Skip to main content
Log in

Sonochemical Reactors

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mason TJ (1992) Practical sonochemistry: users guide in chemistry and chemical engineering. Ellis Horwood series in organic chemistry. Ellis Horwood, Chichester

    Google Scholar 

  2. Gogate PR, Pandit AB (2004) Sonochemical reactors: scale up aspects. Ultrason Sonochem 11(3–4):105–117

    Article  CAS  Google Scholar 

  3. Kanthale PM, Gogate PR, Pandit AB, Wilhelm AM (2003) Mapping of ultrasonic horn: link primary and secondary effects of ultrasound. Ultrason Sonochem 10:331–335

    Article  CAS  Google Scholar 

  4. Lorimer JP, Mason TJ (1987) Sonochemistry. Part 1—the physical aspects. Chem Soc Rev 16:239–274

    Article  CAS  Google Scholar 

  5. Lindley J, Mason TJ (1987) Sonochemistry: part 2—synthetic applications. Chem Soc Rev 16:275–311

    Article  CAS  Google Scholar 

  6. Mason TJ (1990) A survey of commercially available sources of ultrasound suitable for sonochemistry, in sonochemistry—uses of ultrasound in chemistry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  7. Mason TJ (1999) Sonochemistry. Oxford University Press, Oxford

    Google Scholar 

  8. Pandit AB, Moholkar VS (1996) Harness cavitation to improve processing. Chem Eng Prog 96:57–69

    Google Scholar 

  9. Vichare NP, Senthilkumar P, Moholkar VS, Gogate PR, Pandit AB (2000) Energy analysis in Acoustic cavitation. Ind Eng Chem Res 39:1480–1486

    Article  CAS  Google Scholar 

  10. Ashokkumar M, Griezer F (1999) Ultrasound assisted chemical processes. Rev Chem Eng 15:41–83

    Article  CAS  Google Scholar 

  11. Gogate PR, Pandit AB (2000) Engineering design methods for cavitation reactors I: sonochemical reactors. AIChE J 46(2):372–379

    Article  CAS  Google Scholar 

  12. Gogate PR (2002) Cavitation: an auxiliary technique in wastewater treatment schemes. Adv Environ Res 6(3):335–358

    Article  CAS  Google Scholar 

  13. Mason TJ, Lorimer JP (2002) Applied sonochemistry: uses of power ultrasound in chemistry and processing. Wiley, New York

    Book  Google Scholar 

  14. Kumar Ajay, Gogate PR, Pandit AB, Delmas H, Wilhelm AM (2004) Gas liquid mass transfer studies in sonochemical reactors. Ind Eng Chem Res 43:1812–1819

    Article  CAS  Google Scholar 

  15. Gole VL, Gogate PR (2012) A review on intensification of synthesis of biodiesel from sustainable feed stock using sonochemical reactors. Chem Eng Process 53:1–9

    Article  CAS  Google Scholar 

  16. Yusof NM, Bandar B, Yousef A, Mecit A, Jagannathan M, Ashokkumar M (2016) Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrason Sonochem 29:568–576

    Article  CAS  Google Scholar 

  17. Gogate PR (2008) Cavitational reactors for process intensification of chemical processing applications: a critical review. Chem Eng and process 47:515–527

    Article  CAS  Google Scholar 

  18. Moholkar VS, Pandit AB (1997) Bubble behavior in hydrodynamic cavitation: effect of turbulence. AIChE J 43(6):1641–1648

    Article  CAS  Google Scholar 

  19. Naidu DV, Rajan R, Kumar R, Gandhi KS, Arakeri VH, Chandrasekaran S (1994) Modeling of a batch sono-chemical reactor. Chem Eng Sci 49(6):877–888

    Article  CAS  Google Scholar 

  20. Vichare NP (1999) Studies in sonochemistry and cavitation phenomena. M Chem Eng Thesis Univ of Mumbai, Mumbai

  21. Kidak R, Ince NH (2006) Ultrasonic destruction of phenol and substituted phenols: a review of current research. Ultrason Sonochem 13:195–199

    Article  CAS  Google Scholar 

  22. Flynn HG (1964) Physics of acoustic cavitation in liquids in physical acoustics. In: Mason WP (ed) Physical acoustics, vol 1, Part B. Academic, New York

  23. Margulis MA (1981) Investigations of electrical phenomena connected with cavitation I On electrical theories of chemical and physiochemical actions of ultrasonics. Russ J Phy Chem 55:154–158

    CAS  Google Scholar 

  24. Noltingk BE, Neppiras EA (1950) Cavitation produced by ultrasonics. Proceed Phyl Soc (Lond) B63:674–685

    Article  Google Scholar 

  25. Dahlem O, Demaiffe V, Halloin V, Reisse J (1998) Direct sonication system suitable for medium scale sonochemical reactors. AIChE J 44:2724–2730

    Article  CAS  Google Scholar 

  26. Thoma G, Swofford J, Popov V, Som M (1997) Sonochemical destruction of dichloromethane and o-dichlorobenzene in aqueous solution using a nearfield acoustic processor. Adv Environ Res 1:178–193

    Google Scholar 

  27. Gonze E, Gonthier Y, Boldo P, Bernis A (1998) Standing waves in a high frequency sonoreactor: visualisation and effects. Chem Eng Sci 53:523–532

    Article  CAS  Google Scholar 

  28. Gogate PR, Mujumdar S, Pandit AB (2003) Large scale sonochemical reactors for process intensification: design and experimental validation. J Chem Technol Biotechnol 78:685–693

    Article  CAS  Google Scholar 

  29. Gogate PR, Tatake PA, Kanthale PM, Pandit AB (2002) Mapping of sonochemical reactors: review. Analysis and experimental verification. AIChE J 48(7):1542–1560

    Article  CAS  Google Scholar 

  30. Gogate PR, Pandit AB (2004) Sonophotocatalytic reactors for wastewater treatment: a critical review. AIChE J 50(5):1051–1079

    Article  CAS  Google Scholar 

  31. Mhetre AS, Gogate PR (2014) New design and mapping studies of sonochemical reactor operating at capacity of 72 L. Chem Eng J 258:69–76

    Article  CAS  Google Scholar 

  32. Son Y, Lim M, Khim J (2009) Investigation of acoustic cavitation energy in a large-scale sonoreactor. Ultrason Sonochem 16:552–556

    Article  CAS  Google Scholar 

  33. Asakura Y, Yasuda K, Kato D, Kojima Y, Koda S (2008) Development of a large sonochemical reactor at a high frequency. Chem Eng J 139:339–343

    Article  CAS  Google Scholar 

  34. Palanisamy B, Paul B, Chang C-H (2015) The synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor. Ultrason Sonochem 26:452–460

    Article  CAS  Google Scholar 

  35. Shirsath SR, Sonawane SH, Saini DR, Pandit AB (2015) Continuous precipitation of calcium carbonate using sonochemical reactor. Ultrason Sonochem 24:132–139

    Article  CAS  Google Scholar 

  36. Jolhe PD, Bhanvase BA, Patil VS, Sonawane SH (2015) Sonochemical synthesis of peracetic acid in a continuous flow micro-structured reactor. Chem Eng J 276:91–96

    Article  CAS  Google Scholar 

  37. Entezari MH, Kruus P (1996) Effect of frequency onsonochemical reactions II: temperature and intensity effects. Ultrason Sonochem 3:19–24

    Article  CAS  Google Scholar 

  38. Auzay SR, Naffrechoux JBE (2010) Comparison of characterization methods in high frequency sonochemical reactors of differing configurations. Ultrason Sonochem 17:547–554

    Article  Google Scholar 

  39. Seymore JD, Gupta RB (1997) Oxidation of aqueous pollutants using ultrasound—salt induced enhancement. Ind Eng Chem Res 36:3453–3457

    Article  Google Scholar 

  40. Servant G, Laborde JL, Hita A, Caltagirone JP, Gerard A (2003) On the interaction between ultrasound waves and bubble clouds in mono- and dual-frequency sonoreactors. Ultrason Sonochem 10:347–355

    Article  CAS  Google Scholar 

  41. Tatake PA, Pandit AB (2002) Modelling and experimental investigation into cavity dynamics and cavitational yield: influence of dual frequency ultrasound sources. Chem Eng Sci 57:4987–4995

    Article  CAS  Google Scholar 

  42. Yotsumoto T, Morita T, Noiri Y, Kojima Y, Asakura Y, Koda S (2014) Influence of pressure and temperature on sonochemical reaction in a flow-type reactor equipped with a PZT transducer. Jpn J Appl Phys 53 (7 SPEC ISSUE):07KE09

  43. Gogate PR, Shaha S, Csoka L (2015) Intensification of cavitational activity using gases in different types of sonochemical reactors. Chem Eng J 262:1033–1042

    Article  CAS  Google Scholar 

  44. Gogate PR, Katekhaye SN (2012) A comparison of the degree of intensification due to the use of additives in ultrasonic horn and ultrasonic bath. Chem Eng Proc 61:23–29

    Article  CAS  Google Scholar 

  45. Wei Z, Weavers LK (2016) Combining COMSOL modeling with acoustic pressure maps to design sono-reactors. Ultrason Sonochem 31:490–498

    Article  CAS  Google Scholar 

  46. Tudela I, Sáez V, Esclapez MD, Díez-García MI, Bonete P, González-García J (2014) Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review. Ultrason Sonochem 21(3):909–919

    Article  CAS  Google Scholar 

  47. Sutkar VS, Gogate PR, Csoka L (2010) Theoretical prediction of cavitational activity distribution in sonochemical reactors. Chem Eng J 158:290–295

    Article  CAS  Google Scholar 

  48. Balasundaram B, Pandit AB (2001) Selective release of invertase by hydrodynamic cavitation. Biochem Eng J 8:251–256

    Article  CAS  Google Scholar 

  49. Kurokawa M, King PM, Wu X, Joyce EM, Mason TJ, Yamamoto K (2016) Effect of sonication frequency on the disruption of algae. Ultrason Sonochem 31:157–162

    Article  CAS  Google Scholar 

  50. Phull SS, Newman AP, Lorimer JP, Pollet B, Mason TJ (1997) The development and evaluation of ultrasound in the biocidal treatment of water. Ultrason Sonochem 4:157–164

    Article  CAS  Google Scholar 

  51. Piyasena P, Mohareb E, McKellar RC (2003) Inactivation of microbes using ultrasound:a review. Int J Food Microbiol 87:207–216

    Article  CAS  Google Scholar 

  52. Blume T, Neis U (2005) Improving chlorine disinfection of wastewater by ultrasound application. Water Sci Technol 52:139–144

    CAS  Google Scholar 

  53. Sangave PC, Pandit AB (2004) Ultrasound pre-treatment for enhanced biodegradability of the distillery wastewater. Ultrason Sonochem 11:197–203

    Article  CAS  Google Scholar 

  54. Sangave PC, Gogate PR, Pandit AB (2007) Ultrasound and ozone assisted biological degradation of thermally pretreated and anaerobically pretreated distillery wastewater. Chemosphere 68:42–50

    Article  CAS  Google Scholar 

  55. Nickel K, Neis U (2007) Ultrasonic disintegration of bio solids for improved biodegradation. Ultrason Sonochem 14:450–455

    Article  CAS  Google Scholar 

  56. Chisti Y (2003) Sonobioreactors: using ultrasound for enhanced microbial productivity. Trends Biotechnol 21:89–93

    Article  CAS  Google Scholar 

  57. Zhang G, Zhang P, Gao J, Chen Y (2008) Using acoustic cavitation to improve thebio-activity of activated sludge. Bioresour Technol 99:1497–1502

    Article  CAS  Google Scholar 

  58. Cravatto G, Cintas P (2006) Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem Soc Rev 35:180–196

    Article  Google Scholar 

  59. Nebois P, Bouaziz Z, Fillion H, Moeini L, Aurell Piquer MJ, Luche JL, Riera A, Moyano A, Pericas MA (1996) The Diels-Alder cycloaddition an intriguing problem in organic sonochemistry. Ultrason Sonochem 3:7–13

    Article  CAS  Google Scholar 

  60. Luche JL, Einhorn C, Einhorn J, de Souza Barboza JC, Petrier C, Dupuy C, Delair P, Allavena C, Tuschl T (1990) Ultrasonic waves as promoters of radical processes in chemistry: the case of organometallic reactions. Ultrasonics 28(5):316–321

    Article  CAS  Google Scholar 

  61. Luque de Castro MD, Priego-Capote F (2007) Ultrasound-assisted crystallization (sonocrystallization). Ultrason Sonochem 14:717–724

    Article  CAS  Google Scholar 

  62. Amara N, Ratsimba B, Wilhelm AM, Delmas H (2001) Crystallization of potashalum: effect of power ultrasound. Ultrason Sonochem 8:265–270

    Article  CAS  Google Scholar 

  63. Li H, Li H, Guo Z, Liu Y (2006) The application of power ultrasound to reaction crystallization. Ultrason Sonochem 13:359–363

    Article  Google Scholar 

  64. Adewuyi YG (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681–4715

    Article  CAS  Google Scholar 

  65. Adewuyi YG (2005) Sonochemistry in environmental remediation 2 heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water. Environ Sci Technol 39:8557–8570

    Article  CAS  Google Scholar 

  66. Patil AL, Patil PN, Gogate PR (2014) Degradation of imidacloprid containing wastewaters using ultrasound based treatment strategies. Ultrason Sonochem 21:1778–1786

    Article  CAS  Google Scholar 

  67. Shirsath SR, Sonawane SH, Gogate PR (2012) Intensification of extraction of natural products using ultrasonic irradiations—a review of current status. Chem Eng Proc 53:10–23

    Article  CAS  Google Scholar 

  68. Vinatoru M (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 8:303–313

    Article  CAS  Google Scholar 

  69. Tata DB, Biglow J, Wu J, Tritton TR, Dunn F (1996) Ultrasound-enhanced hydroxyl radical production from two clinically employed anticancer drugs: adriamycin and mitomycin C. Ultrason Sonochem 3:39–45

    Article  CAS  Google Scholar 

  70. Supersaxo A, Kou JH (1995) Controlled delivery of pharmaceuticals from preformed porous polymeric microparticles. US Patent 5:470–582

    Google Scholar 

  71. Dalmoro A, Barba AA, Lamberti G, d’Amore M (2012) Intensifying the microencapsulation process: ultrasonic atomization as an innovative approach. Euro J Pharma Biopharma 80:471–477

    Article  CAS  Google Scholar 

  72. Boukroufa M, Boutekedjiret C, Petigny L, Rakotomanoman N, Chemat F (2015) Bio-refinery of orange peels waste: a new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil polyphenols and pectin. Ultrason Sonochem 24:72–79

    Article  CAS  Google Scholar 

  73. Gude VG (2015) Synergism of microwaves and ultrasound for advanced biorefineries. Resour Eff Tech 1:116–125

    Google Scholar 

  74. Khokhawala IM, Gogate PR (2010) Degradation of phenol using a combination of ultrasonic and UV irradiations at pilot scale operation. Ultrason Sonochem 17:833–838

    Article  CAS  Google Scholar 

  75. Tenster I, Matafonov G, Batoev V (2015) Combination of high-frequency ultrasound and UV radiation of excilamp for surface disinfection. Eng Life Sci 15:830–834

    Article  Google Scholar 

  76. Tezcanli-GiiUyer G, Ince NH (2004) Individual and combined effects of ultrasound ozone and UV irradiation: a case study with textile dyes. Ultrasonics 42:603–609

    Article  Google Scholar 

  77. Franke M, Braeutigam P, Wu ZY, Ren Y, Ondruschka B (2011) Enhancement of chloroform degradation by the combination of hydrodynamic and acoustic cavitation. Ultrason Sonochem 18:888–894

    Article  CAS  Google Scholar 

  78. Franke M, Ondruschka B, Braeutigam P (2014) Hydrodynamic-acoustic-cavitation for biodiesel synthesis. In: 3rd international conference on environment chemistry and biology singapore IPCBEE 78.  doi:10.7763/IPCBEE. 2014.V78.6

  79. Braeutigam P, Franke M, Schneider RJ, Lehmann A, Stolle A, Ondruschka B (2012) Degradation of carbamazepine in environmentally relevant concentrations in water by Hydrodynamic-Acoustic -Cavitation (HAC). Water Res 46:2469–2477

    Article  CAS  Google Scholar 

  80. Gogate PR, McGuire D, Mededovic Thagard S, Cathey R, Blackmon J, Chapas G (2014) Hybrid advanced oxidation reactor technology: from concept to practical reality. Ultrason Sonochem 21:590–598

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag R. Gogate.

Additional information

This article is part of the Topical Collection “Sonochemistry: From basic principles to innovative applications”; edited by Juan Carlos Colmenares Q., Gregory Chatel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogate, P.R., Patil, P.N. Sonochemical Reactors. Top Curr Chem (Z) 374, 61 (2016). https://doi.org/10.1007/s41061-016-0064-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0064-9

Keywords

Navigation