Advertisement

Topics in Current Chemistry

, 374:62 | Cite as

Raman Spectroscopy of cultural heritage Materials: Overview of Applications and New Frontiers in Instrumentation, Sampling Modalities, and Data Processing

  • Francesca Casadio
  • Céline Daher
  • Ludovic Bellot-Gurlet
Review
Part of the following topical collections:
  1. Analytical Chemistry for cultural heritage

Abstract

Rooted in the long tradition of Raman spectroscopy of cultural heritage materials, in this work we provide a personal perspective on recent applications and new frontiers in sampling modalities, data processing, and instrumentation.

Keywords

Raman spectroscopy Cultural heritage Archaeometry Data processing SERS SORS 

Notes

Acknowledgments

Research at the Art Institute of Chicago is supported through generous grants of the Andrew W. Mellon Foundation and Grainger Foundation. Grant DMR-0723053 from the National Science Foundation is also gratefully acknowledged for the acquisition of a FT-Raman spectrometer at the Art Institute of Chicago. Claudia Conti and Pavel Matousek are thanked for generously sharing the material reproduced in Fig. 2 for this review. F.C. thanks Prof. Richard P. Van Duyne of Northwestern University for several years of collaboration and inspiration in SERS.

References

  1. 1.
    Aceto M, Agostino A, Boccaleri E, Crivello F, Cerutti Garlanda A (2010) Identification of copper carboxylates as degradation residues on an ancient manuscript. J Raman Spectrosc 41:1434–1440. doi: 10.1002/jrs.2650 CrossRefGoogle Scholar
  2. 2.
    Aceto M, Agostino A, Boccaleri E, Crivello F, Garlanda AC (2006) Evidence for the degradation of an alloy pigment on an ancient Italian manuscript. J Raman Spectrosc 37:1160–1170. doi: 10.1002/jrs.1604 CrossRefGoogle Scholar
  3. 3.
    Aceto M, Agostino A, Fenoglio G, Gulmini M, Bianco V, Pellizzi E (2012) Non invasive analysis of miniature paintings: proposal for an analytical protocol. Spectrochim Acta A 91:352–359. doi: 10.1016/j.saa.2012.02.021 CrossRefGoogle Scholar
  4. 4.
    Aceto M, Agostino A, Fenoglio G, Idone A, Gulmini M, Picollo M, Ricciardi P, Delaney JK (2014) Characterisation of colourants on illuminated manuscripts by portable fibre optic UV-visible-NIR reflectance spectrophotometry. Anal Methods 6:1488–1500. doi: 10.1039/c3ay41904e CrossRefGoogle Scholar
  5. 5.
    Aceto M, Arrais A, Marsano F, Agostino A, Fenoglio G, Idone A, Gulmini M (2015) A diagnostic study on folium and orchil dyes with non-invasive and micro-destructive methods. Spectrochim Acta A 142:159–168. doi: 10.1016/j.saa.2015.02.001 CrossRefGoogle Scholar
  6. 6.
    Akhtar W, Edwards HGM (1997) Fourier-transform Raman spectroscopy of mammalian and avian keratotic biopolymers. Spectrochim Acta A 53:81–90. doi: 10.1016/S1386-1425(97)83011-9 Google Scholar
  7. 7.
    Allen V, Kalivas JH, Rodriguez RG (1999) Post-consumer plastic identification using Raman spectroscopy. Appl Spectrosc 53:672–681CrossRefGoogle Scholar
  8. 8.
    Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11:3805–3821. doi: 10.1039/b900654k CrossRefGoogle Scholar
  9. 9.
    Andò S, Bersani D, Vignola P, Garzanti E (2009) Raman spectroscopy as an effective tool for high-resolution heavy-mineral analysis: examples from major Himalayan and Alpine fluvio-deltaic systems. Spectrochim Acta A 73:450–455CrossRefGoogle Scholar
  10. 10.
    Aramendia J, Gomez-Nubla L, Bellot-Gurlet L, Castro K, Paris C, Colomban P, Madariaga JM (2014) Protective ability index measurement through Raman quantification imaging to diagnose the conservation state of weathering steel structures. J Raman Spectrosc 45:1076–1084CrossRefGoogle Scholar
  11. 11.
    Aramendia J, Gomez-Nubla L, Castro K, Martinez-Arkarazo I, Vega D, López Sanz, de Heredia A, Ibáñez García, de Opakua A, Madariaga JM (2012) Portable Raman study on the conservation state of four CorTen steel-based sculptures by Eduardo Chillida impacted by urban atmospheres. J Raman Spectrosc 43:1111–1117. doi: 10.1002/jrs.3158 CrossRefGoogle Scholar
  12. 12.
    Arslanoglu J, Zaleski S, Loike J (2011) An improved method of protein localization in artworks through SERS nanotag-complexed antibodies. Anal Bioanal Chem 399:2997–3010. doi: 10.1007/s00216-010-4378-0 CrossRefGoogle Scholar
  13. 13.
    Baert K, Meulebroeck W, Wouters H, Cosyns P, Nys K, Thienpont H, Terryn H (2011) Using Raman spectroscopy as a tool for the detection of iron in glass. J Raman Spectrosc 42:1789–1795CrossRefGoogle Scholar
  14. 14.
    Barone G, Bersani D, Jehlička J, Lottici PP, Mazzoleni P, Raneri S, Vandenabeele P, Di Giacomo C, Larinà G (2015) Nondestructive investigation on the 17–18th centuries Sicilian jewelry collection at the Messina regional museum using mobile Raman equipment. J Raman Spectrosc 46:989–995CrossRefGoogle Scholar
  15. 15.
    Barry BW, Edwards HGM, Williams AC (1992) Fourier transform Raman and IR vibrational study of human skin: assignment of spectral bands. J Raman Spectrosc 23:641–645. doi: 10.1002/jrs.1250231113 CrossRefGoogle Scholar
  16. 16.
    Bell IM, Clark RJH, Gibbs PJ (1997) Raman spectroscopic library of natural and synthetic pigments (pre- ≈1850 AD). Spectrochim Acta A 53:2159–2179. doi: 10.1016/S1386-1425(97)00140-6 CrossRefGoogle Scholar
  17. 17.
    Bellot-Gurlet L, Le Bourdonnec F-X, Poupeau G, Dubernet S (2004) Raman micro-spectroscopy of western Mediterranean obsidian glass: one step towards provenance studies? J Raman Spectrosc 35:671–677CrossRefGoogle Scholar
  18. 18.
    Bellot-Gurlet L, Neff D, Reguer S, Monnier J, Saheb M, Dillmann P (2009) Raman studies of corrosion layers formed on archaeological irons in various media. J Nano Res 8:147–156CrossRefGoogle Scholar
  19. 19.
    Bell SEJ, Bourguignon ESO, Dennis A (1998) Analysis of luminescent samples using subtracted shifted Raman spectroscopy. Analyst 123:1729–1734CrossRefGoogle Scholar
  20. 20.
    Benedetti DP, Zhang J, Tague TJ, Lombardi JR, Leona M (2014) In situ microanalysis of organic colorants by inkjet colloid deposition surface-enhanced Raman scattering. J Raman Spectrosc 45:123–127. doi: 10.1002/jrs.4424 CrossRefGoogle Scholar
  21. 21.
    Bergamonti L, Bersani D, Mantovan S, Lottici PP (2013) Micro-Raman investigation of pigments and carbonate phases in corals and molluscan shells. Eur J Miner 25:845–853CrossRefGoogle Scholar
  22. 22.
    Bersani D, Andò S, Vignola P, Moltifiori G, Marino I-G, Lottici PP, Diella V (2009) Micro-Raman spectroscopy as a routine tool for garnet analysis. Spectrochim Acta A 73:484–491CrossRefGoogle Scholar
  23. 23.
    Bersani D, Azzi G, Lambruschi E, Barone G, Mazzoleni P, Raneri S, Longobardo U, Lottici PP (2014) Characterization of emeralds by micro-Raman spectroscopy. J Raman Spectrosc 45:1293–1300CrossRefGoogle Scholar
  24. 24.
    Bersani D, Lottici PP (2010) Applications of Raman spectroscopy to gemology. Anal Bioanal Chem 397:2631–2646. doi: 10.1007/s00216-010-3700-1 CrossRefGoogle Scholar
  25. 25.
    Bersani D, Lottici PP, Virgenti S, Sodo A, Malvestuto G, Botti A, Salvioli-Mariani E, Tribaudino M, Ospitali F, Catarsi M (2010) Multi-technique investigation of archaeological pottery from Parma (Italy). J Raman Spectrosc 41:1556–1561CrossRefGoogle Scholar
  26. 26.
    Bicchieri M, Monti M, Piantanida G, Sodo A (2008) All that is iron-ink is not always iron-gall! J Raman Spectrosc 39:1074–1078. doi: 10.1002/jrs.1995 CrossRefGoogle Scholar
  27. 27.
    Bicchieri M, Monti M, Piantanida G, Sodo A (2013) Non-destructive spectroscopic investigation on historic Yemenite scriptorial fragments: evidence of different degradation and recipes for iron tannic inks. Anal Bioanal Chem 405:2713–2721. doi: 10.1007/s00216-012-6681-4 CrossRefGoogle Scholar
  28. 28.
    Bouchard M, Gambardella A (2010) Raman microscopy study of synthetic cobalt blue spinels used in the field of art. J Raman Spectrosc 41:1477–1485. doi: 10.1002/jrs.2645 CrossRefGoogle Scholar
  29. 29.
    Bouchard M, Smith DC (2003) Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim Acta A 59:2247–2266CrossRefGoogle Scholar
  30. 30.
    Brambilla A, Osticioli I, Nevin A, Comelli D, D’Andrea C, Lofrumento C, Valentini G, Cubeddu R (2011) A remote scanning Raman spectrometer for in situ measurements of works of art. Rev Sci Instrum 82:063109. doi: 10.1063/1.3600565 CrossRefGoogle Scholar
  31. 31.
    Braz A, Lopez-Lopez M, Garcia-Ruiz C (2013) Raman spectroscopy for forensic analysis of inks in questioned documents. Forensic Sci Int 232:206–212. doi: 10.1016/j.forsciint.2013.07.017 CrossRefGoogle Scholar
  32. 32.
    Brody RH, Edwards HGM, Pollard AM (2001) A study of amber and copal samples using FT-Raman spectroscopy. Spectrochim Acta A 57:1325–1338CrossRefGoogle Scholar
  33. 33.
    Brody RH, Edwards HGM, Pollard AM (2002) Fourier transform-Raman spectroscopic study of natural resins of archaeological interest. Biopolymers 67:129–141CrossRefGoogle Scholar
  34. 34.
    Bronzato M, Zoleo A, Biondi B, Centeno SA (2016) An insight into the metal coordination and spectroscopic properties of artistic Fe and Fe/Cu logwood inks. Spectrochim Acta Part 153:522–529. doi: 10.1016/j.saa.2015.08.042 CrossRefGoogle Scholar
  35. 35.
    Brosseau CL, Casadio F, Van Duyne RP (2011) Revealing the invisible: using surface-enhanced Raman spectroscopy to identify minute remnants of color in Winslow Homer’s colorless skies. J Raman Spectrosc 42:1305–1310. doi: 10.1002/jrs.2877 CrossRefGoogle Scholar
  36. 36.
    Brosseau CL, Gambardella A, Casadio F, Grzywacz CM, Wouters J, Van Duyne RP (2009) Ad-hoc surface-enhanced Raman spectroscopy methodologies for the detection of artist dyestuffs: thin layer chromatography-surface enhanced Raman spectroscopy and in situ on the fiber analysis. Anal Chem 81:3056–3062. doi: 10.1021/ac802761v CrossRefGoogle Scholar
  37. 37.
    Brosseau CL, Rayner KS, Casadio F, Grzywacz CM, van Duyne RP (2009) Surface-enhanced Raman spectroscopy: a direct method to identity colorants in various artist media. Anal Chem 81:7443–7447CrossRefGoogle Scholar
  38. 38.
    Bruni S, Cariati F, Bianchi CL, Zanardini E, Sorlini C (1995) Spectroscopic investigation of red stains affecting the Carrara marble façade of the certosa of pavia. Archaeometry 37:249–255. doi: 10.1111/j.1475-4754.1995.tb00741.x CrossRefGoogle Scholar
  39. 39.
    Bruni S, De Luca E, Guglielmi V, Pozzi F (2011) Identification of natural dyes on laboratory-dyed wool and ancient wool, silk, and cotton fibers using attenuated total reflection (ATR) Fourier transform IR (FT-IR) spectroscopy and Fourier transform Raman spectroscopy. Appl Spectrosc 65:1017–1023. doi: 10.1366/10-06203 CrossRefGoogle Scholar
  40. 40.
    Bruni S, Guglielmi V, Pozzi F (2011) Historical organic dyes: a surface-enhanced Raman scattering (SERS) spectral database on Ag Lee-Meisel colloids aggregated by NaClO4. J Raman Spectrosc 42:1267–1281. doi: 10.1002/jrs.2872 CrossRefGoogle Scholar
  41. 41.
    Bruni S, Guglielmi V, Pozzi F (2010) Surface-enhanced Raman spectroscopy (SERS) on silver colloids for the identification of ancient textile dyes: tyrian purple and madder. J Raman Spectrosc 41:175–180. doi: 10.1002/jrs.2456 Google Scholar
  42. 42.
    Buckley K, Matousek P (2011) Non-invasive analysis of turbid samples using deep Raman spectroscopy. Analyst 136:3039–3050. doi: 10.1039/c0an00723d CrossRefGoogle Scholar
  43. 43.
    Burgio L, Clark RJ (2001) Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim Acta A 57:1491–1521. doi: 10.1016/S1386-1425(00)00495-9 CrossRefGoogle Scholar
  44. 44.
    Burgio L, Clark RJH, Firth S (2001) Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products. Analyst 126:222–227. doi: 10.1039/B008302J CrossRefGoogle Scholar
  45. 45.
    Burgio L, Clark RJH, Hark RR (2010) Raman microscopy and X-ray fluorescence analysis of pigments on medieval and Renaissance Italian manuscript cuttings. Proc Natl Acad Sci USA 107:5726–5731. doi: 10.1073/pnas.0914797107 CrossRefGoogle Scholar
  46. 46.
    Burgio L, Clark RJH, Hark RR (2009) Spectroscopic investigation of modern pigments on purportedly medieval miniatures by the “Spanish Forger”. J Raman Spectrosc 40:2031–2036. doi: 10.1002/jrs.2364 CrossRefGoogle Scholar
  47. 47.
    Burgio L, Clark RJH, Muralha VSF, Stanley T (2008) Pigment analysis by Raman microscopy of the non-figurative illumination in 16th- to 18th-century Islamic manuscripts. J Raman Spectrosc 39:1482–1493. doi: 10.1002/jrs.2027 CrossRefGoogle Scholar
  48. 48.
    Buzzini P, Suzuki E (2015) Forensic applications of Raman spectroscopy for the in situ analyses of pigments and dyes in ink and paint evidence. J Raman Spectrosc. doi: 10.1002/jrs.4818 Google Scholar
  49. 49.
    Cañamares MV, Chenal C, Birke RL, Lombardi JR (2008) DFT, SERS, and single-molecule SERS of crystal violet. J Phys Chem C 112:20295–20300. doi: 10.1021/jp807807j CrossRefGoogle Scholar
  50. 50.
    Cañamares MV, Garcia-Ramos JV, Domingo C, Sanchez-Cortes S (2004) Surface-enhanced Raman scattering study of the adsorption of the anthraquinone pigment alizarin on Ag nanoparticles. J Raman Spectrosc 35:921–927. doi: 10.1002/jrs.1228 CrossRefGoogle Scholar
  51. 51.
    Cañamares MV, Garcia-Ramos JV, Gomez-Varga JD, Domingo C, Sanchez-Cortes S (2007) Ag nanoparticles prepared by laser photoreduction as substrates for in situ surface-enhanced raman scattering analysis of dyes. Langmuir 23:5210–5215. doi: 10.1021/la063445v CrossRefGoogle Scholar
  52. 52.
    Cañamares MV, Lombardi JR, Leona M (2008) Surface-enhanced Raman scattering of protoberberine alkaloids. J Raman Spectrosc 39:1907–1914. doi: 10.1002/jrs.2057 CrossRefGoogle Scholar
  53. 53.
    Cañamares MV, Reagan DA, Lombardi JR, Leona M (2014) TLC-SERS of mauve, the first synthetic dye. J Raman Spectrosc 45:1147–1152. doi: 10.1002/jrs.4508 CrossRefGoogle Scholar
  54. 54.
    Carrabba MM, Spencer KM, Rich C, Rauh D (1990) The utilization of a holographic Bragg diffraction filter for Rayleigh line rejection in Raman spectroscopy. Appl Spectrosc 44:1558–1561CrossRefGoogle Scholar
  55. 55.
    Casadio F, Bezur A, Fiedler I, Muir K, Trad T, Maccagnola S (2012) Pablo Picasso to Jasper Johns: a Raman study of cobalt-based synthetic inorganic pigments. J Raman Spectrosc 43:1761–1771. doi: 10.1002/jrs.4081 CrossRefGoogle Scholar
  56. 56.
    Casadio F, Douglas JG, Faber KT (2007) Noninvasive methods for the investigation of ancient Chinese jades: an integrated analytical approach. Anal Bioanal Chem 387:791–801. doi: 10.1007/s00216-006-0684-y CrossRefGoogle Scholar
  57. 57.
    Casadio F, Leona M, Lombardi JR, Van Duyne R (2010) Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Acc Chem Res 43:782–791. doi: 10.1021/ar100019q CrossRefGoogle Scholar
  58. 58.
    Casanova Municchia A, Micheli M, Ricci MA, Toledo M, Bellatreccia F, Mastro SL, Sodo A (2016) Raman, SEM-EDS and XRPD investigations on pre-Columbian Central America “estucado” pottery. Spectrochim Acta A 156:47–53CrossRefGoogle Scholar
  59. 59.
    Castanys M, Perez-Pueyo R, Soneira MJ, Golobardes E, Fornells A (2011) Identification of Raman spectra through a case-based reasoning system: application to artistic pigments. J Raman Spectrosc 42:1553–1561CrossRefGoogle Scholar
  60. 60.
    Castro K, Perez-Alonso M, Rodri-guez-Laso MD, Fernandez LA, Madariaga JM (2005) On-line FT-Raman and dispersive Raman spectra database of artists’ materials (e-VISART database). Anal Bioanal Chem 382:248–258CrossRefGoogle Scholar
  61. 61.
    Centeno SA (2016) Identification of artistic materials in paintings and drawings by Raman spectroscopy: some challenges and future outlook. J Raman Spectrosc 47:9–15. doi: 10.1002/jrs.4767 CrossRefGoogle Scholar
  62. 62.
    Centeno SA, Bronzato M, Ropret P, Zoleo A, Venzo A, Bogialli S, Badocco D (2016) Composition and spectroscopic properties of historic Cr logwood inks. J Raman Spectrosc. doi: 10.1002/jrs.4938 Google Scholar
  63. 63.
    Centeno SA, Buisan VL, Ropret P (2006) Raman study of synthetic organic pigments and dyes in early lithographic inks (1890–1920). J Raman Spectrosc 37:1111–1118. doi: 10.1002/jrs.1594 CrossRefGoogle Scholar
  64. 64.
    Centeno SA, Meller T, Kennedy N, Wypyski M (2008) The daguerreotype surface as a SERS substrate: characterization of image deterioration in plates from the 19th century studio of Southworth & Hawes. J Raman Spectrosc 39:914–921. doi: 10.1002/jrs.1934 CrossRefGoogle Scholar
  65. 65.
    Centeno SA, Ropret P, Federico ED, Shamir J, Itin B, Jerschow A (2010) Characterization of Al(III) complexes with hematein in artistic alum logwood inks. J Raman Spectrosc 41:445–451. doi: 10.1002/jrs.2455 Google Scholar
  66. 66.
    Centeno SA, Shamir J (2008) Surface enhanced Raman scattering (SERS) and FTIR characterization of the sepia melanin pigment used in works of art. J Mol Struct 873:149–159. doi: 10.1016/j.molstruc.2007.03.026 CrossRefGoogle Scholar
  67. 67.
    Cesaratto A, Leona M, Lombardi JR, Comelli D, Nevin A, Londero P (2014) Detection of organic colorants in historical painting layers using UV laser ablation surface-enhanced Raman microspectroscopy. Angew Chem Int Ed 53:14373–14377. doi: 10.1002/anie.201408016 CrossRefGoogle Scholar
  68. 68.
    Chalmers JM, Edwards HGM, Hargreaves MD (2012) IR and Raman spectroscopy in forensic science. Wiley, ChichesterCrossRefGoogle Scholar
  69. 69.
    Chaplin TD, Clark RJH, Jacobs D, Jensen K, Smith GD (2005) The Gutenberg bibles: analysis of the illuminations and inks using Raman spectroscopy. Anal Chem 77:3611–3622. doi: 10.1021/ac050346y CrossRefGoogle Scholar
  70. 70.
    Chaplin TD, Clark RJH, Scott DA (2006) Study by Raman microscopy of nine variants of the green–blue pigment verdigris. J Raman Spectrosc 37:223–229. doi: 10.1002/jrs.1469 CrossRefGoogle Scholar
  71. 71.
    Chaplin TD, Clark RJH, Singer BW (2014) Early 20th C Russian painting? Raman identification of modern pigments on a pastel supposedly Painted by the renowned artist Natalia Goncharova. J Raman Spectrosc 45:1322–1325. doi: 10.1002/jrs.4569 CrossRefGoogle Scholar
  72. 72.
    Chen T-H (2008) A Raman spectroscopic study of heat-treated nephrite. Phase Transit 81:205–216CrossRefGoogle Scholar
  73. 73.
    Christensen M, Frosch M, Jensen P, Schnell U, Shashoua Y, Nielsen OF (2006) Waterlogged archaeological wood—chemical changes by conservation and degradation. J Raman Spectrosc 37:1171–1178. doi: 10.1002/jrs.1589 CrossRefGoogle Scholar
  74. 74.
    Christensen M, Nielsen OF, Jensen P, Schnell U (2005) Water structure in polyethylene glycols for preservation of wooden artefacts. A NIR-FT-Raman spectroscopic investigation. J Mol Struct 735–736:267–270. doi: 10.1016/j.molstruc.2004.10.090 CrossRefGoogle Scholar
  75. 75.
    Cianchetta I, Maish J, Saunders D, Walton M, Mehta A, Foran B, Trentelman K (2015) Investigating the firing protocol of Athenian pottery production: a Raman study of replicate and ancient sherds. J Raman Spectrosc 46:996–1002CrossRefGoogle Scholar
  76. 76.
    Ciliberto E, Spoto G (2000) Modern analytical methods in art and archaeology. Wiley, New YorkGoogle Scholar
  77. 77.
    Clark RJH (2007) The scientific investigation of artwork and archaeological artefacts: Raman microscopy as a structural, analytical and forensic tool. Appl Phys A 89:833–840. doi: 10.1007/s00339-007-4212-5 CrossRefGoogle Scholar
  78. 78.
    Clark RJH (1995) Raman microscopy: application to the identification of pigments on medieval manuscripts. Chem Soc Rev 24:187–196. doi: 10.1039/CS9952400187 CrossRefGoogle Scholar
  79. 79.
    Clark RJH, Cridland L, Kariuki BM, Harris KDM, Withnall R (1995) Synthesis, structural characterisation and Raman spectroscopy of the inorganic pigments lead tin yellow types I and II and lead antimonate yellow: their identification on medieval paintings and manuscripts. J Chem Soc Dalton Trans. doi: 10.1039/DT9950002577 Google Scholar
  80. 80.
    Clark RJH, Wang Q, Correia A (2007) Can the Raman spectrum of anatase in artwork and archaeology be used for dating purposes? Identification by Raman microscopy of anatase in decorative coatings on Neolithic (Yangshao) pottery from Henan, China. J Archaeol Sci 34:1787–1793. doi: 10.1016/j.jas.2006.12.018 CrossRefGoogle Scholar
  81. 81.
    Coccato A, Jehlicka J, Moens L, Vandenabeele P (2015) Raman spectroscopy for the investigation of carbon-based black pigments. J Raman Spectrosc 46:1003–1015. doi: 10.1002/jrs.4715 CrossRefGoogle Scholar
  82. 82.
    Coccato A, Karampelas S, Wörle M, van Willigen S, Pétrequin P (2014) Gem quality and archeological green “jadeite jade” versus “omphacite jade”. J Raman Spectrosc. doi: 10.1002/jrs.4512 Google Scholar
  83. 83.
    Colomban P (2003) Polymerisation degree and Raman identification of ancient glasses used for jewelry, ceramic enamel and mosaics. J Non Cryst Solids 323:180–187CrossRefGoogle Scholar
  84. 84.
    Colomban P (2004) Raman spectrometry, a unique tool to analyze and classify ancient ceramics and glasses. Appl Phys A 79:167–170. doi: 10.1007/s00339-004-2512-6 CrossRefGoogle Scholar
  85. 85.
    Colomban P (2012) The on-site/remote Raman analysis with mobile instruments: a review of drawbacks and success in cultural heritage studies and other associated fields. J Raman Spectrosc 43:1529–1535CrossRefGoogle Scholar
  86. 86.
    Colomban P, Paulsen O (2005) Non-destructive determination of the structure and composition of glazes by Raman spectroscopy. J Am Ceram Soc 88:390–395. doi: 10.1111/j.1551-2916.2005.00096.x CrossRefGoogle Scholar
  87. 87.
    Colomban P, Sagon G, Faurel X (2001) Differentiation of antique ceramics from the Raman spectra of their coloured glazes and paintings. J Raman Spectrosc 32:351–360. doi: 10.1002/jrs.704 CrossRefGoogle Scholar
  88. 88.
    Colomban P, Schreiber HD (2005) Raman signature modification induced by copper nanoparticles in silicate glass. J Raman Spectrosc 36:884–890CrossRefGoogle Scholar
  89. 89.
    Colomban P, Tournié A, Bellot-Gurlet L (2006) Raman identification of glassy silicates used in ceramics, glass and jewellery: a tentative differentiation guide. J Raman Spectrosc 37:841–852CrossRefGoogle Scholar
  90. 90.
    Colomban P, Treppoz F (2001) Identification and differentiation of ancient and modern European porcelains by Raman macro- and micro-spectroscopy†. J Raman Spectrosc 32:93–102. doi: 10.1002/jrs.678 CrossRefGoogle Scholar
  91. 91.
    Conti C, Aliatis I, Casati M, Colombo C, Matteini M, Negrotti R, Realini M, Zerbi G (2014) Diethyl oxalate as a new potential conservation product for decayed carbonatic substrates. J Cult Herit 15:336–338. doi: 10.1016/j.culher.2013.08.002 CrossRefGoogle Scholar
  92. 92.
    Conti C, Aliatis I, Colombo C, Greco M, Possenti E, Realini M, Castiglioni C, Zerbi G (2012) μ-Raman mapping to study calcium oxalate historical films. J Raman Spectrosc 43:1604–1611CrossRefGoogle Scholar
  93. 93.
    Conti C, Colombo C, Dellasega D, Matteini M, Realini M, Zerbi G (2011) Ammonium oxalate treatment: evaluation by mu-Raman mapping of the penetration depth in different plasters. J Cult Herit 12:372–379. doi: 10.1016/j.culher.2011.03.004 CrossRefGoogle Scholar
  94. 94.
    Conti C, Colombo C, Matteini M, Realini M, Zerbi G (2010) Micro-Raman mapping on polished cross-sections: a tool to define the penetration depth of conservation treatment on cultural heritage. J Raman Spectrosc 41:1254–1260CrossRefGoogle Scholar
  95. 95.
    Conti C, Colombo C, Realini M, Matousek P (2015) Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset Raman spectroscopy (micro-SORS). J Raman Spectrosc 46:476–482. doi: 10.1002/jrs.4673 CrossRefGoogle Scholar
  96. 96.
    Conti C, Colombo C, Realini M, Zerbi G, Matousek P (2014) Subsurface Raman analysis of thin painted layers. Appl Spectrosc 68:686–691. doi: 10.1366/13-07376 CrossRefGoogle Scholar
  97. 97.
    Conti C, Realini M, Botteon A, Colombo C, Noll S, Elliott SR, Matousek P (2016) Analytical capability of defocused µ-SORS in the chemical interrogation of thin turbid painted layers. Appl Spectrosc 70:156–161CrossRefGoogle Scholar
  98. 98.
    Conti C, Realini M, Colombo C, Matousek P (2015) Comparison of key modalities of micro-scale spatially offset Raman spectroscopy. Analyst 140:8127–8133. doi: 10.1039/c5an01900a CrossRefGoogle Scholar
  99. 99.
    Conti C, Realini M, Colombo C, Sowoidnich K, Afseth NK, Bertasa M, Botteon A, Matousek P (2015) Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy. Anal Chem 87:5810–5815. doi: 10.1021/acs.analchem.5b01080 CrossRefGoogle Scholar
  100. 100.
    Conti C, Striova J, Aliatis I, Colombo C, Greco M, Possenti E, Realini M, Brambilla L, Zerbi G (2013) Portable Raman versus portable mid-FTIR reflectance instruments to monitor synthetic treatments used for the conservation of monument surfaces. Anal Bioanal Chem 405:1733–1741CrossRefGoogle Scholar
  101. 101.
    Conti C, Striova J, Aliatis I, Possenti E, Massonnet G, Muehlethaler C, Poli T, Positano M (2014) The detection of copper resinate pigment in works of art: contribution from Raman spectroscopy. J Raman Spectrosc 45:1186–1196. doi: 10.1002/jrs.4455 CrossRefGoogle Scholar
  102. 102.
    Cucci C, Bartolozzi G, Marchiafava V, Picollo M, Richardson E (2016) Study of semi-synthetic plastic objects of historic interest using non-invasive total reflectance FT-IR. Microchem J 124:889–897. doi: 10.1016/j.microc.2015.06.010 CrossRefGoogle Scholar
  103. 103.
    Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M (2015) Raman spectroscopy of lipids: a review. J Raman Spectrosc 46:4–20. doi: 10.1002/jrs.4607 CrossRefGoogle Scholar
  104. 104.
    Daher C, Bellot-Gurlet L (2013) Non-destructive characterization of archaeological resins: seeking alteration criteria through vibrational signatures. Anal Methods 5:6583–6591. doi: 10.1039/C3AY41278D CrossRefGoogle Scholar
  105. 105.
    Daher C, Bellot-Gurlet L, Le Hô A-S, Paris C, Regert M (2013) Advanced discriminating criteria for natural organic substances of cultural heritage interest: spectral decomposition and multivariate analyses of FT-Raman and FT-IR signatures. Talanta 115:540–547. doi: 10.1016/j.talanta.2013.06.014 CrossRefGoogle Scholar
  106. 106.
    Daher C, Drieu L, Bellot-Gurlet L, Percot A, Paris C, Le Hô A-S (2014) Combined approach of FT-Raman, SERS and IR micro-ATR spectroscopies to enlighten ancient technologies of painted and varnished works of art. J Raman Spectrosc 45:1207–1214CrossRefGoogle Scholar
  107. 107.
    Daher C, Paris C, Le Ho A-S, Bellot-Gurlet L, Echard J-P (2010) A joint use of Raman and IR spectroscopies for the identification of natural organic media used in ancient varnishes. J Raman Spectrosc 41:1494–1499. doi: 10.1002/jrs.2693 CrossRefGoogle Scholar
  108. 108.
    Daher C, Pimenta V, Bellot-Gurlet L (2014) Towards a non-invasive quantitative analysis of the organic components in museum objects varnishes by vibrational spectroscopies: methodological approach. Talanta 129:336–345. doi: 10.1016/j.talanta.2014.05.059 CrossRefGoogle Scholar
  109. 109.
    Damjanović L, Bikić V, Šarić K, Erić S, Holclajtner-Antunović I (2014) Characterization of the early Byzantine pottery from Caričin Grad (South Serbia) in terms of composition and firing temperature. J Archaeol Sci 46:156–172CrossRefGoogle Scholar
  110. 110.
    Daniel F, Mounier A, Aramendia J, Gómez L, Castro K, Fdez-Ortiz de Vallejuelo S, Schlicht M (2015) Raman and SEM-EDX analyses of the “Royal Portal” of Bordeaux Cathedral for the virtual restitution of the statuary polychromy. J Raman Spectrosc. doi: 10.1002/jrs.4770 Google Scholar
  111. 111.
    Degano I, Biesaga M, Colombini MP, Trojanowicz M (2011) Historical and archaeological textiles: an insight on degradation products of wool and silk yarns. J Chromatogr A 1218:5837–5847. doi: 10.1016/j.chroma.2011.06.095 CrossRefGoogle Scholar
  112. 112.
    Degano I, Ribechini E, Modugno F, Colombini MP (2009) Analytical methods for the characterization of organic dyes in artworks and in historical textiles. Appl Spectrosc Rev 44:363–410. doi: 10.1080/05704920902937876 CrossRefGoogle Scholar
  113. 113.
    Dejoie C, Sciau P, Li W, Noé L, Mehta A, Chen K, Luo H, Kunz M, Tamura N, Liu Z (2014) Learning from the past: rare e-Fe2O3 in the ancient black-glazed Jian (Tenmoku) wares. Sci Rep 4:4941CrossRefGoogle Scholar
  114. 114.
    Delhaye M, Dhamelincourt P (1974) Laser Raman microprobe and microscope. In: Proceeding Abstracts, Fourth international conference on raman spectroscopy Brunswick, ME, USAGoogle Scholar
  115. 115.
    Delhaye M, Migeon M (1966) Interêt de la concentration d’un faisceau laser pour l’excitation de l’effect Raman. C RAcad Sci Paris 262:1513–1516Google Scholar
  116. 116.
    Deneckere A, Vekemans B, Van de Voorde L, De Paepe P, Vincze L, Moens L, Vandenabeele P (2012) Feasibility study of the application of micro-Raman imaging as complement to micro-XRF imaging. Appl Phys A 106:363–376CrossRefGoogle Scholar
  117. 117.
    De Santis A, Mattei E, Pelosi C (2007) Micro-Raman and stratigraphic studies of the paintings on the “Cembalo” model musical instrument (A.D. 1650) and laser-induced degradation of the detected pigments. J Raman Spectrosc 38:1368–1378. doi: 10.1002/jrs.1777 CrossRefGoogle Scholar
  118. 118.
    Dhamlincourt P, Schubnel H-J (1977) La microsonde moléculaire à laser et son application à la minéralogie et la gemmologie. Rev Gemmol 52:11–14Google Scholar
  119. 119.
    Doherty B, Brunetti BG, Sgamellotti A, Miliani C (2011) A detachable SERS active cellulose film: a minimally invasive approach to the study of painting lakes. J Raman Spectrosc 42:1932–1938. doi: 10.1002/jrs.2942 CrossRefGoogle Scholar
  120. 120.
    Doherty B, Presciutti F, Sgamellotti A, Brunetti BG, Miliani C (2014) Monitoring of optimized SERS active gel substrates for painting and paper substrates by unilateral NMR profilometry. J Raman Spectrosc 45:1153–1159. doi: 10.1002/jrs.4542 CrossRefGoogle Scholar
  121. 121.
    Doherty B, Vagnini M, Dufourmantelle K, Sgamellotti A, Brunetti B, Miliani C (2014) A vibrational spectroscopic and principal component analysis of triarylmethane dyes by comparative laboratory and portable instrumentation. Spectrochim Acta A 121:292–305CrossRefGoogle Scholar
  122. 122.
    Döpner S, Hildebrandt P, Mauk AG, Lenk H, Stempfle W (1996) Analysis of vibrational spectra of multicomponent systems. Application to pH-dependent resonance Raman spectra of ferricytochrome C. Spectrochim Acta A 52:573–584CrossRefGoogle Scholar
  123. 123.
    Doty KC, Muro CK, Bueno J, Halámková L, Lednev IK (2016) What can Raman spectroscopy do for criminalistics? J Raman Spectrosc 47:39–50. doi: 10.1002/jrs.4826 CrossRefGoogle Scholar
  124. 124.
    Edwards HGM, Ali EMA (2011) Raman spectroscopy of archaeological and ancient resins: problems with database construction for applications in conservation and historical provenancing. Spectrochim Acta A 80:49–54CrossRefGoogle Scholar
  125. 125.
    Edwards HGM, Chalmers JM, Royal Society of Chemistry (Great Britain) (2005) Raman spectroscopy in archaeology and art history. Royal Society of Chemistry, CambridgeGoogle Scholar
  126. 126.
    Edwards HGM, Falk MJ, Edwards HGM, Falk MJ (1997) Fourier transform Raman spectroscopic study of ancient resins: a feasibility study of application to archaeological artefacts. J Raman Spectrosc 28:211–218CrossRefGoogle Scholar
  127. 127.
    Edwards HGM, Falk MJ, Edwards HGM, Falk MJ (1997) Fourier-transform Raman spectroscopic study of frankincense and myrrh. Spectrochim Acta A 53:2393–2401CrossRefGoogle Scholar
  128. 128.
    Edwards HGM, Falk MJ, Sibley MG, Alvarez-Benedi J, Rull F (1998) FT-Raman spectroscopy of gums of technological significance. Spectrochim Acta A 54:903–920CrossRefGoogle Scholar
  129. 129.
    Edwards HGM, Farwell DW (1996) Fourier-transform Raman spectroscopic study of natural waxes and resins. I. Spectrochim Acta A 52:1639–1648CrossRefGoogle Scholar
  130. 130.
    Edwards HGM, Farwell DW, Holder JM, Lawson EE (1997) Fourier-transform Raman spectroscopy of ivory: II. spectroscopic analysis and assignments. J Mol Struct 435:49–58. doi: 10.1016/S0022-2860(97)00122-1 CrossRefGoogle Scholar
  131. 131.
    Edwards HGM, Farwell DW, Seaward MRD (1991) Raman spectra of oxalates in lichen encrustations on Renaissance frescoes. Spectrochim Acta Part Mol Spectrosc 47:1531–1539. doi: 10.1016/0584-8539(91)80247-G CrossRefGoogle Scholar
  132. 132.
    Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta Part 53:2383–2392. doi: 10.1016/S1386-1425(97)00178-9 CrossRefGoogle Scholar
  133. 133.
    Edwards HGM, Farwell DW, Williams AC, Barry BW, Rull F (1995) Novel spectroscopic deconvolution procedure for complex biological systems: vibrational components in the FT-Raman spectra of ice-man and contemporary skin. J Chem Soc Faraday Trans 91:3883–3887. doi: 10.1039/FT9959103883 CrossRefGoogle Scholar
  134. 134.
    Edwards HGM, Hunt DE, Sibley MG (1998) FT-Raman spectroscopic study of keratotic materials: horn, hoof and tortoiseshell. Spectrochim Acta A 54:745–757. doi: 10.1016/S1386-1425(98)00013-4 CrossRefGoogle Scholar
  135. 135.
    Edwards HGM, Johnson AF, Lewis IR (1993) Applications of Raman spectroscopy to the study of polymers and polymerization processes. J Raman Spectrosc 24:475–483. doi: 10.1002/jrs.1250240803 CrossRefGoogle Scholar
  136. 136.
    Edwards HGM, Moody CD, Jorge Villar SE, Wynn-Williams DD (2005) Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: evaluation for Mars Lander missions. Icarus 174:560–571. doi: 10.1016/j.icarus.2004.07.029 CrossRefGoogle Scholar
  137. 137.
    Edwards HGM, Perez FR (2004) Application of Fourier transform Raman spectroscopy to the characterization of parchment and vellum. II—effect of biodeterioration and chemical deterioration on spectral interpretation. J Raman Spectrosc 35:754–760. doi: 10.1002/jrs.1155 CrossRefGoogle Scholar
  138. 138.
    Edwards HGM, Russell NC, Seaward MRD, Slarke D (1995) Lichen biodeterioration under different microclimates: an FT Raman spectroscopic study. Spectrochim Acta Part Mol Spectrosc 51:2091–2100. doi: 10.1016/0584-8539(95)01499-1 CrossRefGoogle Scholar
  139. 139.
    Everall N, King B (1999) Raman spectroscopy for polymer characterization in an industrial environment. Macromol Symp 141:103–116. doi: 10.1002/masy.19991410111 CrossRefGoogle Scholar
  140. 140.
    Ferreira ESB, Hulme AN, McNab H, Quye A (2004) The natural constituents of historical textile dyes. Chem Soc Rev 33:329–336. doi: 10.1039/b305697j CrossRefGoogle Scholar
  141. 141.
    Ferreira ESB, Quye A, McNab H, Hulme AN, Wouters J, Boon JJ (2001) Development of analytical techniques for the study of natural yellow dyes in historical textiles. Dyes Hist Archaeol 16(17):179–186Google Scholar
  142. 142.
    Fleischmann M, Hendra P, Mcquilla AJ (1974) Raman-spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166. doi: 10.1016/0009-2614(74)85388-1 CrossRefGoogle Scholar
  143. 143.
    Frano KA, Mayhew HE, Svoboda SA, Wustholz KL (2014) Combined SERS and Raman analysis for the identification of red pigments in cross-sections from historic oil paintings. Analyst 139:6450–6455. doi: 10.1039/c4an01581a CrossRefGoogle Scholar
  144. 144.
    Fremout W, Saverwyns S (2012) Identification of synthetic organic pigments: the role of a comprehensive digital Raman spectral library. J Raman Spectrosc 43:1536–1544. doi: 10.1002/jrs.4054 CrossRefGoogle Scholar
  145. 145.
    Fritsch E, Rondeau B, Hainschwang T, Karampelas S (2012) Raman spectroscopy applied to gemmology. In: Dubessy J, Caumon MC, Rull F (eds) Raman spectroscopy applied to Earth sciences and cultural heritage. European Mineralogical Union Mineralogical Society of Great Britain and Ireland, Twickenham, UK, pp 455–489Google Scholar
  146. 146.
    Frost RL (2004) Raman spectroscopy of natural oxalates. Anal Chim Acta 517:207–214. doi: 10.1016/j.aca.2004.04.036 CrossRefGoogle Scholar
  147. 147.
    Gall MJ, Hendra PJ, Peacock CJ, Cudby MEA, Willis HA (1972) Laser-Raman spectrum of polyethylene: part 1. Structure and analysis of the polymer. Polymer 13:104–108. doi: 10.1016/S0032-3861(72)80003-X CrossRefGoogle Scholar
  148. 148.
    Geiman I, Leona M, Lombardi JR (2009) Application of Raman spectroscopy and surface-enhanced raman scattering to the analysis of synthetic dyes found in ballpoint pen inks. J Forensic Sci 54:947–952CrossRefGoogle Scholar
  149. 149.
    González-Vidal JJ, Perez-Pueyo R, Soneira MJ, Ruiz-Moreno S (2012) Automatic identification system of Raman spectra in binary mixtures of pigments. J Raman Spectrosc 43:1707–1712CrossRefGoogle Scholar
  150. 150.
    Greeneltch NG, Davis AS, Valley NA, Casadio F, Schatz GC, Van Duyne RP, Shah NC (2012) Near-IR surface-enhanced raman spectroscopy (NIR-SERS) for the identification of eosin Y: theoretical calculations and evaluation of two different nanoplasmonic substrates. J Phys Chem A 116:11863CrossRefGoogle Scholar
  151. 151.
    Guineau B (1984) Microanalysis of painted manuscripts and of colored archaeological materials by Raman laser microprobe. J Forensic Sci 29:471–485CrossRefGoogle Scholar
  152. 152.
    Guineau B, Guichard V (1987) Identification des colorants organiques naturels par microspectrometrie Raman de resonance et par effet Raman exalte de surface (SERS). ICOM Committee for Conservation: 8th Triennial Meeting, Sydney, Australia, 6-11 September, 1987. The Getty Conservation Institute, Sydney, pp 659–666Google Scholar
  153. 153.
    Halac EB, Reinoso M, Luda M, Marte F (2012) Raman mapping analysis of pigments from Proas Iluminadas by Quinquela MartÃn. J Cult Herit 13:469–473CrossRefGoogle Scholar
  154. 154.
    Hargreaves MD, Macleod NA, Brewster VL, Munshi T, Edwards HGM, Matousek P (2009) Application of portable Raman spectroscopy and benchtop spatially offset Raman spectroscopy to interrogate concealed biomaterials. J Raman Spectrosc 40:1875–1880. doi: 10.1002/jrs.2335 CrossRefGoogle Scholar
  155. 155.
    Hark RR, Clark RJH (2010) Raman microscopy of diverse samples of Lapis Lazuli at multiple excitation wavelengths. AIP Conf Proc 1267:315–316. doi: 10.1063/1.3482531 CrossRefGoogle Scholar
  156. 156.
    Henderson J (2013) Ancient glass. An interdisciplinary exploration. Cambridge University Press, New York, USAGoogle Scholar
  157. 157.
    Huong LTT, Hofmeister W, Hager T, Karampelas S, Kien NDT (2014) A preliminary study on the separation of natural and synthetic emeralds using vibrational spectroscopy. Gems Gemol 50:287–292Google Scholar
  158. 158.
    Idone A, Aceto M, Diana E, Appolonia L, Gulmini M (2014) Surface-enhanced Raman scattering for the analysis of red lake pigments in painting layers mounted in cross-sections. J Raman Spectrosc 45:1127–1132. doi: 10.1002/jrs.4491 CrossRefGoogle Scholar
  159. 159.
    Idone A, Gulmini M, Henry A-I, Casadio F, Chang L, Appolonia L, Duyne RPV, Shah NC (2013) Silver colloidal pastes for dye analysis of reference and historical textile fibers using direct, extractionless, non-hydrolysis surface-enhanced Raman spectroscopy. Analyst 138:5895–5903. doi: 10.1039/C3AN00788J CrossRefGoogle Scholar
  160. 160.
    Jeanmaire D, Vanduyne R (1977) Surface Raman Spectroelectrochemistry. 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J Electroanal Chem 84:1–20. doi: 10.1016/S0022-0728(77)80224-6 CrossRefGoogle Scholar
  161. 161.
    Jehlicka J, Villar SEJ, Edwards HGM (2004) Fourier transform Raman spectra of Czech and Moravian fossil resins from freshwater sediments. J Raman Spectrosc 35:761–767CrossRefGoogle Scholar
  162. 162.
    Jehlicka J, Vitek P, Edwards HGM, Hargreaves M, Capoun T (2009) Rapid outdoor non-destructive detection of organic minerals using a portable Raman spectrometer. J Raman Spectrosc 40:1645–1651CrossRefGoogle Scholar
  163. 163.
    Jehlicka J, Vitek P, Edwards HGM, Heagraves M, Caapoun T (2009) Application of portable Raman instruments for fast and non-destructive detection of minerals on outcrops. Spectrochim Acta A 73:410–419CrossRefGoogle Scholar
  164. 164.
    Jorge-Villar SE, Edwards HGM (2013) Microorganism response to stressed terrestrial environments: a Raman spectroscopic perspective of extremophilic life strategies. Life Open Access J 3:276–294. doi: 10.3390/life3010276 Google Scholar
  165. 165.
    Jurasekova Z, del Puerto E, Bruno G, Garcia-Ramos JV, Sanchez-Cortes S, Domingo C (2010) Extractionless non-hydrolysis surface-enhanced Raman spectroscopic detection of historical mordant dyes on textile fibers. J Raman Spectrosc 41:1455–1461. doi: 10.1002/jrs.2651 CrossRefGoogle Scholar
  166. 166.
    Jurasekova Z, Domingo C, Garcia-Ramos JV, Sanchez-Cortes S (2008) In situ detection of flavonoids in weld-dyed wool and silk textiles by surface-enhanced Raman scattering. J Raman Spectrosc 39:1309–1312. doi: 10.1002/jrs.2053 CrossRefGoogle Scholar
  167. 167.
    Karampelas S, Fritsch E, Mevellec J-Y, Sklavounos S, Soldatos T (2009) Role of polyenes in the coloration of cultured freshwater pearls. Eur J Miner 21:85–97CrossRefGoogle Scholar
  168. 168.
    Karampelas S, Fritsch E, Rondeau B, Andouche A, Métivier B (2009) Identification of the endangered pink-to-red stylaster corals by Raman spectroscopy. Gems Gemol 45:48–52CrossRefGoogle Scholar
  169. 169.
    Kelloway SJ, Kononenko N, Torrence R, Carter EA (2010) Assessing the viability of portable Raman spectroscopy for determining the geological source of obsidian. Vib Spectrosc 53:88–96CrossRefGoogle Scholar
  170. 170.
    Keune K, Boon JJ, Boitelle R, Shimadzu Y (2013) Degradation of Emerald green in oil paint and its contribution to the rapid change in colour of the Descente des vaches (1834–1835) painted by Theodore Rousseau. Stud Conserv 58:199–210. doi: 10.1179/2047058412Y.0000000063 CrossRefGoogle Scholar
  171. 171.
    Kiefert L, Karampelas S (2011) Use of the Raman spectrometer in gemmological laboratories: review. Spectrochim Acta A 80:119–124. doi: 10.1016/j.saa.2011.03.004 CrossRefGoogle Scholar
  172. 172.
    Kingma KJ, Hemley RJ (1994) Raman spectroscopic study of microcrystalline silica. Am Minera 79:269–273Google Scholar
  173. 173.
    Kogelnik H, Porto SPS (1963) Continuous Helium-Neon red Laser as a Raman source. J Opt Soc Am 53:1446–1447CrossRefGoogle Scholar
  174. 174.
    Kurouski D, Zaleski S, Casadio F, Van Duyne RP, Shah NC (2014) Tip-enhanced Raman spectroscopy (TERS) for in Situ identification of indigo and iron gall ink on paper. J Am Chem Soc 136:8677–8684. doi: 10.1021/ja5027612 CrossRefGoogle Scholar
  175. 175.
    Lau D, Livett M, Prawer S (2008) Application of surface-enhanced Raman spectroscopy (SERS) to the analysis of natural resins in artworks. J Raman Spectrosc 39:545–552. doi: 10.1002/jrs.1878 CrossRefGoogle Scholar
  176. 176.
    Lauwers D, Hutado AG, Tanevska V, Moens L, Bersani D, Vandenabeele P (2014) Characterisation of a portable Raman spectrometer for in situ analysis of art objects. Spectrochim Acta A 118:294–301CrossRefGoogle Scholar
  177. 177.
    Laver M (1997) Titanium dioxide whites. In: FitzHugh EW (ed) Artists’ pigments: a handbook of their history and characteristics, vol 3. National Gallery of Art, Washington & Oxford University Press, Oxford, pp 295–339Google Scholar
  178. 178.
    Lee AS, Otieno-Alego V, Creagh DC (2008) Identification of iron-gall inks with near-IR Raman microspectroscopy. J Raman Spectrosc 39:1079–1084. doi: 10.1002/jrs.1989 CrossRefGoogle Scholar
  179. 179.
    Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395. doi: 10.1021/j100214a025 CrossRefGoogle Scholar
  180. 180.
    Lenain BP (2000) Analytical Raman spectroscopy: a new generation of instruments. Analusis 28:11–14CrossRefGoogle Scholar
  181. 181.
    Leona M (2009) Microanalysis of organic pigments and glazes in polychrome works of art by surface-enhanced resonance Raman scattering. Proc Natl Acad Sci USA 106:14757–14762. doi: 10.1073/pnas.0906995106 CrossRefGoogle Scholar
  182. 182.
    Leona M (2006) Non-invasive identification of fluorescent dyes in historic textiles by matrix transfer-surface enhanced Raman scattering. US patent 6943031 B2Google Scholar
  183. 183.
    Leona M, Decuzzi P, Kubic TA, Gates G, Lombardi JR (2011) Nondestructive identification of natural and synthetic organic colorants in works of art by surface enhanced Raman scattering. Anal Chem 83:3990–3993. doi: 10.1021/ac2007015 CrossRefGoogle Scholar
  184. 184.
    Leona M, Stenger J, Ferloni E (2006) Application of surface-enhanced Raman scattering techniques to the ultrasensitive identification of natural dyes in works of art. J Raman Spectrosc 37:981–992. doi: 10.1002/jrs.1582 CrossRefGoogle Scholar
  185. 185.
    Leon Y, Lofrumento C, Zoppi A, Carles R, Castellucci EM, Sciau P (2010) Micro-Raman investigation of terra sigillata slips: a comparative study of central Italian and southern Gaul productions. J Raman Spectrosc 41:1550–1555CrossRefGoogle Scholar
  186. 186.
    Lofrumento C, Prati S, Ricci M, Bonacini I, Quaranta M, Sciutto G, Ballarin B, Cassani MC, Castellucci E, Mazzeo R (2015) Identification of dyes in toned and tinted XX century cinematographic films by surface enhanced Raman spectroscopy. J Raman Spectrosc. doi: 10.1002/jrs.4819 Google Scholar
  187. 187.
    Lofrumento C, Ricci M, Platania E, Becucci M, Castellucci E (2013) SERS detection of red organic dyes in Ag-agar gel. J Raman Spectrosc 44:47–54. doi: 10.1002/jrs.4162 CrossRefGoogle Scholar
  188. 188.
    Lombardi JR, Birke RL (2009) A unified view of surface-enhanced Raman scattering. Acc Chem Res 42:734–742. doi: 10.1021/ar800249y CrossRefGoogle Scholar
  189. 189.
    Lombardi JR, Birke RL (2012) The theory of surface-enhanced Raman scattering. J Chem Phys 136:144704. doi: 10.1063/1.3698292 CrossRefGoogle Scholar
  190. 190.
    Londero P, Lombardi JR, Leona M (2013) A compact optical parametric oscillator Raman microscope for wavelength-tunable multianalytic microanalysis. J Raman Spectrosc 44:131–135. doi: 10.1002/jrs.4150 CrossRefGoogle Scholar
  191. 191.
    Londero PS, Leona M, Lombardi JR (2013) Definitive evidence for linked resonances in surface-enhanced Raman scattering: excitation profile of Cu phthalocyanine. Appl Phys Lett 102:111101. doi: 10.1063/1.4794071 CrossRefGoogle Scholar
  192. 192.
    Londero PS, Lombardi JR, Leona M (2013) Laser ablation surface-enhanced Raman microspectroscopy. Anal Chem 85:5463–5467. doi: 10.1021/ac400440c CrossRefGoogle Scholar
  193. 193.
    Luo S-C, Sivashanmugan K, Liao J-D, Yao C-K, Peng H-C (2014) Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review. Biosens Bioelectron 61:232–240. doi: 10.1016/j.bios.2014.05.013 CrossRefGoogle Scholar
  194. 194.
    Manzano E, Garcia-Atero J, Dominguez-Vidal A, Jose Ayora-Canada M, Fermin Capitan-Vallvey L, Navas N (2012) Discrimination of aged mixtures of lipidic paint binders by Raman spectroscopy and chemometrics. J Raman Spectrosc 43:781–786. doi: 10.1002/jrs.3082 CrossRefGoogle Scholar
  195. 195.
    Martínez-Arkarazo I, Smith DC, Zuloaga O, Olazabal MA, Madariaga JM (2008) Evaluation of three different mobile Raman microscopes employed to study deteriorated civil building stones. J Raman Spectrosc 39:1018–1029. doi: 10.1002/jrs.1941 CrossRefGoogle Scholar
  196. 196.
    Matousek P, Clark IP, Draper ERC, Morris MD, Goodship AE, Everall N, Towrie M, Finney WF, Parker AW (2005) Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl Spectrosc 59:393–400CrossRefGoogle Scholar
  197. 197.
    Matousek P, Morris MD, Everall N, Clark IP, Towrie M, Draper E, Goodship A, Parker AW (2005) Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl Spectrosc 59:1485–1492. doi: 10.1366/000370205775142548 CrossRefGoogle Scholar
  198. 198.
    Matousek P, Towrie M, Parker AW (2005) Simple reconstruction algorithm for shifted excitation Raman difference spectroscopy. Appl Spectrosc 59:848–851. doi: 10.1366/0003702054280757 CrossRefGoogle Scholar
  199. 199.
    Matousek P, Conti C, Colombo C, Realini M (2015) Monte Carlo simulations of subsurface analysis of painted layers in micro-scale spatially offset Raman spectroscopy. Appl Spectrosc 69:1091–1095. doi: 10.1366/15-07894 CrossRefGoogle Scholar
  200. 200.
    Matousek P, Conti C, Realini M, Colombo C (2016) MicroScale spatially offset Raman spectroscopy for noninvasive subsurface analysis of turbid materials. Analyst 141:731–739 (Published by The Royal Society of Chemistry)CrossRefGoogle Scholar
  201. 201.
    Mayhew HE, Fabian DM, Svoboda SA, Wustholz KL (2013) Surface-enhanced Raman spectroscopy studies of yellow organic dyestuffs and lake pigments in oil paint. Analyst 138:4493–4499. doi: 10.1039/C3AN00611E CrossRefGoogle Scholar
  202. 202.
    Mazzella WD, Buzzini P (2005) Raman spectroscopy of blue gel pen inks. Forensic Sci Int 152:241–247. doi: 10.1016/j.forsciint.2004.09.115 CrossRefGoogle Scholar
  203. 203.
    McNay G, Eustace D, Smith WE, Faulds K, Graham D (2011) Surface-enhanced raman scattering (SERS) and surface-enhanced resonance raman scattering (SERRS): a review of applications. Appl Spectrosc 65:825–837CrossRefGoogle Scholar
  204. 204.
    Medeghini L, Lottici PP, De Vito C, Mignardi S, Bersani D (2014) Micro-Raman spectroscopy and ancient ceramics: applications and problems. J Raman Spectrosc 45:1244–1250CrossRefGoogle Scholar
  205. 205.
    Miguel C, Claro A, Gonçalves AP, Muralha VSF, Melo MJ (2009) A study on red lead degradation in a medieval manuscript Lorvão Apocalypse (1189). J Raman Spectrosc 40:1966–1973. doi: 10.1002/jrs.2350 CrossRefGoogle Scholar
  206. 206.
    Mills JS, White R (1994) The organic chemistry of museum objects, 2nd edn. Butterworth Heinemann, LondonGoogle Scholar
  207. 207.
    Miralles I, Edwards HGM, Domingo F, Jorge-Villar SE (2015) Lichens around the world: a comprehensive study of lichen survival biostrategies detected by Raman spectroscopy. Anal Methods 7:6856–6868. doi: 10.1039/C5AY00655D CrossRefGoogle Scholar
  208. 208.
    Monico L, Janssens K, Hendriks E, Brunetti BG, Miliani C (2014) Raman study of different crystalline forms of PbCrO4 and PbCr1 − xSxO4 solid solutions for the noninvasive identification of chrome yellows in paintings: a focus on works by Vincent van Gogh. J Raman Spectrosc 45:1034–1045CrossRefGoogle Scholar
  209. 209.
    Monico L, Janssens K, Miliani C, Van der Snickt G, Brunetti BG, Cestelli Guidi M, Radepont M, Cotte M (2013) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. 4. Artificial aging of model samples of co-precipitates of lead chromate and lead sulfate. Anal Chem 85:860–867. doi: 10.1021/ac3021592 CrossRefGoogle Scholar
  210. 210.
    Monnier J, Bellot-Gurlet L, Baron D, Neff D, Guillot I, Dillmann Ph (2011) A methodology for Raman structural quantification imaging and its application to iron indoor atmospheric corrosion products. J Raman Spectrosc 42:773–781CrossRefGoogle Scholar
  211. 211.
    Muehlethaler C, Leona M, Lombardi JR (2016) Review of surface enhanced Raman scattering applications in forensic science. Anal Chem 88:152–169. doi: 10.1021/acs.analchem.5b04131 CrossRefGoogle Scholar
  212. 212.
    Muehlethaler C, Massonnet G, Esseiva P (2011) The application of chemometrics on IR and Raman spectra as a tool for the forensic analysis of paints. Forensic Sci Int 209:173–182CrossRefGoogle Scholar
  213. 213.
    Muralha VSF, Miguel C, Melo MJ (2012) Micro-Raman study of Medieval Cistercian 12–13th century manuscripts: Santa Maria de Alcobaça, Portugal. J Raman Spectrosc 43:1737–1746. doi: 10.1002/jrs.4065 CrossRefGoogle Scholar
  214. 214.
    Navas N, Romero-Pastor J, Manzano E, Cardell C, Navas N, Romero-Pastor J, Manzano E, Cardell C (2010) Raman spectroscopic discrimination of pigments and tempera paint model samples by principal component analysis on first-derivative spectra. J Raman Spectrosc 41:1486–1493CrossRefGoogle Scholar
  215. 215.
    Nevin A, Melia JL, Osticioli I, Gautier G, Colombini MP (2008) The identification of copper oxalates in a 16th century Cypriot exterior wall painting using micro FTIR, micro Raman spectroscopy and gas chromatography-mass spectrometry. J Cult Herit 9:154–161. doi: 10.1016/j.culher.2007.10.002 CrossRefGoogle Scholar
  216. 216.
    Nevin A, Osticioli I, Anglos D, Burnstock A, Cather S, Castellucci E (2007) Raman spectra of proteinaceous materials used in paintings: a multivariate analytical approach for classification and identification. Anal Chem 79:6143–6151CrossRefGoogle Scholar
  217. 217.
    Nevin A, Osticioli I, Demetrios Anglos D, Burnstock A, Cather S, Castellucci E (2008) The analysis of naturally and artificially aged protein-based paint media using Raman spectroscopy combined with principal component analysis. J Raman Spectrosc 39:993–1000CrossRefGoogle Scholar
  218. 218.
    Nevin A, Spoto G, Anglos D (2012) Laser spectroscopies for elemental and molecular analysis in art and archaeology. Appl Phys A 106:339–361CrossRefGoogle Scholar
  219. 219.
    Nielsen JR (1964) Raman spectra of polymers. J Polym Sci Part C 7:19–35. doi: 10.1002/polc.5070070104 CrossRefGoogle Scholar
  220. 220.
    Nielsen SE, Scaffidi JP, Yezierski EJ (2014) Detecting art forgeries: a problem-based Raman spectroscopy lab. J Chem Educ 91:446–450. doi: 10.1021/ed400319k CrossRefGoogle Scholar
  221. 221.
    Oakley LH, Dinehart SA, Svoboda SA, Wustholz KL (2011) Identification of organic materials in historic oil paintings using correlated extractionless surface-enhanced Raman scattering and fluorescence microscopy. Anal Chem 83:3986–3989. doi: 10.1021/ac200698q CrossRefGoogle Scholar
  222. 222.
    Oakley LH, Fabian DM, Mayhew HE, Svoboda SA, Wustholz KL (2012) Pretreatment strategies for SERS analysis of indigo and Prussian blue in aged painted surfaces. Anal Chem 84:8006–8012. doi: 10.1021/ac301814e CrossRefGoogle Scholar
  223. 223.
    Osticioli I, Mendes NFC, Nevin A, Gil FPSC, Becucci M, Castellucci E (2009) Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Spectrochim Acta A 73:525–531CrossRefGoogle Scholar
  224. 224.
    Osticioli I, Mendes NFC, Nevin A, Zoppi A, Lofrumento C, Becucci M, Castellucci EM (2009) A new compact instrument for Raman, laser-induced breakdown, and laser-induced fluorescence spectroscopy of works of art and their constituent materials. Rev Sci Instrum 80:076109. doi: 10.1063/1.3184102 CrossRefGoogle Scholar
  225. 225.
    Osticioli I, Zoppi A, Castellucci EM (2006) Fluorescence and Raman spectra on painting materials: reconstruction of spectra with mathematical methods. J Raman Spectrosc 37:974–980CrossRefGoogle Scholar
  226. 226.
    Otero V, Sanches D, Montagner C, Vilarigues M, Carlyle L, Lopes JA, Melo MJ (2014) Characterisation of metal carboxylates by Raman and IR spectroscopy in works of art. J Raman Spectrosc 45:1197–1206CrossRefGoogle Scholar
  227. 227.
    Özçatal M, Yaygıngöl M, İssi A, Kara A, Turan S, Okyar F, Pfeiffer Taş Ş, Nastova I, Grupče O, Minčeva-Šukarova B (2014) Characterization of lead glazed potteries from Smyrna (İzmir/Turkey) using multiple analytical techniques; Part I: body. Ceram Int 40:2153–2160CrossRefGoogle Scholar
  228. 228.
    Pagès-Camagna S, Duval A, Guicharnaud H (2004) Study of Gustave Moreau’s black drawings: identification of the graphic materials by Raman microspectrometry and PIXE. J Raman Spectrosc 35:628–632. doi: 10.1002/jrs.1215 CrossRefGoogle Scholar
  229. 229.
    Pallipurath A, Skelton J, Ricciardi P, Bucklow S, Elliott S (2013) Multivariate analysis of combined Raman and fibre-optic reflectance spectra for the identification of binder materials in simulated medieval paints. J Raman Spectrosc 44:866–874CrossRefGoogle Scholar
  230. 230.
    Pallipurath A, Vofely RV, Skelton J, Ricciardi P, Bucklow S, Elliott S (2014) Estimating the concentrations of pigments and binders in lead-based paints using FT-Raman spectroscopy and principal component analysis. J Raman Spectrosc 45:1272–1278. doi: 10.1002/jrs.4525 CrossRefGoogle Scholar
  231. 231.
    Pastorelli G, Trafela T, Taday PF, Portieri A, Lowe D, Fukunaga K, Strlic M (2012) Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging. Anal Bioanal Chem 403:1405–1414. doi: 10.1007/s00216-012-5931-9 CrossRefGoogle Scholar
  232. 232.
    Pereira A, Candeias A, Cardoso A, Rodrigues D, Vandenabeele P, Caldeira AT (2016) Non-invasive methodology for the identification of plastic pieces in museum environment—a novel approach. Microchem J 124:846–855. doi: 10.1016/j.microc.2015.07.027 CrossRefGoogle Scholar
  233. 233.
    Perets EA, Indrasekara ASDS, Kurmis A, Atlasevich N, Fabris L, Arslanoglu J (2015) Carboxy-terminated immuno-SERS tags overcome non-specific aggregation for the robust detection and localization of organic media in artworks. Analyst 140:5971–5980. doi: 10.1039/c5an00817d CrossRefGoogle Scholar
  234. 234.
    Pérez-Alonso M, Castro K, Madariaga JM (2006) Investigation of degradation mechanisms by portable Raman spectroscopy and thermodynamic speciation: the wall painting of Santa María de Lemoniz (Basque Country, North of Spain). Anal Chim Acta 571:121–128. doi: 10.1016/j.aca.2006.04.049 CrossRefGoogle Scholar
  235. 235.
    Pérez-Alonso M, Castro K, Martinez-Arkarazo I, Angulo M, Olazabal MA, Madariaga JM (2004) Analysis of bulk and inorganic degradation products of stones, mortars and wall paintings by portable Raman microprobe spectroscopy. Anal Bioanal Chem 379:42–50. doi: 10.1007/s00216-004-2496-2 CrossRefGoogle Scholar
  236. 236.
    Petrou M, Edwards HGM, Janaway RC, Thompson GB, Wilson AS (2009) Fourier-transform Raman spectroscopic study of a Neolithic waterlogged wood assemblage. Anal Bioanal Chem 395:2131–2138. doi: 10.1007/s00216-009-3178-x CrossRefGoogle Scholar
  237. 237.
    Petrová Z, Jehlička J, Čapoun T, Hanus R, Trojek T, Goliáš V (2012) Gemstones and noble metals adorning the sceptre of the Faculty of Science of Charles University in Prague: integrated analysis by Raman and XRF handheld instruments. J Raman Spectrosc 43:1275–1280CrossRefGoogle Scholar
  238. 238.
    Piantanida G, Menart E, Bicchieri M, Strlič M (2013) Classification of iron-based inks by means of micro-Raman spectroscopy and multivariate data analysis. J Raman Spectrosc 44:1299–1305CrossRefGoogle Scholar
  239. 239.
    Pirok BWJ, Knip J, van Bommel MR, Schoenmakers PJ (2016) Characterization of synthetic dyes by comprehensive two-dimensional liquid chromatography combining ion-exchange chromatography and fast ion-pair reversed-phase chromatography. J Chromatogr A 1436:141–146. doi: 10.1016/j.chroma.2016.01.070 CrossRefGoogle Scholar
  240. 240.
    Platania E, Lofrumento C, Lottini E, Azzaro E, Ricci M, Becucci M (2015) Tailored micro-extraction method for Raman/SERS detection of indigoids in ancient textiles. Anal Bioanal Chem 407:6505–6514. doi: 10.1007/s00216-015-8816-x CrossRefGoogle Scholar
  241. 241.
    Platania E, Lombardi JR, Leona M, Shibayama N, Lofrumento C, Ricci M, Becucci M, Castellucci E (2014) Suitability of Ag-agar gel for the micro-extraction of organic dyes on different substrates: the case study of wool, silk, printed cotton and a panel painting mock-up. J Raman Spectrosc 45:1133–1139. doi: 10.1002/jrs.4531 CrossRefGoogle Scholar
  242. 242.
    Pozzi F, Leona M (2016) Surface-enhanced Raman spectroscopy in art and archaeology. J Raman Spectrosc 47:67–77. doi: 10.1002/jrs.4827 CrossRefGoogle Scholar
  243. 243.
    Pozzi F, Lombardi JR, Bruni S, Leona M (2012) Sample treatment considerations in the analysis of organic colorants by surface-enhanced Raman scattering. Anal Chem 84:3751–3757. doi: 10.1021/ac300380c CrossRefGoogle Scholar
  244. 244.
    Pozzi F, Lombardi JR, Leona M (2013) Winsor & Newton original handbooks: a surface-enhanced Raman scattering (SERS) and Raman spectral database of dyes from modern watercolor pigments. Herit Sci 1:23. doi: 10.1186/2050-7445-1-23 CrossRefGoogle Scholar
  245. 245.
    Pozzi F, Porcinai S, Lombardi JR, Leona M (2013) Statistical methods and library search approaches for fast and reliable identification of dyes using surface-enhanced Raman spectroscopy (SERS). Anal Methods 5:4205–4212. doi: 10.1039/C3AY40673C CrossRefGoogle Scholar
  246. 246.
    Pozzi F, Shibayama N, Leona M, Lombardi JR (2013) TLC-SERS study of Syrian rue (Peganum harmala) and its main alkaloid constituents. J Raman Spectrosc 44:102–107. doi: 10.1002/jrs.4140 CrossRefGoogle Scholar
  247. 247.
    Pozzi F, van den Berg KJ, Fiedler I, Casadio F (2014) A systematic analysis of red lake pigments in French Impressionist and Post-Impressionist paintings by surface-enhanced Raman spectroscopy (SERS). J Raman Spectrosc 45:1119–1126. doi: 10.1002/jrs.4483 CrossRefGoogle Scholar
  248. 248.
    Pozzi F, Zaleski S, Casadio F, Leona M, Lombardi JR, Van Duyne R (2016) Surface-enhanced raman spectroscopy: using nanoparticles to detect trace amounts of colorants in works of art. In: Dillmann P, Bellot-Gurlet L, Nenner I (eds) Nanoscience and cultural heritage. Atlantis Press, Paris, pp 161–204Google Scholar
  249. 249.
    Prikhodko S, Fischer C, Boytner R, Lozada M, Uribe M, Kakoulli I (2007) Applications of variable pressure SEM and Raman spectroscopy for the non-destructive study of bio-specimens from pre-Columbian mummies in the Tarapacá Valley, Northern Chile. Microsc Microanal 13:1492–1493. doi: 10.1017/S1431927607075332 CrossRefGoogle Scholar
  250. 250.
    Prikhodko SV, Rambaldi DC, King A, Burr E, Muros V, Kakoulli I (2015) New advancements in SERS dye detection using interfaced SEM and Raman spectromicroscopy (μRS). J Raman Spectrosc 46:632–635. doi: 10.1002/jrs.4710 CrossRefGoogle Scholar
  251. 251.
    Qiu-ju H, Li-qin W (2016) Research progress of Raman spectroscopy on Dyestuff identification of ancient relics and artifacts. Spectrosc Spectr Anal 36:401–407. doi: 10.3964/j.issn.1000-0593(2016)02-0401-07 Google Scholar
  252. 252.
    Raffaëlly L, Champagnon B, Ollier N, Foy D (2008) IR and Raman spectroscopies, a way to understand how the Roman window glasses were made? J Non-Cryst Solids 354:780–786CrossRefGoogle Scholar
  253. 253.
    Raffaëlly-Veslin L, Champagnon B, Lesage F (2008) Thermal history and manufacturing processes of Roman panes studied by Raman spectroscopy. J Raman Spectrosc 39:1120–1124CrossRefGoogle Scholar
  254. 254.
    Raman CV (1928) A new radiation. Indian J Phys 2:387–398Google Scholar
  255. 255.
    Ramos PM, Ferré J, Ruisánchez I, Andrikopoulos KS (2004) Fuzzy logic for identifying pigments studied by Raman spectroscopy. Appl Spectrosc 58:848–854CrossRefGoogle Scholar
  256. 256.
    Rana V, Canamares MV, Kubic T, Leona M, Lombardi JR (2011) Surface-enhanced Raman spectroscopy for trace identification of controlled substances: morphine, codeine, and hydrocodone. J Forensic Sci 56:200–207. doi: 10.1111/j.1556-4029.2010.01562.x CrossRefGoogle Scholar
  257. 257.
    Retko K, Ropret P, Korosec RC (2014) Surface-enhanced Raman spectroscopy (SERS) analysis of organic colourants utilising a new UV-photoreduced substrate. J Raman Spectrosc 45:1140–1146. doi: 10.1002/jrs.4533 CrossRefGoogle Scholar
  258. 258.
    Ricciardi P, Colomban P, Milande V (2008) Non-destructive Raman characterization of Capodimonte and Buen Retiro porcelain. J Raman Spectrosc 39:1113–1119. doi: 10.1002/jrs.1918 CrossRefGoogle Scholar
  259. 259.
    Ricciardi P, Delaney JK, Facini M, Glinsman L (2013) Use of imaging spectroscopy and in situ analytical methods for the characterization of the materials and techniques of 15th century illuminated manuscripts. J Am Inst Conserv 52:13–29. doi: 10.1179/0197136012Z.0000000004 CrossRefGoogle Scholar
  260. 260.
    Ricciardi P, Delaney JK, Facini M, Zeibel JG, Picollo M, Lomax S, Loew M (2012) near-IR reflectance imaging spectroscopy to map paint binders in situ on illuminated manuscripts. Angew Chem Int Ed 51:5607–5610. doi: 10.1002/anie.201200840 CrossRefGoogle Scholar
  261. 261.
    Robinet L, Bouquillon A, Hartwig J (2008) Correlations between Raman parameters and elemental composition in lead and lead alkali silicate glasses. J Raman Spectrosc 39:618–626CrossRefGoogle Scholar
  262. 262.
    Robinet L, Coupry C, Eremin K, Hall C (2006) The use of Raman spectrometry to predict the stability of historic glasses. J Raman Spectrosc 37:789–797CrossRefGoogle Scholar
  263. 263.
    Roh JY, Matecki MK, Svoboda SA, Wustholz KL (2016) Identifying pigment mixtures in art using SERS: a treatment flowchart approach. Anal Chem 88:2028–2032. doi: 10.1021/acs.analchem.6b00044 CrossRefGoogle Scholar
  264. 264.
    Roldán ML, Centeno SA, Rizzo A (2014) An improved methodology for the characterization and identification of sepia in works of art by normal Raman and SERS, complemented by FTIR, Py-GC/MS, and XRF. J Raman Spectrosc 45:1160–1171. doi: 10.1002/jrs.4620 CrossRefGoogle Scholar
  265. 265.
    Roldan ML, Centeno SA, Rizzo A, van Dyke Y (2015) Characterization of bistre pigment samples by FTIR, SERS, Py-GC/MS and XRF. In: Symposium PP—materials Issues in Art and Archaeology X, pp mrsf13–1656–pp02–04 (10 pages)Google Scholar
  266. 266.
    Ropret P, Miliani C, Centeno SA, Tavzes C, Rosi F (2010) Advances in Raman mapping of works of art. J Raman Spectrosc 41:1462–1467. doi: 10.1002/jrs.2733 CrossRefGoogle Scholar
  267. 267.
    Rosasco GJ, Etz ES, Cassatt WA (1974) Investigation of the Raman spectra of individual micron sized particles. Proceeding Abstracts, Fourth International Conference on Raman SpectroscopyGoogle Scholar
  268. 268.
    Rosi F, Paolantoni M, Clementi C, Doherty B, Miliani C, Brunetti BG, Sgamellotti A (2010) Subtracted shifted Raman spectroscopy of organic dyes and lakes. J Raman Spectrosc 41:452–458. doi: 10.1002/jrs.2447 Google Scholar
  269. 269.
    Salpin F, Trivier F, Lecomte S, Coupry C (2006) A new quantitative method: non-destructive study by Raman spectroscopy of dyes fixed on wool fibres. J Raman Spectrosc 37:1403–1410. doi: 10.1002/jrs.1557 CrossRefGoogle Scholar
  270. 270.
    San Andrés M, de la Roja JM, Baonza VG, Sancho N (2010) Verdigris pigment: a mixture of compounds. Input from Raman spectroscopy. J Raman Spectrosc 41:1468–1476. doi: 10.1002/jrs.2786 CrossRefGoogle Scholar
  271. 271.
    Saverwyns S (2010) Russian avant-garde… or not? A micro-Raman spectroscopy study of six paintings attributed to Liubov Popova. J Raman Spectrosc 41:1525–1532. doi: 10.1002/jrs.2654 CrossRefGoogle Scholar
  272. 272.
    Saviello D, Toniolo L, Goidanich S, Casadio F (2016) Non-invasive identification of plastic materials in museum collections with portable FTIR reflectance spectroscopy: reference database and practical applications. Microchem J 124:868–877. doi: 10.1016/j.microc.2015.07.016 CrossRefGoogle Scholar
  273. 273.
    Scherrer NC, Stefan Z, Francoise D, Annette F, Renate K (2009) Synthetic organic pigments of the 20th and 21st century relevant to artist’s paints: Raman spectra reference collection. Spectrochim Acta Part 73:505–524. doi: 10.1016/j.saa.2008.11.029 CrossRefGoogle Scholar
  274. 274.
    Schlücker S, Schaeberle MD, Huffman SW, Levin IW (2003) Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies. Anal Chem 75:4312–4318CrossRefGoogle Scholar
  275. 275.
    Schubnel HJ, Pinet M, Smith DC, Lasnier B (eds) (1992) La microsonde Raman en gemmologie. Association Française de Gemmologie, ParisGoogle Scholar
  276. 276.
    Sciutto G, Litti L, Lofrumento C, Prati S, Ricci M, Gobbo M, Roda A, Castellucci E, Meneghetti M, Mazzeo R (2013) Alternative SERRS probes for the immunochemical localization of ovalbumin in paintings: an advanced mapping detection approach. Analyst 138:4532–4541. doi: 10.1039/c3an00057e CrossRefGoogle Scholar
  277. 277.
    Shadi QT, Chowdhry BZ, Snowden MJ, Withnall R (2004) Semi-quantitative analysis of alizarin and purpurin by surface-enhanced resonance Raman spectroscopy (SERRS) using silver colloids. J Raman Spectrosc 35:800–807. doi: 10.1002/jrs.1199 CrossRefGoogle Scholar
  278. 278.
    Sharma B, Cardinal MF, Kleinman SL, Greeneltch NG, Frontiera RR, Blaber MG, Schatz GC, Van Duyne RP (2013) High-performance SERS substrates: advances and challenges. MRS Bull 38:615–624. doi: 10.1557/mrs.2013.161 CrossRefGoogle Scholar
  279. 279.
    Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) SERS: materials, applications, and the future. Mater Today 15:16–25CrossRefGoogle Scholar
  280. 280.
    Sharma SK, Misra AK, Lucey PG, Lentz RCF (2009) A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Spectrochim Acta A 73:468–476CrossRefGoogle Scholar
  281. 281.
    Shashoua Y, Berthelsen MBLD, Nielsen OF (2006) Raman and ATR-FTIR spectroscopies applied to the conservation of archaeological Baltic amber. J Raman Spectrosc 37:1221–1227CrossRefGoogle Scholar
  282. 282.
    Smith GD, Burgio L, Firth S, Clark RJH (2001) Laser-induced degradation of lead pigments with reference to Botticelli’s Trionfo d’Amore. Anal Chim Acta 440:185–188. doi: 10.1016/S0003-2670(01)01053-4 CrossRefGoogle Scholar
  283. 283.
    Smith GD, Clark RJH (2001) Raman microscopy in art history and conservation science. Stud Conserv 46:92–106. doi: 10.1179/sic.2001.46.2.92 CrossRefGoogle Scholar
  284. 284.
    Smith GD, Clark RJH (2004) Raman microscopy in archaeological science. J Archaeol Sci 31:1137–1160CrossRefGoogle Scholar
  285. 285.
    Smith GD, Derbyshire A, Clark RJH (2002) In situ spectroscopic detection of lead sulphide on a blackened manuscript illumination by Raman microscopy. Stud Conserv 47:250–256. doi: 10.1179/sic.2002.47.4.250 Google Scholar
  286. 286.
    Sodo A, Bicchieri M, Guiso M, Ricci MA, Ricci G (2012) Raman investigations on marker pen inks. J Raman Spectrosc 43:1781–1787. doi: 10.1002/jrs.4070 CrossRefGoogle Scholar
  287. 287.
    Staniszewska E, Malek K, Kaszowska Z (2013) Studies on paint cross-sections of a glass painting by using FT-IR and Raman microspectroscopy supported by univariate and hierarchical cluster analyses. J Raman Spectrosc 44:1144–1155CrossRefGoogle Scholar
  288. 288.
    Tomasini EP, Halac EB, Reinoso M, Di Liscia EJ, Maier MS (2012) Micro-Raman spectroscopy of carbon-based black pigments. J Raman Spectrosc 43:1671–1675CrossRefGoogle Scholar
  289. 289.
    Tournié A, Prinsloo LC, Colomban P (2011) Raman classification of glass beads excavated on Mapungubwe hill and K2, two archaeological sites in South Africa. J Raman Spectrosc 43:532–542CrossRefGoogle Scholar
  290. 290.
    Trentelman K (2009) A note on the characterization of bismuth black by Raman microspectroscopy. J Raman Spectrosc 40:585–589. doi: 10.1002/jrs.2184 CrossRefGoogle Scholar
  291. 291.
    Trentelman K, Stodulski L, Pavlosky M (1996) Characterization of pararealgar and other light-induced transformation products from realgar by Raman microspectroscopy. Anal Chem 68:1755–1761. doi: 10.1021/ac951097o CrossRefGoogle Scholar
  292. 292.
    Trentelman K, Turner N (2009) Investigation of the painting materials and techniques of the late-15th century manuscript illuminator Jean Bourdichon. J Raman Spectrosc 40:577–584. doi: 10.1002/jrs.2186 CrossRefGoogle Scholar
  293. 293.
    Vandenabeele P (2000) Raman spectroscopic database of azo pigments and application to modern art studies. J Raman Spectrosc 517:509–517CrossRefGoogle Scholar
  294. 294.
    Vandenabeele P, Castro K, Hargreaves M, Moens L, Madariaga JM, Edwards HGM (2007) Comparative study of mobile Raman instrumentation for art analysis. Anal Chim Acta 588:108–116CrossRefGoogle Scholar
  295. 295.
    Vandenabeele P, Edwards HGM, Jehlicka J (2014) The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chem Soc Rev 43:2628–2649CrossRefGoogle Scholar
  296. 296.
    Vandenabeele P, Edwards HGM, Moens L (2007) A decade of Raman spectroscopy in art and archaeology. Chem Rev ACS 107:675–686CrossRefGoogle Scholar
  297. 297.
    Vandenabeele P, Moens L (2003) Micro-Raman spectroscopy of natural and synthetic indigo samples. Analyst 128:187–193CrossRefGoogle Scholar
  298. 298.
    Vandenabeele P, Wehling B, Moens L, Edwards H, De Reu M, Van Hooydonk G (2000) Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. Anal Chim Acta 407:261–274. doi: 10.1016/S0003-2670(99)00827-2 CrossRefGoogle Scholar
  299. 299.
    Vandenabeele P, Weis TL, Grant ER, Moens LJ (2004) A new instrument adapted to in situ Raman analysis of objects of art. Anal Bioanal Chem 379:137–142CrossRefGoogle Scholar
  300. 300.
    Villafana TE, Brown WP, Delaney JK, Palmer M, Warren WS, Fischer MC (2014) Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork. Proc Natl Acad Sci USA 111:1708–1713. doi: 10.1073/pnas.1317230111 CrossRefGoogle Scholar
  301. 301.
    Vitek P, Ali EMA, Edwards HGM, Jehlicka J, Cox R, Page K (2012) Evaluation of portable Raman spectrometer with 1064 nm excitation for geological and forensic applications. Spectrochim Acta A 86:320–327CrossRefGoogle Scholar
  302. 302.
    Weis TL, Jiang Y, Grant ER (2004) Toward the comprehensive spectrochemical imaging of painted works of art: a new instrumental approach. J Raman Spectrosc 35:813–818CrossRefGoogle Scholar
  303. 303.
    Whitney AV, Casadio F, Van Duyne RP (2007) Identification and characterization of artists’ red dyes and their mixtures by surface-enhanced Raman spectroscopy. Appl Spectrosc 61:994–1000CrossRefGoogle Scholar
  304. 304.
    Whitney AV, Van Duyne RP, Casadio F (2006) An innovative surface-enhanced Raman spectroscopy (SERS) method for the identification of six historical red lakes and dyestuffs. J Raman Spectrosc 37:993–1002. doi: 10.1002/jrs.1576 CrossRefGoogle Scholar
  305. 305.
    Williams AC, Edwards HGM, Barry BW (1994) Raman spectra of human keratotic biopolymers: skin, callus, hair and nail. J Raman Spectrosc 25:95–98. doi: 10.1002/jrs.1250250113 CrossRefGoogle Scholar
  306. 306.
    Wilson AS, Edwards HGM, Farwell DW, Janaway RC (1999) Fourier transform Raman spectroscopy: evaluation as a non-destructive technique for studying the degradation of human hair from archaeological and forensic environments. J Raman Spectrosc 30:367–373. doi: 10.1002/(SICI)1097-4555(199905)30:5<367:AID-JRS384>3.0.CO;2-I CrossRefGoogle Scholar
  307. 307.
    Winkler W, Kirchner ECh, Asenbaum A, Musso M (2001) A Raman spectroscopic approach to the maturation process of fossil resins. J Raman Spectrosc 32:59–63CrossRefGoogle Scholar
  308. 308.
    Withnall R, Chowdhry BZ, Silver J, Edwards HGM, de Oliveira LFC (2003) Raman spectra of carotenoids in natural products. Spectrochim Acta A 59:2207–2212. doi: 10.1016/S1386-1425(03)00064-7 CrossRefGoogle Scholar
  309. 309.
    Wouters J (1985) High performance liquid chromatography of anthraquinones: analysis of plant and insect extracts and dyed textiles. Stud Conserv 30:119–128Google Scholar
  310. 310.
    Wouters J, Verhecken A (1989) The coccid insect dyes: HPLC and computerized diode-array analysis of dyed yarns. Stud Conserv 34:189–200. doi: 10.2307/1506286 Google Scholar
  311. 311.
    Wustholz KL, Brosseau CL, Casadio F, Van Duyne RP (2009) Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists’ canvas. Phys Chem Chem Phys 11:7350–7359. doi: 10.1039/b904733f CrossRefGoogle Scholar
  312. 312.
    Wynn-Williams DD, Edwards HGM (2000) Proximal analysis of regolith habitats and protective biomolecules in situ by laser Raman spectroscopy: overview of terrestrial antarctic habitats and mars analogs. Icarus 144:486–503. doi: 10.1006/icar.1999.6307 CrossRefGoogle Scholar
  313. 313.
    Yaffe NR, Blanch EW (2008) Effects and anomalies that can occur in SERS spectra of biological molecules when using a wide range of aggregating agents for hydroxylamine-reduced and citrate-reduced silver colloids. Vib Spectrosc 48:196–201. doi: 10.1016/j.vibspec.2007.12.002 CrossRefGoogle Scholar
  314. 314.
    Zaffino C, Bedini GD, Mazzola G, Guglielmi V, Bruni S (2016) Online coupling of high-performance liquid chromatography with surface-enhanced Raman spectroscopy for the identification of historical dyes. J Raman Spectrosc. doi: 10.1002/jrs.4867 Google Scholar
  315. 315.
    Zaffino C, Bruni S, Guglielmi V, De Luca E (2014) Fourier-transform surface-enhanced Raman spectroscopy (FT-SERS) applied to the identification of natural dyes in textile fibers: an extractionless approach to the analysis. J Raman Spectrosc 45:211–218. doi: 10.1002/jrs.4443 CrossRefGoogle Scholar
  316. 316.
    Zhao J, Carrabba MM, Allen FS (2002) Automated fluorescence rejection using shifted excitation Raman difference spectroscopy. Appl Spectrosc 56:834–845CrossRefGoogle Scholar
  317. 317.
    Zoppi A, Lofrumento C, Mendes NFC, Castellucci EM (2010) Metal oxalates in paints: a Raman investigation on the relative reactivities of different pigments to oxalic acid solutions. Anal Bioanal Chem 397:841–849. doi: 10.1007/s00216-010-3583-1 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.The Art Institute of ChicagoChicagoUSA
  2. 2.Centre de Recherche sur la Conservation (CRC), Muséum National d’Histoire Naturelle, Sorbonne-Universités CNRS, MCC, USR 3224, CRCC CP21ParisFrance
  3. 3.Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, MONARIS “de la Molécule aux Nano-objets: Réactivité, Interactions et Spectroscopies”, UMR 8233, UPMC/CNRSParis Cedex 05France

Personalised recommendations