Advertisement

Topics in Current Chemistry

, 374:67 | Cite as

Effects of ultrasonic disintegration of excess sewage sludge

  • Ewa Zielewicz
Review
Part of the following topical collections:
  1. Sonochemistry: From basic principles to innovative applications

Abstract

Breaking down sludge floc (sonodyspergation effect) and destruction of the cell membranes of microorganisms forming floc is a direct effect of ultrasonic disintegration of sludge excess. This results in release of organic material by liquid sludge (the sonolysis effect). Desired technological effects of the disintegration are: to shorten the hydrolytic phase of fermentation, to increase the production of biogas (source of renewable energy) and an increased mineralization (stability) of fermented sludge. The presented study demonstrates research covering thickened excess sludge of various physicochemical properties, collected from nine municipal sewage treatment plants. The sludge was subjected to ultrasonic disintegration using three differently constructed disintegrators and different proportions of sonification area. Direct effects of disintegration were monitored and recorded using selected indicators describing changes in the properties of sludge and increase of substance dispersed and dissolved in the supernatant liquid to be filtered. Studies have demonstrated that those (direct) effects of ultrasonic disintegration depend on the physicochemical properties of the sludge (foremost the concentration of dry solids) that determine their variable susceptibility to the disintegration methods. The direct effects also depend on optimal process conditions (which consist of the construction of the ultrasonic disintegrator), the geometric proportions of the sonication area and the operating parameters of disintegration (which could be appropriately matched to the characteristics of sludge). The most preferable results were obtained for ultrasonic disintegration of sludge with a dry matter concentration C 0 < 4.2 %. The highest effect of sonolysis—an almost 30-fold increase in the COD dissolved in the supernatant—was obtained for the sludge of lowest dry matter (C 0 = 2.0 %), which was sonicated in a reactor with a short transducer of the largest radiating surface area, as well as the lowest ratio between this area and area of reactor. The best effects of disagglomeration of flocks have corresponded with the high value of power density U UD = 880–900 WL−1.

Keywords

Ultrasounds Excess sludge Lysis Disagglomeration Cell disruption Disintegration Fermentation Volumetric energy Specific energy 

Notes

Acknowledgments

Scientific work presented in the paper was funded by Grant NN523 756440 resource sponsored by the State Committee for Scientific Research (KBN) Poland in the years 2011–2014.

References

  1. 1.
    Eastman J, Ferguson J (1981) Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. J WPCF 5(3):352–366Google Scholar
  2. 2.
    Zielewicz E (2010) Indicators on ultrasonic disintegration of sewage sludge. Pol J Environ Stud 2:268–272Google Scholar
  3. 3.
    Müller J (1996) Mechanischer Klärschlammaufschluss. Dissertation TU Braunschweig. Shaker-Verlag, AachenGoogle Scholar
  4. 4.
    Hogan F, Mormede S, Clark P, Crane (2004) Enhanced anaerobic digestion using ultrasound. In: Proceedings of the10th World Congress on Anaerobic Digestion. National Research Council Canada, Montreal, pp 136–141Google Scholar
  5. 5.
    Onyeche TI, Schläfer C, Bormann H, Schröder C, Sievers M (2002) Ultrasonic cell disruption of stabilized sludge with subsequent anaerobic digestion. Ultrasonics 40:31–35CrossRefGoogle Scholar
  6. 6.
    Zielewicz-Madej E (2003) The influence of parameters of ultrasonic disintegration on the intensification of anaerobic biodegradation of organic compounds from sewage sludge. Environ Prot Eng 6(3–4):455–468Google Scholar
  7. 7.
    Zielewicz E, Sorys P, Janik M, Fukas-Płonka Ł (2008) The hybrid disintegration as a method of improving the effects of sludge stabilization. Environ Prot Eng 11(3):397–409 (in Polish) Google Scholar
  8. 8.
    Bougrier C, Albasi C, Delgenes JP, Carrere H (2006) Effect of ultrasonic, thermaland ozone pre-treatments on wasteactivated sludge solubilisation andanaerobic biodegradability. Chem Eng Process 45:711–718CrossRefGoogle Scholar
  9. 9.
    Yuan HY, Chen YG, Zhang HX, Zhou Q, Gu GW (2006) Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ Sci Technol 40(6):2025–2029CrossRefGoogle Scholar
  10. 10.
    Müller J, Lehne G, Schwedes J, Battenberg S, Näveke R, Kopp J, Dichtl N (1998) Disintegration of sewage sludge and influence on anaerobic digestion. Water Sci Technol 38(8–9):425–433Google Scholar
  11. 11.
    Müller J et al (2000) Verfahrenund Anwendungsgebiete der mechanischen Klärschlammdesintegration. Korrespondenz Abwasser 47(4):570–576Google Scholar
  12. 12.
    Müller J, Thiem A, Eder B, Günthert F, Hruschka H, Kopp J, Kunz P, Otte-Witte R, Schmelz K, Seiler K (2001) Verfahrensvergleich und Ergebnisse der mechanischen Klärshlammdesintegration. Korrespondenz Abwasser 48(3):393–400Google Scholar
  13. 13.
    Tiehm A, Nickel K, Zellhorn M, Neis U (2001) Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res 35:2003–2009CrossRefGoogle Scholar
  14. 14.
    Nickel K, Neis U (2007) Ultrasonic disintegration of biosolids for improved biodegradation. Ultrason Sonochem 14:450–455CrossRefGoogle Scholar
  15. 15.
    Eder B, Günthert F (2002) Practical experience of sewage sludge disintegration by ultrasound. TU Hambg-Harbg Rep Sanit Eng 35:173–188Google Scholar
  16. 16.
    Zielewicz E, Sorys P (2007) Comparison of ultrasonic disintegration in laboratory and technical scale disintegrators. Eur Phys J Spec Top 154(1):289–294 (Springer, Berlin/Heilderberg) CrossRefGoogle Scholar
  17. 17.
    Zhang PY, Zhang GM, Wang W (2007) Ultrasonic treatment of biological sludge: floc disintegration. Cell lysis and inactivation. Bioresour Technol 98(1):207–210CrossRefGoogle Scholar
  18. 18.
    Mason T (2003) Sonochemistry and sonoprocessing: the link, the trends and (probably) the future. Ultrason Sonochem 10:175–179CrossRefGoogle Scholar
  19. 19.
    Mason T, Tiehm A (2001) Ultrasound in environmental protection. Advances in sonochemistry, vol 6. Elsevier, AmsterdamGoogle Scholar
  20. 20.
    Gogate PR, Kabadi AM (2009) A review of applications of cavitation in biochemical engineering/biotechnology. Biochem Eng J 44:60–72CrossRefGoogle Scholar
  21. 21.
    Blume T, Neis U (2004) Improved wastewater disinfection by ultrasonic pre-treatment. Ultrason Sonochem 11:333–336CrossRefGoogle Scholar
  22. 22.
    Kowalska E, Bień J, Zielewicz E (1978) The influence of ultrasound on the thickening of the sludge from municipal and industrial wastes. Acustica 40(2):99–103Google Scholar
  23. 23.
    Kowalska E, Bień J, Zielewicz E (1980) The effects of the thickening of various sewage deposits subjected to the influence of ultrasonic field. Pergamon Press, Oxford, pp 205–210Google Scholar
  24. 24.
    Kowalska E, Bień J, Zielewicz-Madej E(1988) Ultrasound in the suspension separation methods. Dry Technol Int J Spec Issue Comb Field Seperation Tech Dewatering, Batteele Columb Div 6(3):447–471Google Scholar
  25. 25.
    Pilli Sridhar, Bhunia Puspendu, Song Yan, LeBlanc RJ, Tyagi RD, Surampalli RY (2011) Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem 18:1–18CrossRefGoogle Scholar
  26. 26.
    Tuan Le Ngoc, Ratsimba B, Julcour-Lebigue C, Delmas H (2012) Effect ofexternal pressure on the efficacy of ultrasonic pretreatment of sludge. Int Proc Chem Biol Environ Eng 42:86–94Google Scholar
  27. 27.
    Tuan Le Ngoc, Chau Pham Ngoc (2013) Evaluation approaches of sludge ultrasonic pretreatment efficiency: a review. Sci Technol Dev 16(1):68–83Google Scholar
  28. 28.
    Miller M, Miller D, Brayman A (1996) A review in bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol 22(9):1131–1154CrossRefGoogle Scholar
  29. 29.
    Zielewicz-Madej E, Sorys P (2006) Occurence of ultrasonic cavitation in sewage sludge. Eur Phys J. Journal de Phisique IV, Proc EDP Sci 137:227–230Google Scholar
  30. 30.
    Yan Y, Feng L, Zhang C, Zhu H, Zhou Q (2010) Effect of ultrasonic specific energy on waste activated sludge solubilization and enzyme activity. Afr J Biotechnol 9(12):1776–1782CrossRefGoogle Scholar
  31. 31.
    Chu C, Lee D, Chang B, You C, Tay J (2002) “Weak” ultrasonic pre-treatment on anaerobic digestion of flocculated activated biosolids. Water Res 36:2681–2688CrossRefGoogle Scholar
  32. 32.
    Śliwiński A (2001) Ultrasound and their applications WNT Warszawa 15-108/347-372 (in Polish)Google Scholar
  33. 33.
    Sutkar VS, Gogate PR (2009) Design aspects of sonochemical reactors: techniques for understanding cavitational activity distribution and effect of operating parameters. Chem Eng J 155(1–2):26–36CrossRefGoogle Scholar
  34. 34.
    Gogate PR, Sutkar VS, Pandit AB (2011) Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous system. Chem Eng J 166(3):1066–1082CrossRefGoogle Scholar
  35. 35.
    Mues A (1998) Verfahrenstechnik und Kosten des Ultraschalleinsatzes auf Kläranlagen. Klärschlammdesintegration, TU Braunschweig H 61:271–280Google Scholar
  36. 36.
    Zhang G, Zhang P, Yang J, Liu H (2008) Energy-efficient sludge sonication: power and sludge characteristics. Bioresour Technol 99:9029–9031CrossRefGoogle Scholar
  37. 37.
    Zielewicz E (2007) Ultrasonic disintegration of excess sludge for receiving of VFA. Monography Silesian University of Technology, Gliwice (in Polish) Google Scholar
  38. 38.
    Beanabdalach EL-Hadji T, Dosta J, Marquez-Serrano R, Mata-Alvarez J (2007) Effect of ultrasound pretreatment in mesophilic and thermophilic anaerobic digestion with emphasis on naphtalene and pyrene removal. Water Res 41:87–94CrossRefGoogle Scholar
  39. 39.
    Gronroos A, Kyllonen H, Korpijarvi K, Pirkonen P, Paavola T, Jokela J, Rintala J (2005) Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion. Ultrason Sonochem 12:115–120CrossRefGoogle Scholar
  40. 40.
    Zielewicz-Madej E (2003) The influence of parameters of ultrasonic disintegration on the intensification of anaerobic biodegradation of organic compounds from sewage sludge. Environ Prot Eng 6(3–4):455–468Google Scholar
  41. 41.
    Lehne G, Muller J (2002) The influence of the energy consumption on the sewage sludge disintegration, Ultrasound in Environmental Engineering. Rep Sanit Eng 35:205–215Google Scholar
  42. 42.
    Kopp J, Dichtl W, Müller J, Schwedes J (1997) Anaerobic digestion and dewatering characteristics of mechanical disintegrated excess sludge. Int Konf Sludge Manag Wastewater Sludge-Waste Res” 2:231–242Google Scholar
  43. 43.
    Bougrier C, Carrere H, Delgenes JP (2005) Solubilisation on waste-activated sludge by ultrasonic treatment. Chem Eng J 106:163Google Scholar
  44. 44.
    Neis U (2002) Intensification of biological processes by ultrasound. TU Hambg-Harbg Rep Sanit Eng 35:79–90Google Scholar
  45. 45.
    Onyeche TI, Schläfer C, Bormann H, Schröder C, Sievers M (2002) Ultrasonic cell disruption of stabilized sludge with subsequent anaerobic digestion. Ultrasonics 40:31–33CrossRefGoogle Scholar
  46. 46.
    Wolski P, Zawieja I (2012) Effect of ultrasound field on dewatering of sewage sludge Archives of Environmental Protection (38) 2:25–31Google Scholar
  47. 47.
    Wolski P, Zawieja I (2015) Susceptibility of conditioned excess sewage sludge to biodegradation and dewatering. Environ Prot Eng. doi: 10.5277/EPE15030145 Google Scholar
  48. 48.
    Neis U, Thiem A (1997) Particle size analysis in primary and secondary waste water effluents. Water Sci Technol 36(4):151–158Google Scholar
  49. 49.
    Sorys P Zielewicz E (2007) Impact of selected physicochemical properties of excess sludge on the effects of ultrasonic disintegration. Pol J Environ Stud 2A Part III (16):568–572Google Scholar
  50. 50.
    Biggs CA, Lant P (2000) Aactivated sludge flocculation:on-line determinationof floc size and the effect of shear. Water Res 34(9):2542–2550CrossRefGoogle Scholar
  51. 51.
    Baier U, Schmidheiny P (1997) Enhanced anaerobic degradation of mechanically disintegrated sludge. Water Sci Technol 36(11):137–143Google Scholar
  52. 52.
    Schmitz U, Berger C, Orth H (2000) Protein analysis as simple method for the quantitative assessment of sewage sludge disintegration. Water Res 34(14):3682–3685CrossRefGoogle Scholar
  53. 53.
    APHA, AWWA, WEF (1995) Standards methods for the examination of water and wastewater, 19th edition, APHA, Washington DCGoogle Scholar
  54. 54.
    Zielewicz E, Kasprzyk W (2012) The construction of a new sewage sludge ultrasonic disintegrator. 40 Winter School on wave and quantum acoustics. In: Workshop on molecular acoustics, relaxation and calorimetric methods. http://ogpta.polsl.pl/wswqa/abstracts/41/wwomaracm
  55. 55.
    Zielewicz E (2014) Effects of ultrasonic disintegration of excess sewage sludge with the heads of various construction. In: 43rd Winter School on wave and quantum acoustics, 10th Winter workshop on molecular acoustics, relaxation and calorimetric methods. http://ogpta.polsl.pl/wswqa/abstracts/43/wwomaracm
  56. 56.
    Zielewicz E, Tytła M (2015) Effects of ultrasonic disintegration of excess sludge obtained in disintegrators of different constructions. Environ Technol 4:1–8 (Taylor and Francis Group) CrossRefGoogle Scholar
  57. 57.
    Tytła M, Zielewicz E (2016) The effect of ultrasonic disintegration process conditions on the physicochemical characteristics of excess sludge. Arch Environ Prot 42(1):19–26Google Scholar
  58. 58.
    Zielewicz E (2016) Effects of ultrasonic disintegration of excess sewage sludge. Appl Acoust 103:182–189CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Water and Wastewater EngineeringSilesian University of TechnologyGliwicePoland

Personalised recommendations