Skip to main content

Advertisement

Log in

Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 18 October 2016

This article has been updated

Abstract

The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Reprinted with permission from Ref. [34]

Fig. 2

Reprinted with permission from Ref. [44]

Fig. 3

Reprinted with permission from ref [86]

Fig. 4
Fig. 5
Fig. 6

Reprinted with permission from [233]

Similar content being viewed by others

Change history

  • 18 October 2016

    An erratum to this article has been published.

References

  1. Takagi J, Mincher BJ, Yamaguchi M, Katsumura Y (2011) Radiation chemistry in nuclear engineering. In: Hatano Y, Katsumura Y, Mozumder A (eds) Charged Particle and Photon Interactions with Matter. CRC Press, Boca Raton, pp 959–1023

    Google Scholar 

  2. Chmielewski AG, Szołucha MM (2016) Radiation chemistry for modern nuclear energy development. Radiat Phys Chem 124:235–240

    Article  CAS  Google Scholar 

  3. Mincher BJ (2015) Radiation chemistry in the reprocessing and recycling of spent nuclear fuels. In: Taylor R (ed) Reprocessing and Recycling of Spent Nuclear Fuel. Elsevier, Amsterdam, pp 191–211

    Chapter  Google Scholar 

  4. Jonsson M (2014) An overview of interfacial radiation chemistry in nuclear technology. Isr J Chem 54:292–301

    Article  CAS  Google Scholar 

  5. Lin M, Katsumura Y (2011) Radiation chemistry of high temperature and supercritical water and alcohols. In: Hatano Y, Katsumura Y, Mozumder A (eds) Charged Particle and Photon Interactions with Matter. CRC Press, Boca Raton, pp 401–424

    Google Scholar 

  6. LaVerne JA (2011) Radiation chemistry of water with ceramic oxides. In: Hatano Y, Katsumura Y, Mozumder A (eds) Charged Particle and Photon Interactions with Matter, 1st edn. CRC Press, Boca Raton, pp 425–444

    Google Scholar 

  7. Mincher BJ, Modolo G, Mezyk SP (2010) Review: the effects of radiation chemistry on solven extraction 4: separation of the trivalent actinides and considerations for radiation-resistant solvent systems. Solv Extr Ion Exchange 28:415–436

    Article  CAS  Google Scholar 

  8. Mincher BJ, Modolo G, Mezyk SP (2009) Review article: the effects of radiation chemistry on solbvent extraction 3: a review of actinide and lanthanide extraction. Solv Extr Ion Exchange 27:579–606

    Article  CAS  Google Scholar 

  9. Mincher BJ (2010) An overview of selected radiation chemical reactions affecting fuel cycle solvent extraction. In: Wai C (ed.) Nuclear Energy and Environment. ACS Symposium Series: American Chemical Society, Washington, DC, pp. 181–192

  10. Miller W, Russell A, Chapman N, McKinley I, Smellie J (2000) Geological Disposal of Radioactive Wastes and Natural Analogues. Pergamon Press, Amsterdam

    Google Scholar 

  11. Garrett BC, Dixon DA, Camaioni DM, Chipman DM, Johnson MA, Jonah CD, Kimmel GA, Miller JH, Rescigno TN, Rossky PJ, Xantheas SS, Colson SD, Laufer AH, Ray D, Barbara PF, Bartels DM, Becker KH, Bowen KH Jr, Bradforth SE, Carmichael I, Coe JV, Corrales LR, Cowin JP, Dupuis M, Eisenthal KB, Franz JA, Gutowski MS, Jordan KD, Kay BD, LaVerne JA, Lymar SV, Madey TE, McCurdy CW, Meisel D, Mukamel S, Nilsson AR, Orlando TM, Petrik NG, Pimblott SM, Rustad JR, Schenter GK, Singer SJ, Tokmakoff A, Wang LS, Wettig C, Zwier TS (2005) Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem Rev 105:355–390

    Article  CAS  Google Scholar 

  12. Buxton GV (2008) An overview of the radiation chemistry of liquids. In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation Chemistry: From Basics to Applications in Material and Life Sciences. EDP Sciences, France, pp 3–16

    Google Scholar 

  13. Elliot AJ, Bartels D (2009) The reaction set, rate constants and G values for the simulation of the radiolysis of light water over the range 20 to 350 °C based on information available in 2008. AECL EACL 153-127160-450-00,

  14. Bartels DM, Henshaw J, Sims HE (2013) Modeling the critical hydrogen concentration in the AECL test reactor. Radiat Phys Chem 82:16–24

    Article  CAS  Google Scholar 

  15. Kanjana K, Haygarth KS, Wu W, Bartels DM (2013) Laboratory studies in search of the critical hydrogen concentration. Radiat Phys Chem 82:25–34

    Article  CAS  Google Scholar 

  16. Katsumura Y, Kiuchi K, Domae M, Karasawa H, Saito N, Yotsuyanagi T (2005) Research program on water chemistry of supercritical pressure water under radiation field. In: Nakahara M, Matubayasi N, Ueno M, Watanabe K (eds) Properties of Water and Steam in Kyoto Water, Steam and Aqueous Solutions for Electric Power: Advances in Science and Technology Kyoto. Maruzen Co. Ltd., Tokyo

    Google Scholar 

  17. Katsumura Y, Sunaryo G, Hiroishi D, Ishigure K (1998) Fast neutron radiolysis of water at elevated temperatures relevant to water chemistry. Prog Nucl Energy 32:113–121

    Article  CAS  Google Scholar 

  18. Sunaryo GR, Katsumura Y, Ishigure K (1995) Radiolysis of water at elevated temperatures-III. Simulation of radiolytic products at 25 and 250 °C under the irradiation with γ-rays and fast neutrons. Radiat Phys Chem 45:703–714

    Article  CAS  Google Scholar 

  19. Bartels DM, Takahashi K, Cline JA, Marin TW, Jonah CD (2005) Pulse radiolysis of supercritical water. 3. Spectrum and thermodynamics of the hydrated electron. J Phys Chem A 109:1299–1307

    Article  CAS  Google Scholar 

  20. Wu G, Katsumura Y, Muroya Y, Li X, Terada Y (2000) Hydrated electron in subcritical and supercritical water. A pulse radiolysis study. Chem Phys Lett 325:531–536

    Article  CAS  Google Scholar 

  21. Hare PM, Price EA, Stanisky CM, Janik I, Bartels DM (2010) Solvated electron extinction coefficient and oscillator strength in high temperature water. J Phys Chem A 114:1766–1775

    Article  CAS  Google Scholar 

  22. Hare PM, Price EA, Bartels DM (2008) Hydrated electron extinction coefficient revisited. J Phys Chem A 112:6800–6802

    Article  CAS  Google Scholar 

  23. Wu G, Katsumura Y, Muroya Y, Li X, Terada Y (2001) Pulse radiolysis of high temperature and supercritical water: experimental setup and e−aq observation. Radiat Phys Chem 60:395–398

    Article  CAS  Google Scholar 

  24. Elliot AJ, Buxton GV (1992) Temperature dependence of the reactions OH + O and OH + HO2 in water up to 200 [degree]C. J Chem Soc, Faraday Trans 88(17):2465–2470

    Article  CAS  Google Scholar 

  25. Elliot AJ, McCracken DR, Buxton GV, Wood ND (1990) Estimation of rate constants for near-diffusion-controlled reactions in water at high temperatures. J Chem Soc, Faraday Trans 86:1539–1547

    Article  CAS  Google Scholar 

  26. Janik I, Bartels DM, Jonah CD (2007) Hydroxyl radical self-recombination reaction and absorption spectrum in water up to 350 °C. J Phys Chem A 111:1835–1843

    Article  CAS  Google Scholar 

  27. Wu G, Katsumura Y, Lin M, Morioka T, Muroya Y (2002) Temperature dependence of ketyl radical in aqueous benzophenone solution up to 400 °C. A pulse radiolysis study. Phys Chem Chem Phys 4:3980–3988

    Article  CAS  Google Scholar 

  28. Wu G, Katsumura Y, Lin M, Murota T (2001) Temperature dependence of (SCN) ·−2 in water at 25–400 °C. Absorption spectrum, equilibrium constant, and decay. J Phys Chem A 105:4933–4939

    Article  CAS  Google Scholar 

  29. Katsumura Y, Wu G, Lin M, Muroya Y, Morioka T, Terada Y, Li X (2001) Observation of hydrated electron, (SCN) ·−2 and CO ·−3 radical in high temperature and supercritical water. Res Chem Intermed 22:755–763

    Article  Google Scholar 

  30. Mostafavi M, Lin M, Wu G, Katsumura Y, Muroya Y (2002) Pulse radiolysis study of absorption spectra of Ag0 and Ag2+ in water from room temperature up to 380 °C. J Phys Chem A 106:3123–3127

    Article  CAS  Google Scholar 

  31. Lin M, Katsumura Y, Muroya Y, He H, Miyazaki T, Hiroshi D (2008) Pulse radiolysis of sodium formate aqueous solution up to 400 °C: absorption spectra, kinetics and yield of carboxyl radical CO ·−2 . Radiat Phys Chem 77:1208–1212

    Article  CAS  Google Scholar 

  32. Lin M, Katsumura Y, He W, Muroya Y, Wu G, Han Z, Miyazaki T, Kudo H (2005) Pulse radiolysis of 4,4′-bipyridyl aqueous solutions at elevated temperatures: spectral changes and reaction kinetics up to 400 °C. J Phys Chem A 109:2847–2854

    Article  CAS  Google Scholar 

  33. Wu G, Katsumura Y, Muroya Y, Lin M, Murota T (2002) Temperature dependence of carbonate radical in NaHCO3 and Na2CO3 solutions: is the radical a single anion? J Phys Chem A 106:2430–2432

    Article  CAS  Google Scholar 

  34. Lin M, Katsumura Y, Muroya Y, He W, Wu G, Han Z, Miyazaki T, Kudo H (2004) Pulse radiolysis study on the estimation of radiolytic yields of water decomposition products in high-temperature and supercritical water: use of methyl viologen as a scavenger. J Phys Chem A 108:8287–8295

    Article  CAS  Google Scholar 

  35. Sims HE (2006) Yields of radiolysis products from γ-irradiated supercritical water—a re-analysis data by W. G. Burns and W.R. Marsh. Radiat Phys Chem 75:1047–1050

    Article  CAS  Google Scholar 

  36. Burns WG, Marsh WR (1981) Radiation chemistry of high-temperature (300–400 °C) Water. J Chem Soc Faraday I 72:197–215

    Article  Google Scholar 

  37. Lin M, Muroya Y, Baldacchino G, Katsumura Y (2010) Radiolysis of Supercritical Water. In: Wishart JF, Rao BSM (eds) Recent Trends in Radiation Chemsitry. World Scientific, New Jersey, pp 255–277

    Chapter  Google Scholar 

  38. Sterniczuk M, Yakabuskie PA, Wren JC, Jacob JA, Bartels D (2015) Low LET radiolysis escape yields for reducing radicals and H2 in pressurized high temperature water. Radiat Phys Chem 121:35–42

    Article  CAS  Google Scholar 

  39. Shiraishi H, Katsumura Y, Hiroishi D, Ishigure K, Washio M (1988) Pulse-radiolysis study on the yield of hydrated electron at elevated temperatures. J Phys Chem 92:3011–3017

    Article  CAS  Google Scholar 

  40. Shiraishi H, Katsumura Y, Ishigure K (1989) On the yield of hydrated electron at elevated temperatures. Radiat Phys Chem 34:705–710

    Google Scholar 

  41. Janik D, Janik I, Bartels DM (2007) Neutron and β/γ radiolysis of water up to supercritical conditions. 1. β/γ Yields for H2, ·H atom, and hydrated electron. J Phys Chem A 111:7777–7786

    Article  CAS  Google Scholar 

  42. Elliot AJ, Chenier MP, Ouellette DC (1993) Temperature dependence of g values for H2O and D2O irradiated with low linear energy transfer radiation. J Chem Soc Faraday Trans I 89:1193–1197

    Article  CAS  Google Scholar 

  43. Christensen HC, Sehested K (1986) The hydrated electron and its reactions at high temperatures. J Phys Chem 90:186–190

    Article  CAS  Google Scholar 

  44. Marin TW, Takahashi K, Jonah CD, Cheremisov SD, Bartels DM (2007) Recombination of the hydrated electron at high temperature and pressure in hydrogenated alkaline water. J Phys Chem A 111:11540–11551

    Article  CAS  Google Scholar 

  45. Christensen H, Sehested K, Logager T (1994) Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH and H2O2. Radiat Phys Chem 43:527–531

    Article  CAS  Google Scholar 

  46. Shiraishi H, Sunaryo GR, Ishigure K (1994) Temperature dependence of equilibrium and rate constants of reactions inducing conversion between hydrated electron and atomic hydrogen. J Phys Chem 98:5164–5173

    Article  CAS  Google Scholar 

  47. Takahashi K, Bartels DM, Cline JA, Jonah CD (2002) Reaction rates of the hydrated electron with NO2 and NO3 and hydronium ions as a function of temperature from125 to 380 °C. Chem Phys Lett 357:358–364

    Article  CAS  Google Scholar 

  48. Stanisky CM, Bartels DM, Takahashi K (2010) Rate constants for the reaction of hydronium ions with hydrated electrons up to350 °C. Radiat Phys Chem 79:64–65

    Article  CAS  Google Scholar 

  49. Muroya Y, Lin M, de Waele V, Hatano Y, Katsumura Y, Mostafavi M (2010) First observation of picosecond kinetics of hydrated electrons in supercritical water. J Phys Chem Lett 1:331–335

    Article  CAS  Google Scholar 

  50. Cline J, Takahashi K, Marin TW, Jonah CD, Bartels DM (2002) Pulse radiolysis of supercritical water. 1. Reactions between hydrophobic and anionic species. J Phys Chem A 106:12260–12269

    Article  CAS  Google Scholar 

  51. Marin TW, Cline JA, Takahashi K, Bartels DM, Jonah CD (2002) Pulse radiolysis of supercritical water. 2. Reaction of nitrobenzene with hydrated electrons and hydroxyl radicals. J Phys Chem A 106:12270–12279

    Article  CAS  Google Scholar 

  52. Lin CC (2009) A review of corrosion product transport and radiation field buildup in boiling water reactors. Prog Nucl Energy 51:207–224

    Article  CAS  Google Scholar 

  53. Tsaia T-L, Lina T-Z, Sua T-Y, Weia H-J, Mena L-C, Wenba T-J (2012) Identification of chemical composition of CRUD depositing on fuel surface of a boiling water reactor (BWR-6) plant. Energy Procedia 14:867–872

    Article  CAS  Google Scholar 

  54. Kanjana K, Courtin B, MacConnell A, Bartels DM (2015) Reactions of hexa-aquo transition metal ions with the hydrated electron up to 300 °C. J Phys Chem A 119:11094–11104

    Article  CAS  Google Scholar 

  55. McCracken DR, Tsang KT, Laughton PJ (1998) Aspects of the physics and chemistry of water radiolysis by fast neutrons and fast electrons in nuclear reactors. Report AECL-11895. AECL,

  56. Christensen H, Sehested K (1983) Reaction of hydroxyl radicals with hydrogen at elevated temperatures. Determination of the activation energy. J Phys Chem 87:118–120

    Article  CAS  Google Scholar 

  57. Marin TW, Jonah CD, Bartels D (2003) Reaction of OH radicals with H2 in sub-critical water. Chem Phys Lett 371:144–149

    Article  CAS  Google Scholar 

  58. Janik I, Bartels DM, Marin TW, Jonah CD (2007) Reaction of O2 with the hydrogen atom in water up to 350 °C. J Phys Chem A 111:79–88

    Article  CAS  Google Scholar 

  59. Christensen H, Sehested K, Corfitzen H (1982) Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures. J Phys Chem 86:1588–1590

    Article  CAS  Google Scholar 

  60. Buxton GV, Elliot AJ (1993) Temperature dependence of the rate constant for the reaction H + OH in liquid water up to 200 °C. J Chem Soc, Faraday Trans 89:485–488

    Article  CAS  Google Scholar 

  61. Lundström T, Christensen H, Sehested K (2002) The reaction of ·OH with H· at elevated temperatures. Radiat Phys Chem 64:29–33

    Article  Google Scholar 

  62. Lundström T, Christensen H, Sehested K (2004) reactions of HO2 radical with OH, H, Fe2+ and Cu2+ at elevated temperatures. Radiat Phys Chem 69:211–216

    Article  CAS  Google Scholar 

  63. Marin TW, Jonah CD, Bartels DM (2005) Reaction of hydrogen atoms with hydroxide ions in high-temperature and high-pressure water. J Phys Chem A 109:1843–1848

    Article  CAS  Google Scholar 

  64. Swiatla-Wójcik D, Buxton GV (2005) On the possible role of the reaction H + H2O·− > H2 + OH in the radiolysis of water at high temperatures. Radiat Phys Chem 74:210–219

    Article  CAS  Google Scholar 

  65. Hartig KJ, Getoff N (1982) Reactivity of hydrogen atoms with liquid water. J Photochem 18:29–38

    Article  CAS  Google Scholar 

  66. Bartels D (2009) Comment on the possible role of the reaction H + H2O·− > H2 + OH in the radiolysis of water at high temperatures. Radiat Phys Chem 78:191–194

    Article  CAS  Google Scholar 

  67. Swiatla-Wójcik D, Buxton GV (2010) Reply to comment on the possiblerole of the reaction H + H2O > H2 + OH in the radiolysis of water at high temperatures. Radiat Phys Chem 79:52–56

    Article  CAS  Google Scholar 

  68. Lundstrom T, Christensen H, Sehested K (2001) The reaction of hydrogen atoms with hydrogen peroxide as a function of temperature. Radiat Phys Chem 61:109–113

    Article  CAS  Google Scholar 

  69. Mezyk SP, Bartels DM (1995) Direct EPR measurement of Arrhenius parameters for the reaction of H atoms with H2O2 and D atoms with D2O2 in aqueous solution. J Chem Soc Faraday Trans 91:3127–3132

    Article  CAS  Google Scholar 

  70. Elliot AJ (1989) A pulse radiolysis study of the temperature dependence of reactions involving H, OH and e−aq in aqueous solutions. Radiat Phys Chem 34:753–758

    CAS  Google Scholar 

  71. Sehested K, Christensen H (1990) The rate constant of the bimolecular reaction of hydrogen atoms at elevated temperatures. Radiat Phys Chem 36:499–500

    CAS  Google Scholar 

  72. Yamashita S, Taguchi M, Baldacchino G, Katsumura Y (2011) Radiation chemistry of liquid water with heavy ions: steady-state and pulse radiolysis studies. In: Hatano Y, Katsumura Y, Mozumder A (eds) Charged Particle and Photon Interactions with Matter. CRC Press, Boca Raton, pp 325–354

    Google Scholar 

  73. LaVerne JA (2004) Radiation chemical effects of heavy ions. In: Mozumder A, Hatano Y (eds) Charged Particle and Photon Interactions with Matter. Marcel Dekker, New York, pp 403–429

    Google Scholar 

  74. Meesungnoen J, Jay-Gerrin J-P (2011) Radiation chemistry of liquid water with heavy ions: Monte Carlo simulation studies. In: Hatano Y, Katsumura Y, Mozumder A (eds) Charged Particle and Photon Interactions with Matter. CRC Press, Boca Raton, pp 355–400

    Google Scholar 

  75. Baldacchino G, Katsumura Y (2010) Chemical processes in heavy ion track. In: Wishart JF, Rao BSM (eds) Recent Trends in Radiation Chemistry. World Scientific, New Jersey, pp 231–253

    Chapter  Google Scholar 

  76. Meisel D (2004) Radiation effects in nanoparticle suspensions. In: Lin-Marzan L, Kamat P (eds) Nanoscale Materials, 1st edn. Springer, Berlin, pp 119–134

    Chapter  Google Scholar 

  77. Kumbhar AG, Belapurkar AD, Venkateswaran G, Bera S, Naik DB, Kishore K, Sanjukta A, Mythili R (2011) Hydrogen generation by gamma irradiation of aqueous turbid solution of titanium. Curr Sci 100:895–900

    CAS  Google Scholar 

  78. Kumbhar AG, Belapurkar AD, Venkateswaran G, Kishore K (2005) Impact of different metal turbidities on radiolytic hydrogen generation in nuclear power plant. Power Plant Chem 7:674–679

    CAS  Google Scholar 

  79. Schofield J, Reiff SC, Pimblott SM, LaVerne JA (2016) Radiolytic hydrogen generation at silicon carbide-water interfaces. J Nucl Mater 469:43–50

    Article  CAS  Google Scholar 

  80. Reiff SC, LaVerne JA (2015) Radiation-induced chemical changes to iron oxides. J Nucl Mater 119:7358–7365

    CAS  Google Scholar 

  81. Reiff SC, LaVerne JA (2015) Gamma and He ion radiolysis of copper oxides. J Phys Chem C 119:8821–8828

    Article  CAS  Google Scholar 

  82. Kumbhar AG, Bhardwaj YK, Naik DB (2014) Hydrogen generation by gamma radiolysis of aqueous suspension of nano zirconia. Curr Sci 107:88–93

    CAS  Google Scholar 

  83. Merga G, Milosavljevic BH, Meisel D (2006) Radiolytic hydrogen yields in aqueous suspensions of gold particles. J Phys Chem B 110:5403–5408

    Article  CAS  Google Scholar 

  84. Matsumoto Y, Doa T-M-D, Inoue M, Nagaishi R, Ogawa T (2015) Hydrogen generation by water radiolysis with immersion of oxidation products of Zircaloy-4. J Nucl Sci Technol 52:1303–1307

    Article  CAS  Google Scholar 

  85. Chelnokov E, Cuba V, Simeone D, Guigner JM, Schmidhammer U, Mostafavi M, Le Caër S (2014) Electron transfer at oxide/water interfaces induced by ionizing radiation. J Phys Chem C 118:7865–7873

    Article  CAS  Google Scholar 

  86. Petrik NG, Alexandrov AB, Vall AI (2001) Interfacial energy transfer during gamma radiolysis of water on the surface of ZrO2 and some other oxides. J Phys Chem B 105:5935–5944

    Article  CAS  Google Scholar 

  87. LaVerne JA, Tandon L (2002) H2 production in the radiolysis of water on CeO2 and ZrO2. J Phys Chem B 106:380–386

    Article  CAS  Google Scholar 

  88. LaVerne JA, Tandon L (2003) H2 production in the radiolysis of water on UO2 and other oxides. J Phys Chem B 107:13623–13628

    Article  CAS  Google Scholar 

  89. Sattonnay G (2001) Behavior of a water-uranium dioxide interface subjected to irradiation: effects of water radiolysis on the alteration of uranium dioxide. J Phys IV 11(PR1):243–250

    CAS  Google Scholar 

  90. LaVerne JA (2005) H2 formation from the radiolysis of liquid water with zirconia. J Phys Chem B Lett 109:5395–5397

    Article  CAS  Google Scholar 

  91. Carrasco-Flores EA, LaVerne JA (2007) Surface species produced in the radiolysis of zirconia nanoparticles. J Chem Phys 127:234703–234709

    Article  CAS  Google Scholar 

  92. Jonsson M (2010) Radiation-induced processes at solid-liquid interfaces. In: Wishart JF, Rao BSM (eds) Recent Trends in Radiation Chemistry. World Scientific, New Jersey, pp 301–323

  93. Skotnicki K, Bobrowski K (2015) Molecular hydrogen formation during water radiolysis in the presence of zirconium dioxide. J Radioanal Nucl Chem 304:473–480

    Article  CAS  Google Scholar 

  94. Barzykin AV, Tachiya M (2003) Diffusion of probe molecules in polymer gels as observed by fluorescence quenching techniques. J Phys Chem B 107(13):2953–2957

    Article  CAS  Google Scholar 

  95. Steytler DC, Dore JC, Wright CJ (1983) Neutron-diffraction studies of water in meso-pores and micro-pores. Mol Phys 48:1031–1051

    Article  CAS  Google Scholar 

  96. Gallo P, Ricci MA, Rovere M (2002) Layer analysis of the structure of water confined in vycor glass. J Chem Phys 116:342–346

    Article  CAS  Google Scholar 

  97. Musat R, Renault JP, Candelaresi M, Palmer DJ, Le Caer S, Righini R, Righini R, Pommeret S (2008) Finite size effects on hydrogen bonds in confined water. Angew Chem Int Ed 47:8033–8035

    Article  CAS  Google Scholar 

  98. Wang M, Duan F-L (2015) Effect of interfacial hydrogen bonds on the structure and dynamics of confined water. Acta Phys Sin 64:201–218

    Google Scholar 

  99. Kayal A, Chandra A (2015) Exploring the structure and dynamics of nano-confined water molecules using molecular dynamics simulations. Mol Simul 41:463–470

    Article  CAS  Google Scholar 

  100. Tan HS, Piletic IR, Fayer MD (2005) Orientational dynamics of water confined on a nanometer length scale in reverse micelles. J Chem Phys 122:174501

    Article  CAS  Google Scholar 

  101. Cringus D, Lindner J, Milder MTW, Pshenichnikov MS, Vohringer P, Wiersma DA (2005) Femtosecond water dynamics in reverse-micellar nanodroplets. Chem Phys Lett 408:162–168

    Article  CAS  Google Scholar 

  102. Dokter AM, Woutersen S, Bakker HJ (2007) Ultrafast dynamics of water in cationic micelles. J Chem Phys 126:124507

    Article  CAS  Google Scholar 

  103. Piletic IR, Moilanen DE, Spry DB, Levinger NE, Fayer MD (2006) Testing the core/shell model of nanoconfined water in reverse micelles using linear and nonlinear IR spectroscopy. J Phys Chem A 110:4985–4999

    Article  CAS  Google Scholar 

  104. Cringus D, Bakulin A, Lindner J, Voehringer P, Pshenichnikov MS, Wiersma DA (2007) Ultrafast energy transfer in water—AOT reverse micelles. J Phys Chem B 111:14193–14207

    Article  CAS  Google Scholar 

  105. Akhmatskaya E, Todd BD, Daivis PJ, Evans DJ, Gubbins KE, Pozhar LA (1997) A study of viscosity inhomogeneity in porous media. J Chem Phys 106:4684–4695

    Article  CAS  Google Scholar 

  106. Nakazato C, Masuda T (1986) Reactivity of electrons produced in gamma-irradiated zeolite toward several electron scavengers. Bull Chem Soc Jpn 59:2237–2239

    Article  CAS  Google Scholar 

  107. Aoki M, Nakazato C, Masuda T (1988) Hydrogen formation from water adsorbed on zeolite during gamma-iradiation. Bull Chem Soc Jpn 61:1899–1902

    Article  CAS  Google Scholar 

  108. Nakashima M, Aratono Y (1993) Radiolytic hydrogen gas formation from water adsorbed on type A zeolites. Radiat Phys Chem 41:461–465

    Article  CAS  Google Scholar 

  109. Nakashima M, Masaki NM (1996) Radiolytic hydrogen gas formation from water adsorbed on type Y zeolites. Radiat Phys Chem 47:241–245

    Article  CAS  Google Scholar 

  110. Foley S, Rotureau P, Pin S, Baldacchino G, Renault J-P, Mialocq J-C (2005) Radiolysis of confined water: production and reactivity of hydroxyl radicals Angew Chem Int Ed 44:110–112

    CAS  Google Scholar 

  111. Le Caer S, Rotureau P, Brunet F, Charpentier T, Blain G, Renault J-P, Mialocq J-C (2005) Radiolysis of confined water: hydrogen production at low dose rate. Chem Phys Chem 6:2585–2596

    Article  CAS  Google Scholar 

  112. Le Caer S, Rotureau P, Vigneron G, Blain G, Renault J-P, Mialocq J-C (2005) Irradiation of controlled pore glasses with 10 MeV electrons. Rev Adv Mat Sci 10:161–165

    Google Scholar 

  113. Le Caer S, Renault J-P, Mialocq J-C (2007) Hydrogen peroxide formation in the radiolysis of hydrated nanoporous glasses: a low and high dose rate study. Chem Phys Lett 450:91–95

    Article  CAS  Google Scholar 

  114. Rotureau P, Renault J-P, Lebeau B, Patarin J, Mialocq J-C (2005) Radiolysis of confined water: molecular hydrogen formation. Chem Phys Chem 6:1316–1323

    Article  CAS  Google Scholar 

  115. Fourdrin C, Aarrachi H, Latrille C, Esnouf S, Bergaya F, Le Caër S (2013) Water radiolysis in exchanged-montmorillonites: the H2 production mechanisms. Environ Sci Technol 47(16):9530–9537

    Article  CAS  Google Scholar 

  116. Musat R, Moreau S, Poidevin F, Mathon MH, Pommeret S, Renault JP (2010) Radiolysis of water in nanoporous gold. Phys Chem Chem Phys 12:12868–12874

    Article  CAS  Google Scholar 

  117. Moreau S, Fenart M, Renault JP (2014) Radiolysis of water in the vicinity of passive surfaces. Corrosion Sci 83:255–260

    Article  CAS  Google Scholar 

  118. Musat RM, Cook AR, Renault J-P, Crowell RA (2012) Nanosecond pulse radiolysis of nanoconfined water. J Phys Chem C 116:13104–13110

    Article  CAS  Google Scholar 

  119. Avallone E, Baumeister C, Sadegh M (2007) Marks’ Standard Handbook for Mechanical Engineers. New York

  120. Lowinska-Kluge APP (2008) Effect of gamma irradiation on cement composites observed with XRD and SEM methods in the range of radiation dose 0–1409 MGy. Acta Phys Pollut A 114(2):399–411

    Article  CAS  Google Scholar 

  121. Vagelis G. Papadakis (1991) Physical and chemical characteristics affecting the durability of concrete. Mater J 88(2):186–196

    CAS  Google Scholar 

  122. Bouniol P, Bjergbakke E (2008) A comprehensive model to describe radiolytic processes in cement medium. J Nucl Mater 372:1–15

    Article  CAS  Google Scholar 

  123. Bouniol P (2010) The influence of iron on water radiolysis in cement-based materials. J Nucl Mater 403:167–183

    Article  CAS  Google Scholar 

  124. Foct F, Di Giandomenico MV, Bouniol P (2013) Modelling of hydrogen production from pore water radiolysis in cemented intermediate level waste. Paper presented at the International Workshop Nucperf 2012: Long-Term Performance of Cementitious Barriers and Reinforced Concrete in Nuclear Power Plant and Radioactive Waste Storage and Disposal,

  125. Bouniol P, Muzeau B, Dauvois V (2013) Experimental evidence of the influence of iron on pore water radiolysis in cement-based materials. J Nucl Mater 437:208–215

    Article  CAS  Google Scholar 

  126. Poinssot C, Boullis B, Bourg S (2015) Role of recycling in advanced nuclear fuel cycles. In: Taylor R (ed) Reprocessing and Recycling of Spent Nuclear Fuel. Woodhead Publishing, Oxford, pp 27–48

    Chapter  Google Scholar 

  127. Bourg S, Geist A, Narbutt J (2015) SACSESS—the EURATOM FP7 project on actinide separation from spent nuclear fuels. Nukleonika 60:809–814

    Google Scholar 

  128. Herbst RS, Baron P, Nilsson M (2011) Standard and advanced separation: PUREX processes for nuclear fuel reprocessing. In: Nash KL, Nash GJ (eds) Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment. Woodhead Publishing, Oxford, pp 141–175

    Chapter  Google Scholar 

  129. Nash KL, Nilsson M (2015) Introduction to the reprocessing and recycling of spent nuclear fuels. In: Taylor R (ed) Reprocessing and Recycling of Spent Nuclear Fuel. Woodhead Publishing, Oxford, pp 3–25

    Chapter  Google Scholar 

  130. Modolo G, Geist A, Miguirditchian M (2015) Minor actinide separations in the reprocessing of spent nuclear fuels: recent advances in Europe. In: Taylor R (ed) Reprocessing and Recycling of Spent Nuclear Fuel. Woodhead Publishing, Oxford, pp 245–287

    Chapter  Google Scholar 

  131. Todd TA (2015) Development of closed nuclear fuel cycles in the United States. In: Taylor R (ed) Reprocessing and Recycling of Spent Nuclear Fuel. Woodhead Publishing, Oxford, pp 525–530

    Google Scholar 

  132. Hood GC, Reilly CA (1960) Ionization of strong electrolytes. 8. Temperature coefficient of dissociation of strong acids by proton magnetic resonance. J Chem Phys 32:127–130

    Article  CAS  Google Scholar 

  133. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution. J Phys Chem Ref Data 17:513–886

    Article  CAS  Google Scholar 

  134. Wolff RK, Bronskill MJ, Hunt JW (1970) Picosecond pulse radiolysis studies. 2. Reactions of electrons with concentrated scavengers. J Chem Phys 53:4211–4242

    Article  CAS  Google Scholar 

  135. Lam KY, Hunt JW (1975) Picosecond pulse-radiolysis. 6. Fast electron reactions in concentrated solutions of scavengers in water and alcohols. Int J Radiat Phys Chem 7:317–338

    Article  CAS  Google Scholar 

  136. Gratzel M, Henglein A, Taniguch S (1970) Pulse radiolysis of NO3(−)-reduction and formation and decomposition of pernitrous acid in aqueous solution ber bunsenges. Phys Chem 74:292

    Google Scholar 

  137. Logager T, Sehested K (1993) Formation and decay of peroxynitrous acid—a pulse-radiolysis study. J Phys Chem 97:6664–6669

    Article  Google Scholar 

  138. Wardman P (1989) The reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref Data 18:1637–1753

    Article  CAS  Google Scholar 

  139. Gratzel M, Henglein A, Lilie J, Beck G (1969) Pulse radiolysis of some elementary oxidation-reduction processes of nitrite. Ber Bunsenges Phys Chem 73:646

    Google Scholar 

  140. Olah GA, Lin HC, Olah JA, Narang SC (1978) Electrophilic and free radical nitration of benzene and toluene with various nitrating agents. Proc Nat Acad Sci USA 75:1045–1049

    Article  CAS  Google Scholar 

  141. Katsumura Y (1998) NO ·2 and NO ·3 radicals in radiolysis of nitric acid solutions. In: Alfassi ZB (ed) N-Centered Radicals. Vol the Chemistry of Free Radicals. Wiley, Chichester, pp 393–412

    Google Scholar 

  142. Katsumura Y, Jiang P-Y, Nagaishi R, Oishi T, Ishigure K, Yoshida Y (1991) Pulse radiolysis study of aqueous nitric acid solutions. Formation mechanism, yield, and reactivity of NO3 radical. J Phys Chem 95:4435–4439

    Article  CAS  Google Scholar 

  143. Nagaishi R, Jiang PY, Katsumura Y, Ishigure K (1994) Primary yields of water radiolysis in concentrated nitric-acid solutions. J Chem Soc Faraday Trans 90:591–595

    Article  CAS  Google Scholar 

  144. Jiang PY, Nagaishi R, Yotsuyanagi T, Katsumura Y, Ishigure K (1994) Gamma-radiolysis study of concentrated nitric-acid solutions. J Chem Soc Faraday Trans 90:93–95

    Article  CAS  Google Scholar 

  145. Balcerzyk A, El Omar AK, Schmidhammer U, Pernot P, Mostafavi M (2012) Picosecond pulse radiolysis study of highly concentrated nitric acid solutions: formation mechanism of NO3 radical. J Phys Chem A 116:7302–7307

    Article  CAS  Google Scholar 

  146. Pikaev AK, Sibirska GK, Shirshov EM, Glazunov PY, Spitsyn VI (1974) Pulse-radiolysis of concentrated aqueous-solutions of nitric-acid. Dokl Akad Nauk SSR 215:645–648

    CAS  Google Scholar 

  147. Daniels M (1969) Radiation chemistry of aqueous nitrate system. 3. Pulse electron radiolysis of concentrated sodium nitrate solutions. J Phys Chem 73:3710

    Article  CAS  Google Scholar 

  148. Sworski TJ, Matthews RW, Mahlman HA (1968) radiation chemistry of concentrated nano3 solutions—dependence of G(HNO2) on NaNO3 concentrations. Adv Chem Ser 82:164–181

    Article  Google Scholar 

  149. Mincher BJ, Elias G, Martin LR, Mezyk SP (2009) Radiation chemistry and the nuclear fuel cycle. J Radioanal Nucl Chem 282:645–649

    Article  CAS  Google Scholar 

  150. Garaix G, Horne GP, Venault L, Moisy P, Pimblott SM, Marignier JL, Mostafavi M (2016) Decay mechanism of NO ·3 radical in highly concentrated nitrate and nitric acidic solutions in the absence and presence of hydrazine. J Phys Chem B 120(22):5008–5014

    Article  CAS  Google Scholar 

  151. Vladimirova MV, Milovanova AS (1972) α-Radiolysis of HNO3 solutions and acid NaNO3 solutions. Khimya Vysokikh Energii 6:69–72

    Google Scholar 

  152. Matthews RW, Mahlman HA, Sworski TJ (1972) Elementary processes in the radiolysis of aqueous nitric acid solutions. Determination of both GOH and GNO3. J Phys Chem 76:2680–2684

    Article  CAS  Google Scholar 

  153. Park JY, Lee YN (1988) Solubility and decomposition kinetics of nitrous-acid in aqueous-solution. J Phys Chem 92:6294–6302

    Article  CAS  Google Scholar 

  154. Bhattacharyya PK, Veeraraghavan R (1977) Reaction between nitrous-acid and hydrogen-peroxide in perchloric-acid medium. Int J Chem Kinet 9:629–640

    Article  CAS  Google Scholar 

  155. Vione D, Maurino V, Minero C, Borghesi D, Lucchiari M, Pelizzetti E (2003) New processes in the environmental chemistry of nitrite. 2. The role of hydrogen peroxide. Environ Sci Technol 37:4635–4641

    Article  CAS  Google Scholar 

  156. Belova EV, Egorov GF (1997) Radiochemical behavior of hydrazine nitrate in aqueous nitric acid solutions. At Energ 83(2):622–626

    Article  CAS  Google Scholar 

  157. Dukes EK (1960) Kinetics and mechanisms for the oxidation of trivalent plutonium by nitrous acid. J Am Chem Soc 82(1):9–13

    Article  CAS  Google Scholar 

  158. Mossini E, Macerata E, Giola M, Brambilla L, Castiglioni C, Mariani M (2015) Radiation-induced modifications on physico chemical properties of diluted nitric acid solutions within advanced spent nuclear fuel reprocessing. J Radioanal Nucl Chem 304:395–400

    Article  CAS  Google Scholar 

  159. Mossini E, Macerata E, Giola M, Brambilla L, Castiglioni C, Mariani M (2015) Physico chemical properties of irradiated i-SANEX diluents. Nukleonika 60:893–898

    Google Scholar 

  160. Foldiak G (1981) Radiation Chemistry of Hydrocarbons. Elsevier, Amsterdam

    Google Scholar 

  161. Busi F (1982) Labile species and fast processes in liquid alkanes. In: Baxendale JH, Busi F (eds) The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis. D. Reidel Publishing Company, Amsterdam, pp 417–431

    Chapter  Google Scholar 

  162. Warman J (1982) The dynamics of electrons and ions in non-polar liquids. In: Baxendale JH, Busi F (eds) The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis. D. Reidel Publishing Company, Dordrecht, p 433

    Chapter  Google Scholar 

  163. Shkrob IA, Sauer MC, Trifunac AD (2001) Radiation chemistry of organic liquids: saturated hydrocarbons. In: Jonah CD, Rao BSM (eds) Radiation Chemistry: Present Status and Future Trends. Elsevier, Amsterdam, pp 175–221

    Chapter  Google Scholar 

  164. Belloni J, Delcourt MO, Houee-Levin C, Mostafavi M (2000) Radiation chemistry. Annu Rep Prog Chem Sect C 96:225–295

    Article  CAS  Google Scholar 

  165. Lin J, Tsuji K, Williams F (1968) Radiation-induced trapped electrons in saturated hydrocarbons studied by optical and electron spin resonance spectroscopy. J Am Chem Soc 90:2766

    Article  CAS  Google Scholar 

  166. Klassen NV, Teather GG (1985) Cations and electrons in hydrocarbon glasses and liquids studied by pulse-radiolysis. J Phys Chem 89:2048–2053

    Article  CAS  Google Scholar 

  167. Richards JT, Thomas JK (1970) Trapping of electrons in low-temperature glasses—a pulse radiolysis study. J Chem Phys 53:218

    Article  CAS  Google Scholar 

  168. Lin J, Tsuji K, Williams F (1967) Electrons in organic glasses during photoionization. Esr observations of a photodynamic equilibrium. J Chem Phys 46:4982

    Article  CAS  Google Scholar 

  169. Mehnert R, Brede O, Naumann W (1984) Spectral properties and kinetics of cationic transients generated in electron pulse irradiated C7- to C16-alkanes. Ber Bunsenges Phys Chem 88:71–80

    Article  CAS  Google Scholar 

  170. Bishop WP, Firestone FR (1970) Radiolysis of liquid normal-pentane. J Phys Chem 74:2274

    Article  CAS  Google Scholar 

  171. Spinks JWT, Woods RJ (1990) Introduction to Radiation Chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  172. Dewhurst HA (1957) Radiation chemistry of organic compounds. 1. N-Alkane liquids. J Phys Chem 61:1466–1471

    Article  CAS  Google Scholar 

  173. Swallow AJ (1960) Radiation Chemistry of Organic Compounds. Pergamon Press, Oxford

    Google Scholar 

  174. Kharasch MS, Chang PC, Wagner CD (1958) Radiolysis of 1-hexene. J Org Chem 23:779–780

    Article  CAS  Google Scholar 

  175. LaVerne JA, Schuler RH (1984) Track effects in radiation chemistry: core processes in heavy-particle tracks as manifest by the hydrogen yield in benzene radiolysis. J Phys Chem 88(6):1200–1205

    Article  CAS  Google Scholar 

  176. Jones KH, Vandusen W, Theard LM (1964) Intermolecular and intramolecular energy transfer in gamma-irradiated alkylbenzenes and related mixtures. Radiat Res 22:202

    Article  Google Scholar 

  177. Freeman GR (1982) Labile species and fast processes in liquid alcohol radiolysis. In: Baxendale JH, Busi F (eds) The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis. D. Reidel Publishing Company, Amsterdam, pp 399–416

    Chapter  Google Scholar 

  178. Jay-Gerin JP, Ferradini C (1994) Compilation of some physicochemical properties of solvated electrons in polar liquids. J Chim Phys 91:173–187

    Article  CAS  Google Scholar 

  179. Szreder T, Kocia R (2015) Electron beam irradiation of r-SANEX and i-SANEX solvent extraction systems: analysis of gaseous products. Nukleonika 60:899–905

    Article  Google Scholar 

  180. Backlund S, Hoiland H, Vikholm I (1984) Water-alcohol interactions in the 2-phase system water-alcohol-alkane. J Solution Chem 13:749–755

    Article  CAS  Google Scholar 

  181. Geist A (2010) Extraction of nitric acid into alcohol: kerosene mixtures solvent. Extr Ion Exch 28:596–607

    Article  CAS  Google Scholar 

  182. Scholes G, Willson RL (1967) Gamma-radiolysis of aqueous thymine solutions—determination of relative reaction rates of OH. Trans Faraday Soc 63:2983

    Article  CAS  Google Scholar 

  183. Mezyk SP, Cullen TD, Elias G, Mincher BJ (2010) Aqueous nitric acid radiation effects on solvent extraction process chemistry. In: Nuclear Energy and the Environment, vol 1046. ACS Symposium Series, pp. 193–203

  184. Tripathi SC, Ramanujam A (2003) Effect of radiation-induced physicochemical transformations on density and viscosity of 30 % TBP-n-dodecane-HNO3 system. Sep Sci Technol 38:2307–2326

    Article  CAS  Google Scholar 

  185. Chaumont A, Wipff G (2004) Solvation of uranyl(II) and europium(III) cations and their chloro complexes in a room-temperature ionic liquid. A theoretical study of the effect of solvent “humidity. Inorg Chem 43:5891–5901

    Article  CAS  Google Scholar 

  186. Chaumont A, Wipff G (2004) Solvation of uranyl(II), europium(III) and europium(II) cations in basic room-temperature ionic liquids: a theoretical study. Chem A Eur J 10:3919–3930

    Article  CAS  Google Scholar 

  187. Cocalia VA, Jensen MP, Holbrey JD, Spear SK, Stepinski DC, Rogers RD (2005) Identical extraction behavior and coordination of trivalent or hexavalent f-element cations using ionic liquid and molecular solvents. Dalton Trans 11:1966–1971

    Article  CAS  Google Scholar 

  188. Cocalia VA, Gutowski KE, Rogers RD (2006) The coordination chemistry of actinides in ionic liquids: a review of experiment and simulation. Coord Chem Rev 250:755–764

    Article  CAS  Google Scholar 

  189. Dietz ML (2006) Ionic liquids as extraction solvents: where do we stand? Sep Sci Technol 41:2047–2063

    Article  CAS  Google Scholar 

  190. Nikitenko SI, Cannes C, Le Naour C, Moisy P, Trubert D (2005) Spectroscopic and electrochemical studies of U(IV)-hexachloro complexes in hydrophobic room-temperature ionic liquids [BuMeIm][Tf2N] and [MeBU3N][Tf2N]. Inorg Chem 44:9497–9505

    Article  CAS  Google Scholar 

  191. Visser AE, Jensen MP, Laszak I, Nash KL, Choppin GR, Rogers RD (2003) Uranyl coordination environment in hydrophobic ionic liquids: an in situ investigation. Inorg Chem 42:2197–2199

    Article  CAS  Google Scholar 

  192. Mincher BJ, Wishart JF (2014) The radiation chemistry of ionic liquids: a review solvent. Extr Ion Exch 32:563–583

    Article  CAS  Google Scholar 

  193. Venkatesan KA, Srinivasan TG, Rao PRV (2009) A review on the electrochemical applications of room temperature ionic liquids in nuclear fuel cycle. J Nucl Radiochem Sci 10:R1–R6

    Article  CAS  Google Scholar 

  194. Sun X, Luo H, Dai S (2012) Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem Rev 112:2100–2128

    Article  CAS  Google Scholar 

  195. Rao PRV, Venkatesan KA, Rout A, Srinivasan TG, Nagarajan K (2012) Potential applications of room temperature ionic liquids for fission products and actinide. Sep Sci Technol 47:204–222

    Article  CAS  Google Scholar 

  196. Takao K, Bell TJ, Ikeda Y (2013) Actinide chemistry in ionic liquids. Inorg Chem 52:3459–3472

    Article  CAS  Google Scholar 

  197. Wishart JF, Shkrob IA (2009) The radiation chemistry of ionic liquids and its implications for their use in nuclear fuel processing. In: Ionic Liquids: From Knowledge to Application, vol 1030. ACS Symposium Series, vol 1030. American Chemical Society, pp. 119–134

  198. Shkrob IA, Chemerisov SD, Wishart JF (2007) The initial stages of radiation damage in ionic liquids and ionic liquid-based extraction systems. J Phys Chem B 2007:11786–11793

    Article  CAS  Google Scholar 

  199. Bosse E, Berthon L, Zorz N, Monget J, Berthon C, Bisel I, Legand S, Moisy P (2008) Stability of [MeBu3 N][Tf2 N] under gamma irradiation. Dalton Trans 7:924–931

    Article  Google Scholar 

  200. Le Rouzo G, Lamouroux C, Dauvois V, Dannoux A, Legand S, Durand D, Moisy P, Moutiers G (2009) Anion effect on radiochemical stability of room-temperature ionic liquids under gamma irradiation. Dalton Trans 31:6175–6184

    Article  CAS  Google Scholar 

  201. Tarábek P, Liu S, Haygarth K, Bartels DM (2009) Hydrogen gas yields in irradiated room-temperature ionic liquids. Radiat Phys Chem 78:168–172

    Article  CAS  Google Scholar 

  202. Szreder T, Skrzypczak A (2015) Influence of the benzyl substituent on radiation chemistry of selected ionic liquids: gaseous products analysis. J Radioanal Nucl Chem 307:195–202

    Article  CAS  Google Scholar 

  203. Musat RM, Crowell RA, Polyanskiy DE, Thomas MF, Wishart JF, Katsumura Y, Takahashi K (2015) Ultrafast transient absorption spectrum of the room temperature Ionic liquid 1-hexyl-3-methylimidazolium bromide: confounding effects of photo-degradation. Radiat Phys Chem 117:78–82

    Article  CAS  Google Scholar 

  204. Shkrob IA, Marin TW, Hatcher JL, Cook AR, Szreder T, Wishart JF (2013) Radiation stability of cations in ionic liquids. 2. Improved radiation resistance through charge de localization in 1-benzylpyridinium. J Phys Chem B 117:14385–14399

    Article  CAS  Google Scholar 

  205. Pikaev AK, Gogolev AV, Shilov VP, Fedoseev AM (1990) Reactivity of ions of actinides towards inorganic free radicals in irradiated aqueous solutions. Isot Isot Environ Health Stud 26:465–469

    Article  CAS  Google Scholar 

  206. Mincher BJ, Precek M, Mezyk SP, Elias G, Martin LR, Paulenova A (2013) The redox chemistry of neptunium in gamma-irradiated aqueous nitric acid. Radiochim Acta 101:259–265

    Article  CAS  Google Scholar 

  207. Paulenova A (2011) Physical and chemical properties of actinides in nuclear fuel reprocessing. In: Nash KL, Lumetta GJ (eds) Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment. Woodhead Publishing, Oxford, pp 23–57

    Chapter  Google Scholar 

  208. Mincher BJ, Mezyk SP, Martin LR (2008) A pulse radiolysis investigation of the reactions of tributyl phosphate with the radical products of aqueous nitric acid irradiation. J Phys Chem A 112:6275–6280

    Article  CAS  Google Scholar 

  209. Burr JG (1958) The radiolysis of tributyl phosphate. Radiat Res 8:214–221

    Article  CAS  Google Scholar 

  210. von Sonntag C, Schulte-Frohlinde D, Sugimori A, Omori T, Koltzenb G, Ansorge G (1972) Radiation-chemistry of DNA model compounds. 2. Alkyl phosphate cleavage of aliphatic phosphates induced by hydrated electrons and by OH radicals. Z Naturforsch Pt B B27:471–475

    Google Scholar 

  211. Khaikin GI (1998) Reactions of trialkyl phosphates with hydroxyl radicals and hydrated electrons. High Energy Chem 32:287–289

    CAS  Google Scholar 

  212. Wilkinson RW, Williams TF (1961) The radiolysis of tri-n-alkyl phosphates. J Chem Soc 1:4098–4107

    Article  Google Scholar 

  213. Tahraoui A, Morris JH (1995) decomposition of solvent extraction media during nuclear reprocessing: literature review. Sep Sci Technol 30:2603–2630

    Article  CAS  Google Scholar 

  214. Shkrob IA, Marin TW, Chemerisov SD, Wishart JF (2011) Radiation and radical chemistry of NO3 , HNO3, and dialkylphosphoric acids in room-temperature ionic liquids. J Phys Chem B 115:10927–10942

    Article  CAS  Google Scholar 

  215. He H, Lin MZ, Muroya Y, Kudo H, Katsumura Y (2004) Laser photolysis study on the reaction of nitrate radical with tributylphosphate and its analogues-comparison with sulfate radical. Phys Chem Chem Phys 6:1264–1268

    Article  CAS  Google Scholar 

  216. Tripathi SC, Sumathi S, Ramanujam A (1999) Effects of solvent recycling on radiolytic degradation of 30 % tributyl phosphate-n-dodecane-HNO3 system. Sep Sci Technol 34:2887–2903

    Article  CAS  Google Scholar 

  217. Nash KL, Gatrone RC, Clark GA, Rickert PG, Horwitz EP (1988) Hydrolytic and radiolytic degradation of O-Phi-D(Ib)Cmpo—continuing studies. Sep Sci Technol 23:1355–1372

    Article  CAS  Google Scholar 

  218. Berthon L, Morel JM, Zorz N, Nicol C, Virelizier H, Madic C (2001) Diamex process for minor actinide partitioning: hydrolytic and radiolytic degradations of malonamide extractants. Sep Sci Technol 36:709–728

    Article  CAS  Google Scholar 

  219. Groenewold GS, Elias G, Mincher BJ, Mezyk SP, LaVerne JA (2012) Characterization of CMPO and its radiolysis products by direct infusion ESI-MS. Talanta 99:909–917

    Article  CAS  Google Scholar 

  220. Mincher BJ, Mezyk SP, Elias G, Groenewold GS, Riddle CL, Olson LG (2013) The radiation chemistry of CMPO: part 1. Gamma radiolysis. Solv Extr Ion Exch 31:715–730

    Article  CAS  Google Scholar 

  221. Mincher BJ, Mezyk SP, Elias G, Groenewold GS, LaVerne JA, Nilsson M, Pearson J, Schmitt NC, Tillotson RD, Olson LG (2014) The radiation chemistry of CMPO: part 2. Alpha radiolysis. Solv Extr Ion Exch 32:167–168

    Article  CAS  Google Scholar 

  222. Hudson MJ, Lewis FW, Harwood LM (2013) The circuitous journey from malonamides to BTPhens: ligands for separating actinides from lanthanides. In: Harmata M (ed) Strategies and Tactics in Organic Synthesis. Academic Press, London, pp 177–202

    Google Scholar 

  223. Zarzana CA, Groenewold GS, Mincher BJ, Mezyk SP, Wilden A, Schmidt H, Modolo G, Wishart JF, Cook AR (2015) A comparison of the gamma-radiolysis of TODGA and T(EH)DGA using UHPLC-ESI-MS analysis. Solv Extr Ion Exch 33:431–447

    Article  CAS  Google Scholar 

  224. Galan H, Nunez A, Espartero AG, Sedano R, Durana A, de Mendoza J (2012) Radiolytic stability of TODGA: characterization of degraded samples under different experimental conditions. Procedia Chem 7:195–201

    Article  CAS  Google Scholar 

  225. Sugo Y, Sasaki Y, Tachimori S (2002) Studies on hydrolysis and radiolysis of N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide. Radiochim Acta 90:161–165

    Article  CAS  Google Scholar 

  226. Shkrob IA, Marin TW, Bell JR, Luo H, Dai S, Hatcher JL, Rimmer RD, Wishart JF (2012) Radiation-induced fragmentation of diamide extraction agents in ionic liquid diluents. J Phys Chem B 116:2234–2243

    Article  CAS  Google Scholar 

  227. Sugo Y, Izumi Y, Yoshida Y, Nishijima S, Sasaki Y, Kimura T, Sekine T, Kudo H (2007) Influence of diluent on radiolysis of amides in organic solution. Radiat Phys Chem 76:794–800

    Article  CAS  Google Scholar 

  228. Berthon L, Journet S, Lalia V, Morel JM, Zorz N, Berthon C, Amerkraz B (2004) Use of chromatographic techniques to study a degraded solvent for minor actinides partitioning: qualitative and quantitative analysis. Paper presented at the Atalante-2004, Nimes, France,

  229. Panak PJ, Geist A (2013) Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem Rev 113:1199–1236

    Article  CAS  Google Scholar 

  230. Schmidt H, Wilden A, Modolo G, Švehla J, Grüner B, Ekberg C (2015) Gamma radiolytic stability of CyMe4BTBP and the effect of nitric acid. Nukleonika 60:879–884

    Article  Google Scholar 

  231. Nilsson M, Andersson S, Ekberg C, Foreman MRS, Hudson MJ, Skarnemark G (2006) Inhibiting radiolysis of BTP molecules by addition of nitrobenzene. Radiochim Acta 94:103–106

    Article  CAS  Google Scholar 

  232. Sulich A, Grodkowski J, Mirkowski J, Kocia R (2014) Reactions of ligands from BT(B)P family with solvated electrons and benzophenone ketyl radicals in 1-octanol solutions. Pulse radiolysis study. J Radioanal Nucl Chem 300:415–421

    Article  CAS  Google Scholar 

  233. Ewing RC (2015) Long-term storage of spent nuclear fuel. Nat Mater 14(3):252–257

    Article  CAS  Google Scholar 

  234. Eriksen TE, Shoesmith DW, Jonsson M (2012) Radiation induced dissolution of UO2 based nuclear fuel—a critical review of predictive modelling approaches. J Nucl Mater 420:409–423

    Article  CAS  Google Scholar 

  235. Roth O, Jonsson M (2008) Oxidation of UO2[s] in aqueous solution. Cent Eur J Chem 6:1–14

    CAS  Google Scholar 

  236. Jonsson M (2010) Radiation-induced processes at solid–liquid interfaces. In: Wishart JF, Rao BSM (eds) Recent Trends in Radiation Chemistry. World Scientific, New Jersey, pp 301–323

    Chapter  Google Scholar 

  237. Yang M, Jonsson M (2015) Surface reactivity of hydroxyl radicals formed upon catalytic decomposition of H2O2 on ZrO2. J Mol Catal A Chem 400:49–55

    Article  CAS  Google Scholar 

  238. Barreiro Fidalgo A, Dahlgren B, Brinck T, Jonsson M (2016) Surface reactions of H2O2, H2, and O2 in aqueous systems containing ZrO2. J Phys Chem C 120:1609–1614

    Article  CAS  Google Scholar 

  239. Björkbacka Å, Hosseinpour S, Johnson M, Leygraf C, Jonsson M (2013) Radiation induced corrosion of copper for spent nuclear fuel storage. Radiat Phys Chem 92:80–86

    Article  CAS  Google Scholar 

  240. Björkbacka Å, Yang M, Gasparrini C, Leygraf C, Jonsson M (2015) Kinetics and mechanisms of reactions between H2O2 and copper and copper oxides. Dalton Trans 44:16045–16051

    Article  CAS  Google Scholar 

  241. Lousada CM, Johansson AJ, Brinck T, Jonsson M (2012) Mechanism of H2O2 decomposition on transition metal oxide surfaces. J Phys Chem C 116:9533–9543

    Article  CAS  Google Scholar 

  242. Hiroki A, LaVerne JA (2005) Decomposition of hydrogen peroxide at water-ceramic oxide interfaces. J Phys Chem B 109:3364–3370

    Article  CAS  Google Scholar 

  243. Jonsson M, Nielsen F, Roth O, Ekeroth E, Nilsson AR, Hossain MM (2007) Radiation induced spent nuclear fuel dissolution under deep repository conditions. Environ Chem Lett 41:7087–7093

    CAS  Google Scholar 

  244. Ekeroth E, Roth O, Jonsson M (2006) The relative impact of radiolysis products in radiation induced oxidative dissolution of UO2. J Nucl Mater 355:38–46

    Article  CAS  Google Scholar 

  245. Jonsson M, Nielsen F, Roth O, Ekeroth E, Nilsson S, Hossain MM (2007) Radiation induced spent nuclear fuel dissolution under deep repository conditions. Environ Sci Technol 41:7087–7093

    Article  CAS  Google Scholar 

  246. Ekeroth E, Jonsson M (2003) Oxidation of UO2 by radiolytic oxidants. J Nucl Mater 322:242–248

    Article  CAS  Google Scholar 

  247. Hossain MM, Ekeroth E, Jonsson M (2006) Effect of HCO3 on the kinetics of UO2 oxidation by H2O2. J Nucl Mater 358:202–208

    Article  CAS  Google Scholar 

  248. Eriksen TE, Jonsson M, Merino J (2008) Modelling of time resolved and long contact time dissolution studies of spent nuclear fuel in 10 mM carbonate solution—a comparison between two different models and experimental data. J Nucl Mater 375:331–339

    Article  CAS  Google Scholar 

  249. Nielsen F, Lundahl K, Jonsson M (2008) Simulations of H2O2 concentration profiles in the water surrounding spent nuclear fuel. J Nucl Mater 372:32–35

    Article  CAS  Google Scholar 

  250. Nielsen F, Ekeroth E, Eriksen TE, Jonsson M (2008) Simulation of radiation induced dissolution of spent nuclear fuel using the steady-state approach. A comparison to experimental data. J Nucl Mater 374:286–289

    Article  CAS  Google Scholar 

  251. Jonsson M, Ekeroth E, Roth O (2004) Oxidation of UO2 by one- and two-electron oxidants. Mater Res Soc Symp Proc 807:77–82

    Article  CAS  Google Scholar 

  252. Nillson S, Jonsson M (2011) H2O2 and radiation induced dissolution of UO2 and SIMFUEL pellets. J Nucl Mater 410:89–93

    Article  CAS  Google Scholar 

  253. Trummer M, Dahlgren B, Jonsson M (2010) The effect of Y2O3 on the dynamics of oxidative dissolution of UO2. J Nucl Mater 407:195–199

    Article  CAS  Google Scholar 

  254. Pehrman R, Trummer M, Lousada CM, Jonsson M (2012) On the redox reactivity of doped UO2 pellets—influence of dopants on the H2O2 decomposition mechanism. J Nucl Mater 430:6–11

    Article  CAS  Google Scholar 

  255. Lousada CM, Trummer M, Jonsson M (2013) Reactivity of H2O2 towards different UO2-based materials: the relative impact of radiolysis products revisited. J Nucl Mater 434:434–439

    Article  CAS  Google Scholar 

  256. Trummer M, Nilsson S, Jonsson M (2008) On the effects of fission product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel. J Nucl Mater 378:55–59

    Article  CAS  Google Scholar 

  257. Nilsson S, Jonsson M (2008) On the catalytic effect of Pd(s) on the reduction of UO2 2+ with H2 in aqueous solution. J Nucl Mater 374:290–292

    Article  CAS  Google Scholar 

  258. Trummer M, Jonsson M (2010) Resolving the H2 effect on radiation induced dissolution of UO2-based spent nuclear fuel. J Nucl Mater 396:163–169

    Article  CAS  Google Scholar 

  259. Yang M, Barreiro Fidalgo A, Sundin S, Jonsson M (2013) Inhibition of radiation induced dissolution of UO2 by sulfide—a comparison with the hydrogen effect. J Nucl Mater 434:38–42

    Article  CAS  Google Scholar 

  260. Pusch R, Karnland O, Lajudie A, Decarreau A (1992) MX80 Clay Exposed to High Temperatures and Gamma Radiation. Swedish Nuclear Fuel and Waste Management Co., Sockholm

    Google Scholar 

  261. Sorieul S, Allard T, Wang LM, Grambin-Lapeyre C, Lian J, Calas G, Ewing RC (2008) Radiation stability of smectite. Environ Sci Technol 42:8407–8411

    Article  CAS  Google Scholar 

  262. Holmboe M, Wold M, Jonsson M, Garcia-Garcia S (2009) Effects of γ-irradiation on the stability of colloidal Na+-montmorillonite dispersions. Appl Clay Sci 43:86–90

    Article  CAS  Google Scholar 

  263. Holmboe M, Norrfors KK, Jonsson M, Wold S (2011) Effect of γ-radiation on radionuclide retention in compacted bentonite. Radiat Phys Chem 80:1371–1377

    Article  CAS  Google Scholar 

  264. Holmboe M, Jonsson M, Wold S (2012) Influence of γ-radiation on the reactivity of montmorillonite towards H2O2. Radiat Phys Chem 81:190–194

    Article  CAS  Google Scholar 

  265. Barreiro Fidalgo A, Sundin S, Jonsson M (2014) Effect of bentonite on radiation induced dissolution of UO2 in an aqueous system. J Nucl Mater 447:73–76

    Article  CAS  Google Scholar 

  266. Lainé M, Allard T, Balan E, Martin F, Von Bardeleben HJ, Robert J-L, Caër SL (2016) Reaction mechanisms in talc under ionizing radiation: evidence of a high stability of H· atoms. J Phys Chem C 120(4):2087–2095

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy Office of Science, Office of Basic Energy Science under award number DE-FC02-04ER15533 (KB), the Euratom-Fission Collaborative Project SACSESS, FP7-Fission-2012-323282, co-financed by the Grant No. 2924/7. PR-EURATOM/2013/2 donated by the Ministry of Science and Higher Education (Poland) (TS), and the Strategic Research Project P/J/7/170071/12 financed by the National Research and Development Centre (KS). One of us (KB) would like to thank Professor Ian Carmichael for his hospitality during the stay. This is document number NDRL-5116 from the Notre Dame Radiation Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Bobrowski.

Additional information

This article is part of the Topical Collection “Applications of Radiation Chemistry”; edited by Margherita Venturi, Mila D’Angelantonio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrowski, K., Skotnicki, K. & Szreder, T. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy. Top Curr Chem (Z) 374, 60 (2016). https://doi.org/10.1007/s41061-016-0058-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0058-7

Keywords

Navigation