jaouen P, Quemeneur F (2001) Stabilized landfill leachate treatment by combined physicochemical-nanofiltration processes. Water Res 35:2935–2942CrossRefGoogle Scholar
  31. 31.
    Marttinen S, Kettunen R, Sormunen K, Soimasuo R, Rintala J (2002) Screening of physical–chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere 46:851–858CrossRefGoogle Scholar
  32. 32.
    Amokrane A, Comel C, Veron J (1997) Landfill leachates pre-treatment by coagulation flocculation. Water Res 31:2775–2782CrossRefGoogle Scholar
  33. 33.
    Li X, Zhao Q, Hao X (1999) Ammonium removal from landfill leachate by chemical precipitation. Waste Manage 19:409–415CrossRefGoogle Scholar
  34. 34.
    Yusuf G (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681–4715CrossRefGoogle Scholar
  35. 35.
    Parag R (2008) Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: a review of the current status and the way forward. Ultrason Sonochem 15:1–15CrossRefGoogle Scholar
  36. 36.
    Wang S, Wu X, Wang Y, Li Q, Tao M (2008) Removal of organic matter and ammonia nitrogen from landfill leachate by ultrasound. Ultrason Sonochem 15:933–937CrossRefGoogle Scholar
  37. 37.
    Entezari M, Kruus P (1996) Effect of frequency on sonochemical reactions II. Temperature and intensity effects. Ultrason Sonochem 3:19–24CrossRefGoogle Scholar
  38. 38.
    Goel M, Hongqiang H, Mujumdar A, Ray M (2004) Sonochemical decomposition of volatile and non-volatile organic compounds—a comparative study. Water Res 38:4247–4261CrossRefGoogle Scholar
  39. 39.
    Jiang Y, Petrier C, Waite T (2002) Kinetics and mechanisms of ultrasonic degradation of volatile chlorinated aromatics in aqueous solutions. Ultrason Sonochem 9:317–323CrossRefGoogle Scholar
  40. 40.
    Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417CrossRefGoogle Scholar
  41. 41.
    Arslan-Alaton I, Akmehmet BI (2002) Biodegradability assessment of ozonated raw and biotreated pharmaceutical wastewater. Arch Environ Con Toxicol 43:425–431CrossRefGoogle Scholar
  42. 42.
    Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944CrossRefGoogle Scholar
  43. 43.
    Iqbal J, Kim HJ, Yang JS, Baek K, Yang JW (2007) Removal of arsenic from groundwater by micellar-enhanced ultrafiltraion (MEUF). Chemosphere 66:970–976CrossRefGoogle Scholar
  44. 44.
    Karim MM (2000) Arsenic in groundwater and health problems in Bangladesh. Water Res 34:304–310CrossRefGoogle Scholar
  45. 45.
    Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy filed soils: implication for rice contribution to arsenic consumption. Environ Sci Technol 37:229–234CrossRefGoogle Scholar
  46. 46.
    Deschamps E, Ciminelli VST, Holl W (2005) Removal of As (III) and As (V) from water using a natural Fe and Mn enriched sample. Water Res 39:5212–5220CrossRefGoogle Scholar
  47. 47.
    Ryu J, Choi W (2004) Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite: the role of superoxides. Environ Sci Technol 38:2928–2933CrossRefGoogle Scholar
  48. 48.
    Dutta PK, Pehkonen SO, Sharma VK, Ray AK (2005) Photocatalytic oxidation of arsenic (III): evidence of hydroxyl radicals. Environ Sci Technol 39:1827–1834CrossRefGoogle Scholar
  49. 49.
    Elless MP, Poynton CY, Willms CA, Doyle MP, Lopez AC, Sokkary DA, Ferguson BW, Blaylock MJ (2005) Pilot-scale demonstration of phytofiltration for treatment of arsenic in the New Mexico drinking water. Water Res 39:3863–3872CrossRefGoogle Scholar
  50. 50.
    Neppolian B, Oronila A, Grieser F, Ashokkumar M (2009) Simple and efficient sonochemical method for the oxidation of arsenic(III) to arsenic(V). Environ Sci Technol 43:6793–6798CrossRefGoogle Scholar
  51. 51.
    Neppolian B, Doronila A, Ashokkumar M (2010) Sonochemical oxidation of arsenic(III) to arsenic(V) using potassium peroxydisulfate as an oxidizing agent. Water Res 44:3687–3695CrossRefGoogle Scholar
  52. 52.
    Beckett MA, Hua I (2000) Elucidation of the 1,4-dioxine decomposition pathway at discrete ultrasonic frequencies. Environ Sci Technol 34:3944–3953CrossRefGoogle Scholar
  53. 53.
    Gould JP, Groff KA (1987) The kinetics of ozonolysis of synthetic dyes. Ozone Sci Eng 9:153–157CrossRefGoogle Scholar
  54. 54.
    Snider EH, Porter JJ (1974) Ozone treatment of dye waste. J Water Pollut Contr Fed 46:886–894Google Scholar
  55. 55.
    Peyton GR, Glaze WH (1985) The mechanism of photolytic ozonation. Photochemistry of Environmental Aquatic Systems ACS Symposium Series 327:76–88Google Scholar
  56. 56.
    Destaillats H, Colussi AJ, Joseph JM, Hoffmann MR (2000) Synergistic effects of sonolysis combined with ozonolysis for the oxidation of azobenzene and methyl orange. J Phys Chem 104:8930–8935CrossRefGoogle Scholar
  57. 57.
    Tezcanli-Guyer G, Ince NH (2004) Individual and combined effects of ultrasound, ozone and UV irradiation: a case study with textile dyes. Ultrasonics 42:603–609CrossRefGoogle Scholar
  58. 58.
    Wan-Qian G, Ren-Li Y, Xian-Jiao Z, Juan-Shan D, Hai-Ou C, Shan-Shan Y, Nan-Qi R (2015) Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: kinetics, mechanisms, and pathways. Ultrason Sonochem 22:182–187CrossRefGoogle Scholar
  59. 59.
    Koda S, Kimura T, Kondo T, Mitome H (2003) A standard method to calibrate sonochemical efficiency of an individual reaction system. Ultrason Sonochem 10:149–156CrossRefGoogle Scholar
  60. 60.
    Xiao-Dan F, Wen-Li Z, Hai-Yan X, Tai-Qiu Q, Jian-Guo J (2015) Effects of ultrasound combined with ozone on the degradation of organophosphorus pesticide residues on lettuce. RSC Adv 5:45622–45630CrossRefGoogle Scholar
  61. 61.
    Gultekin I, Ince NH (2006) Degradation of aryl-azo-naphthol dyes by ultrasound, ozone and their combination: effect of α-substituents. Ultrason Sonochem 13:208–214CrossRefGoogle Scholar
  62. 62.
    Martins AO, Canalli VM, Azevedo CMN, Pires M (2006) Degradation of pararosaniline (C.I. Basic Red 9monohydrochloride) dye by ozonation and sonolysis. Dyes Pigm 68:227–234CrossRefGoogle Scholar
  63. 63.
    Zhao W, Shi H, Wang D (2004) Ozonation of cationic Red X-GRL in aqueous solution: degradation and mechanism. Chemosphere 57:1189–1199CrossRefGoogle Scholar
  64. 64.
    Zhang F, Yediler A, Liang X, Kettrup A (2004) Effects of dye additives on the ozonation process and oxidation by-products: a comparative study using hydrolyzed C.I. Reactive Red 120. Dyes Pigm 60:1–7CrossRefGoogle Scholar
  65. 65.
    Ince NH, Tezcanlı G (2001) Reactive dyestuff degradation by combined sonolysis and ozonation. Dyes Pigm 49:145–153CrossRefGoogle Scholar
  66. 66.
    Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advance oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59CrossRefGoogle Scholar
  67. 67.
    Toma S, Gaplovsky A, Luche J-L (2001) The effect of ultrasound on photochemical reaction. Ultrason Sonochem 8:201–207CrossRefGoogle Scholar
  68. 68.
    Ruppert G, Bauer R, Heisler G (1994) UV–O3, UV–H2O2, UV–TiO2 and photo-Fenton reaction-comparison of advanced oxidation processes for wastewater treatment. Chemosphere 28:1447–1454CrossRefGoogle Scholar
  69. 69.
    Benitez FJ, Beltran-Heredia J, Acero JL, Rubio FJ (2000) Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes. Chemosphere 41:1271–1277CrossRefGoogle Scholar
  70. 70.
    Xie Y, Chen F, He J, Zhao J, Wang H (2000) Photoassisted degradation of dyes in the presence of Fe3+ and H2O2 under visible irradiation. J Photochem Photobiol A Chem 136:235–240CrossRefGoogle Scholar
  71. 71.
    Esplugas S, Gimenez J, Contreras S, Pascual E, Rodriguez M (2002) Comparison of different advanced oxidation processes for phenol degradation. Water Res 36:1034–1042CrossRefGoogle Scholar
  72. 72.
    Weavers LK, Ling FH, Hoffmann MR (1998) Aromatic compounds degradation in water using a combination of sonolysis and ozonolysis. Environ Sci Technol 32:2727–2733CrossRefGoogle Scholar
  73. 73.
    Kopf P, Gilbert E, Eberle SH (2000) TiO2 photocatalytic oxidation of monochloroacetic acid and pyridine: influence of ozone. J Photochem Photobiol A Chem 136:163–168CrossRefGoogle Scholar
  74. 74.
    Colmenares JC (2014) Sonication-induced pathways in the synthesis of light-active catalysts for photocatalytic oxidation of organic contaminants. ChemSusChem 7:1512–1527CrossRefGoogle Scholar
  75. 75.
    Theron P, Pichat P, Guillard C, Petrier C, Chopin T (1999) Degradation of phenyltrifluoromethylketone in water by separate or simultaneous use of TiO2 photocatalysis and 30 or 515 kHz. Phys Chem Chem Phys 1:4663–4668CrossRefGoogle Scholar
  76. 76.
    Stock NL, Peller J, Vinodgopal K, Kamat PV (2000) Combinative sonolysis and photocatalysis for textile dye degradation. Environ Sci Technol 34:1747–1750CrossRefGoogle Scholar
  77. 77.
    Vaishnave P, Kumar A, Ameta R, Punjabi PB, Ameta SC (2014) Photo oxidative degradation of azure-Bby sono-photo-Fenton and photo-Fenton reagents. Arab J Chem 7:981–985CrossRefGoogle Scholar
  78. 78.
    Theron P, Pichat P, Petrier C, Guillard C (2001) Water treatment by TiO2 photocatalysis and/or ultrasound: degradations of phenyltrifluoromethylketone, a trifluoroacetic-acid-forming pollutant, and octan-1-ol, a very hydrophobic pollutant. Water Sci Technol 44:263–270Google Scholar
  79. 79.
    Ragaini V, Selli E, Bianchi CL, Pirola C (2001) Sono-photocatalytic degradation of 2-chlorophenol in water: kinetic and energetic comparison. Ultrason Sonochem 8:251–258CrossRefGoogle Scholar
  80. 80.
    Petrier C, Lamy M-F, Francony A, Benahcene A, David B, Renaudin V, Gondrexon N (1994) Sonochemical degradation of phenol in dilute aqueous solutions: comparison of the reaction rates at 20 and 487 kHz. J Phys Chem 98:10514–10520CrossRefGoogle Scholar
  81. 81.
    Mrowetz M, Pirola C, Selli E (2003) Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2. Ultrason Sonochem 10:247–254CrossRefGoogle Scholar
  82. 82.
    Davydov L, Reddy EP, France P, Smirniotis PG (2001) Sonophotocatalytic destruction of organic contaminants in aqueous systems on TiO2 powders. App Catal B Environ 32:95–105CrossRefGoogle Scholar
  83. 83.
    Harada H (2001) Sonophotocatalytic decomposition of water using TiO2 photocatalyst. Ultrason Sonochem 8:55–58CrossRefGoogle Scholar
  84. 84.
    Selli E, Bianchi CL, Pirola C, Bertelli M (2005) Degradation of methyl tert-butyl ether in water: effects of the combined use of sonolysis and photocatalysis. Ultrason Sonochem 12:395–400CrossRefGoogle Scholar
  85. 85.
    Shirgaonkar IZ, Pandit AB (1998) Sonophotochemical destruction of aqueous solution of 2,4,6-trichlorophenol. Ultrason Sonochem 5:53–61CrossRefGoogle Scholar
  86. 86.
    Anandan S, Ashokkumar M (2009) Sonochemical synthesis of Au–TiO2 nanoparticles for the sonophotocatalytic degradation of organic pollutants in aqueous environment. Ultrason Sonochem 16:316–320CrossRefGoogle Scholar
  87. 87.
    Vinodgopal K, Ashokkumar M, Grieser F (2001) Sonochemical degradation of a polydisperse nonylphenol ethoxylate in aqueous solution. J Phys Chem B 105:3338–3342CrossRefGoogle Scholar
  88. 88.
    Babu SG, Vinoth R, Kumar DP, Shankar MV, Chou HL, Vinodgopal K, Neppolian B (2015) Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 pn hetero-junction for the increased hydrogen production. Nanoscale 7:7849–7857CrossRefGoogle Scholar
  89. 89.
    Brand N, Mailhot G, Bolte M (1998) Degradation photoinduced by Fe(III):method of alkylphenol ethoxylates remove in water. Environ Sci Technol 32:2715–2720CrossRefGoogle Scholar
  90. 90.
    Yuanhua HE, Grieser F, Ashokkumar M (2011) Kinetics and mechanism for the sonophotocatalytic degradation of p-chlorobenzoic Acid. J Phys Chem A 115:6582–6588CrossRefGoogle Scholar
  91. 91.
    Adewuyi YG (2005) Sonochemistry in environment remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water. Environ Sci Technol 39:8557–8570CrossRefGoogle Scholar
  92. 92.
    Peller J, Wiest O, Kamat PV (2003) Synergy of combining sonolysis and photocatalysis in the degradation and mineralization of chlorinated aromatics compounds. Environ Sci Technol 37:1926–1932CrossRefGoogle Scholar
  93. 93.
    Singla R, Ashokkumar M, Grieser F (2004) The mechanism of the sonochemical degradation of the benzoic acid in aqueous solution. Res Chem Intermed 30:723–733CrossRefGoogle Scholar
  94. 94.
    Fujishima A, Hashimoto K, Watanabe T (1999) Photocatalysis: fundamentals and applications, 1st edn. BKC Inc., TokyoGoogle Scholar
  95. 95.
    Okitsu K, Iwasaki K, Yobiko Y, Bandow H, Nishimura R, Maeda Y (2005) Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes. Ultrason Sonochem 12:255–262CrossRefGoogle Scholar
  96. 96.
    Talebiana N, Nilforoushanb MR, Mogaddas FJ (2013) Comparative study on the sonophotocatalytic degradation of hazardous waste. Ceram Int 39:4913–4921CrossRefGoogle Scholar
  97. 97.
    Taghizadeh MT, Abdollahi R (2011) Sonolytic, sonocatalytic and sonophotocatalytic degradation of chitosan in the presence of TiO2 nanoparticles. Ultrason Sonochem 18:149–157CrossRefGoogle Scholar
  98. 98.
    Berberidou C, Poulios I, Xekoukoulotakis NP, Mantzavinos D (2007) Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions. Appl Cat B Environ 74:63–72CrossRefGoogle Scholar
  99. 99.
    Kavitha SK, Palanisamy PN (2011) Photocatalytic and sonophotocatalytic degradation of reactive red 120 using dye sensitized TiO2 under visible light. Inter J Civil Environ Eng 5:1–6Google Scholar
  100. 100.
    Son Y, Cho E, Lim M, Khim J (2010) Effects of salt and pH on sonophotocatalytic degradation of azo dye reactive black 5. Japanese J Appl Phy 49:7Google Scholar
  101. 101.
    Neppolian B, Ciceri L, Bianchi CL (2011) Franz Grieser a, Muthupandian Ashokkumar. Sonophotocatalytic degradation of 4-chlorophenol using Bi2O3/TiZrO4 as a visible light responsive photocatalyst. Ultrason Sonochem 18:135–139CrossRefGoogle Scholar
  102. 102.
    Babu SG, Vinoth R, Neppolian B, Dionysiou DD, Ashokkumar M (2015) Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst. J Hazard Mater 291:83–92CrossRefGoogle Scholar
  103. 103.
    Zhang J, Xionga Z, Zhao XS (2011) Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation. J Mater Chem 21:3634–3640CrossRefGoogle Scholar
  104. 104.
    Neppolian B, Ciceri L, Bianchi CL, Grieser F, Ashokkumar M (2001) Sonophotocatalytic degradation of 4-chlorophenol using Bi2O3/TiZrO4 as a visible light responsive photocatalyst. Ultrason Sonochem 18:135–139CrossRefGoogle Scholar
  105. 105.
    Kritikos DE, Xekoukoulotakis NP, Psillakis E, Mantzavinos D (2007) Photocatalytic degradation of reactive black 5 in aqueous solutions: effect of operating conditions and coupling with ultrasound irradiation. Water Res 41:2236–2246CrossRefGoogle Scholar
  106. 106.
    Shimizu N, Ogino C, Dadjour MF, Murata T (2007) Sonocatalytic degradation of methylene blue with TiO2 pellets in water. Ultrason Sonochem 14:184–190CrossRefGoogle Scholar
  107. 107.
    Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment II: hybrid methods. Adv Environ Res 8:553–597CrossRefGoogle Scholar
  108. 108.
    Uchida T, Hamano A, Kawashima N, Takeuchi S (2007) Disaggregation and surface modification of nano-size diamond by ultrasound exposure: relationships among acoustic intensity, disaggregation, and surface modification. Electron Comm Jpn Pt III 90:10–18CrossRefGoogle Scholar
  109. 109.
    Lirong M, Jianjun S, Ming Z, Jie H (2014) Synthesis of magnetic sonophotocatalyst and its enhanced biodegradability of organophosphate pesticide. Bull Korean Chem Soc 35:3521–3526CrossRefGoogle Scholar
  110. 110.
    Ai ZH, Yang P, Lu XH (2005) Degradation of 4-chlorophenol by microwave irradiation enhanced advanced oxidation processes. Chemosphere 60:824–827CrossRefGoogle Scholar
  111. 111.
    Voelker B, Sulzberger B (1996) Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide. Environ Sci Technol 30:1106–1114CrossRefGoogle Scholar
  112. 112.
    Zepp RG, Faust BC, Hoigne J (1992) Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron (II) with hydrogen peroxide: the photo-Fenton reaction. Environ Sci Technol 26:313–319CrossRefGoogle Scholar
  113. 113.
    De Laat J, Gallard H (1999) Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous solution: mechanism and kinetic modelling. Environ Sci Technol 33:2726–2732CrossRefGoogle Scholar
  114. 114.
    Kwan WP, Voelker BM (2002) Decomposition of hydron peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environ Sci Technol 36:1467–1476CrossRefGoogle Scholar
  115. 115.
    Chou S, Huang C (1999) Application of a supported iron oxyhydroxide catalyst in oxidation of benzoic acid by hydrogen peroxide. Chemosphere 38:2719–2731CrossRefGoogle Scholar
  116. 116.
    Fernandez J, Bandara J, Lopez A, Kiwi J (1999) Photoassisted Fenton degradation of nonbiodegradable azo dye (Orange II) in Fe-free solution mediated by cation transfer membranes. Langmuir 15:185–192CrossRefGoogle Scholar
  117. 117.
    Parra S, Henao L, Mielczarski E, Mielczarski J, Albers P, Suvorova E, Guindet J, Kiwi J (2004) Synthesis, testing, and characterization of a novel Nafion membrane with superior performance in photoassisted immobilized Fenton catalysis. Langmuir 20:5621–5629CrossRefGoogle Scholar
  118. 118.
    Bozzi A, Yuranova T, Mielczarski J, Kiwi J (2002) Abatement of oxalates catalysed by Fe-silica structured surface via cyclic carboxylate intermediates in photo-Fenton reaction. Chem Commun 19:2202–2203CrossRefGoogle Scholar
  119. 119.
    Cheng MM, Ma WH, Li J, Huang YP, Zhao JC (2004) Visible-light-assisted degradation of dye pollutants over Fe(III)-loaded resin in the presence of H2O2 at neutral pH values. Environ Sci Technol 38:1569–1575CrossRefGoogle Scholar
  120. 120.
    Dhananjeyan M, Mielczarski E, Thampi K, Bensimon M, Kiwi J (2001) Photodynamics and surface characterization of TiO2 and Fe2O3 photocatalysts immobilized on modified polyethylene films. J Phys Chem B 105:12046–12055CrossRefGoogle Scholar
  121. 121.
    Fernandez J, Dhananjeyan M, Kiwi J, Senuma Y, Hilborn J (2000) Evidence for Fenton photoassisted processes mediated by encapsulated Fe ions at Biocompatible pH values. J Phys Chem B 104:5298–5301CrossRefGoogle Scholar
  122. 122.
    Parra S, Guasaquillo I, Enea O, Mielczarski E, Mielczarki J, Albers P, Kiwi-Minsker L, Kiwi J (2003) Abatement of an azo dye on structured C-Nanfion/Fe-ion surfaces by photo-Fenton reactions leading to carboxylate intermediates with a remarkable biodegradability increase of the treated solution. J Phys Chem B 107:7026–7035CrossRefGoogle Scholar
  123. 123.
    Parra S, Nadtotechenko V, Albers P, Kiwi J (2004) Discoloration of azo-dyes at biocompatible pH-values through an Fe-histidine complex immobilized on Nafion via Fenton-like processes. J Phys Chem B 108:4439–4448CrossRefGoogle Scholar
  124. 124.
    Beckett MA, Hua I (2003) Enhanced sonochemical decomposition of 1,4-dioxane by ferrous iron. Water Res 37:2372–2376CrossRefGoogle Scholar
  125. 125.
    Iordache I, Wilson S, Lundanes E, Iordache M, Pave VL, Aelenei N (2010) The Fenton and sono-Fenton processes applied for pesticide degradation. Environ Eng Manag J 9:519–525Google Scholar
  126. 126.
    Huang R, Fang Z, Yan X, Cheng W (2012) Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition. Chem Eng J 197:242–249CrossRefGoogle Scholar
  127. 127.
    Zhang H, Zhang JH, Zhang CY, Liu F, Zhang DB (2009) Degradation of CI acid orange 7 by the advanced Fenton process in combination with ultrasonic irradiation. Ultrason Sonochem 16:325–330CrossRefGoogle Scholar
  128. 128.
    Drijvers D, van Langenhove H, Beckers M (1999) Decomposition of phenol and trichloroethylene by the ultrasound/H2O2/CuO process. Water Res 33:1187–1194CrossRefGoogle Scholar
  129. 129.
    Nie M, Wang Q, Qiu G (2008) Enhancement of ultrasonically initiated emulsion polymerization rate using aliphatic alcohols as hydroxyl radical scavengers. Ultrason Sonochem 15:222–226CrossRefGoogle Scholar
  130. 130.
    Guo X, Chen S, Hu Y, Li G, Liao N, Ye X, Liu D, Xue C (2014) Preparation of water-soluble melanin from squid ink using ultrasound-assisted degradation and its anti-oxidant activity. J Food Sci Technol 51:3680–3690CrossRefGoogle Scholar
  131. 131.
    Luo T, Ai Z, Zhang L (2008) Fe@Fe2O3 core-shell nanowires as iron reagent. 4. Sono-Fenton degradation of pentachlorophenol and the mechanism analysis. J Phys Chem C 112:8675–8681CrossRefGoogle Scholar
  132. 132.
    Hwang A, Na S, Ha J, Khim J (2011) Degradation of diethyl phthalate by sono-Fenton process and its dependence on the power density. Japan J Appl Phy 50:7–9CrossRefGoogle Scholar
  133. 133.
    Ranjit PJD, Palanivelu K, Lee CS (2008) Degradation of 2,4-dichlorophenol in aqueous solution by sono-Fenton method. Korean J Chem Eng 25:112–117CrossRefGoogle Scholar
  134. 134.
    Ai Z, Lu L, Li J, Zhang L, Qiu J, Wu M (2007) Fe@Fe2O3 core-shell nanowires as iron reagent efficient degradation of rhodamine b by a novel sono-Fenton process. J Phys Chem C 111:4087–4093CrossRefGoogle Scholar
  135. 135.
    Makino K, Mossoba MM, Riesz P (1983) Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms. J Phys Chem 87:1369–1377CrossRefGoogle Scholar
  136. 136.
    Weissler A (1959) Formation of hydrogen peroxide by ultrasonic waves: free radicals. J Am Chem Soc 81:1077–1081CrossRefGoogle Scholar
  137. 137.
    Tay KS, Rahman NA, Abas MRB (2011) Fenton degradation of dialkylphthalates: products and mechanism. Environ Chem Lett 9:539–546CrossRefGoogle Scholar
  138. 138.
    Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177CrossRefGoogle Scholar
  139. 139.
    Madhavana J, Kumara PSS, Anandanb S, Griesera F, Ashokkumar M (2010) Sonophotocatalytic degradation of monocrotophos using TiO2 and Fe3+. J Hazard Mater 177:944–949CrossRefGoogle Scholar
  140. 140.
    Babuponnusami A, Muthukumar K (2011) Degradation of phenol in aqueous solution by fenton, sono-Fenton and sono-photo-Fenton methods. CLEAN Soil Air Water 39:142–147CrossRefGoogle Scholar
  141. 141.
    Wu C, Liu X, Wei D, Fan J, Wang L (2001) Photosonochemical degradation of phenol in water. Water Res 35:3927–3933CrossRefGoogle Scholar
  142. 142.
    Chitra S, Paramasivan P, Sinha PK (2013) Sono-photo Fenton treatment of liquid waste containing ethylenediaminetetraacetic acid (EDTA). Int J Nonferrous Metall 2:89–94CrossRefGoogle Scholar
  143. 143.
    Ricardo A, Palma T, Nieto JI, Combet E, Pe´trier C, Pulgarin C (2010) An innovative ultrasound, Fe2D and TiO2 photoassisted process for bisphenol a mineralization. Water Res 44:2245–2252CrossRefGoogle Scholar
  144. 144.
    Xu LJ, Chu W, Graham N (2014) Degradation of di-n-butyl phthalate by a homogeneous sono–photo–Fenton process with in situ generated hydrogen peroxide. Chem Eng J 240:541–547CrossRefGoogle Scholar
  145. 145.
    Xu LJ, Chu W, Graham N (2013) Sonophotolytic degradation of dimethyl phthalate without catalyst: analysis of the synergistic effect and modeling. Water Res 47:1996–2004CrossRefGoogle Scholar
  146. 146.
    Duran A, Monteagudo JM, Exposito AJ, Monsalve V (2016) Modeling the sonophoto-degradation/mineralization of carbamazepine in aqueous solution. Chem Eng J 284:503–512CrossRefGoogle Scholar
  147. 147.
    Joseph CG, Li Puma G, Bono A, Taufiq-Yap YH, Krishnaiah D (2011) Operating parameters and synergistic effects of combining ultrasound and ultraviolet irradiation in the degradation of 2,4,6-trichlorophenol. Desalination 276:303–309CrossRefGoogle Scholar
  148. 148.
    Chakma S, Moholkar VS (2015) Sonochemical synthesis of mesoporous ZrFe2O5 and its application for degradation of recalcitrant pollutants. RSC Adv 5:53529–53542CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sundaram Ganesh Babu
    • 1
    • 2
  • Muthupandian Ashokkumar
    • 3
  • Bernaurdshaw Neppolian
    • 1
  1. 1.SRM Research InstituteSRM UniversityChennaiIndia
  2. 2.Department of Chemical Engineering, Centre for Catalysis Research and c*change (DST-NRF Centre of Excellence in Catalysis)University of Cape TownCape TownSouth Africa
  3. 3.School of ChemistryUniversity of MelbourneParkvilleAustralia

Personalised recommendations