Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities

  • David C. Miller
  • Kyle T. Tarantino
  • Robert R. Knowles
Part of the following topical collections:
  1. Hydrogen Transfer Reactions


Proton-coupled electron transfers (PCETs) are unconventional redox processes in which both protons and electrons are exchanged, often in a concerted elementary step. While PCET is now recognized to play a central a role in biological redox catalysis and inorganic energy conversion technologies, its applications in organic synthesis are only beginning to be explored. In this chapter, we aim to highlight the origins, development, and evolution of the PCET processes most relevant to applications in organic synthesis. Particular emphasis is given to the ability of PCET to serve as a non-classical mechanism for homolytic bond activation that is complimentary to more traditional hydrogen atom transfer processes, enabling the direct generation of valuable organic radical intermediates directly from their native functional group precursors under comparatively mild catalytic conditions. The synthetically advantageous features of PCET reactivity are described in detail, along with examples from the literature describing the PCET activation of common organic functional groups.


Proton-coupled electron transfer Hydrogen atom transfer Free radicals Organic synthesis 



We gratefully acknowledge the NIH (R01 GM113105) for financial support.


  1. 1.
    Migliore A, Polizzi NF, Therien MJ, Beratan DN (2014) Chem Rev 114:3381–3465CrossRefGoogle Scholar
  2. 2.
    Reece SY, Hodgkis JM, Stubbe J, Nocera DG (2006) Philos Trans R Soc B 361:1351–1364CrossRefGoogle Scholar
  3. 3.
    Cukier RI, Nocera DG (1998) Annu Rev Phys Chem 49:337–369CrossRefGoogle Scholar
  4. 4.
    Mayer JM (2004) Annu Rev Phys Chem 55:363–390CrossRefGoogle Scholar
  5. 5.
    Huynh MHV, Meyer TJ (2007) Chem Rev 107:5004–5064CrossRefGoogle Scholar
  6. 6.
    Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ (2012) Chem Rev 112:4016–4093CrossRefGoogle Scholar
  7. 7.
    Wenger OS (2013) Acc Chem Res 46:1517–1526CrossRefGoogle Scholar
  8. 8.
    Warren JJ, Mayer JM (2015) Biochemistry 54:1863–1878CrossRefGoogle Scholar
  9. 9.
    Saveant J-M (2014) Annu Rev Anal Chem 7:537–560CrossRefGoogle Scholar
  10. 10.
    Meyer TJ, Huynh MHV, Thorp HH (2007) Angew Chem Int Ed 46:5284–5304CrossRefGoogle Scholar
  11. 11.
    Stubbe J, Nocera DG, Yee CS, Chang MCY (2003) Chem Rev 103:2167–2201CrossRefGoogle Scholar
  12. 12.
    Minnihan EC, Nocera DG, Stubbe J (2013) Acc Chem Res 46:2524–2535CrossRefGoogle Scholar
  13. 13.
    Kaila VRI, Verkhovsky MI, Wikström M (2010) Chem Rev 110:7062–7081CrossRefGoogle Scholar
  14. 14.
    Lehnert N, Solomon EI (2003) J Biol Inorg Chem 8:294–305CrossRefGoogle Scholar
  15. 15.
    Hatcher E, Soudackov A, Hammes-Schiffer S (2004) J Am Chem Soc 126:5763–5775CrossRefGoogle Scholar
  16. 16.
    Wang Y, Chen H, Makino M, Shiro Y, Nagano S, Asamizu S, Onaka H, Shaik S (2009) J Am Chem Soc 131:6748–6762CrossRefGoogle Scholar
  17. 17.
    Sancar A (2003) Chem Rev 103:2203–2237CrossRefGoogle Scholar
  18. 18.
    Costentin C, Drouet S, Robert M, Saveant JM (2012) Science 338:90–94CrossRefGoogle Scholar
  19. 19.
    Symes MD, Surendranath Y, Lutterman DA, Nocera DG (2011) J Am Chem Soc 133:5174–5177CrossRefGoogle Scholar
  20. 20.
    Hammes-Shiffer S, Iordanova N (2004) Biochim Biophys Acta 1655:29–36CrossRefGoogle Scholar
  21. 21.
    Hammes-Shiffer S (2012) Energy Environ Sci 5:7696CrossRefGoogle Scholar
  22. 22.
    Green MT, Dawson JH, Gray HB (2004) Science 304:1653–1656CrossRefGoogle Scholar
  23. 23.
    Li C, Danovich D, Shaik S (2012) Chem Sci 3:1903–1918CrossRefGoogle Scholar
  24. 24.
    Lo JC, Yabe Y, Baran PS (2014) J Am Chem Soc 136:1304–1307CrossRefGoogle Scholar
  25. 25.
    Iwasaki K, Wan KK, Oppedisano A, Crossley SWM, Shenvi RA (2014) J Am Chem Soc 136:1300–1303CrossRefGoogle Scholar
  26. 26.
    King SM, Ma X, Herzon SB (2014) J Am Chem Soc 136:6884–6887CrossRefGoogle Scholar
  27. 27.
    Choi J, Pulling ME, Smith DM, Norton JR (2008) J Am Chem Soc 130:4250–4252CrossRefGoogle Scholar
  28. 28.
    Bordwell FG, Cheng JP, Harrelson JA (1988) J Am Chem Soc 110:1229–1231CrossRefGoogle Scholar
  29. 29.
    Warren JJ, Tronic TA, Mayer JM (2010) Chem Rev 110:6961–7001CrossRefGoogle Scholar
  30. 30.
    Waidmann CR, Miller AJM (2012) Ng C-WA, Scheuermann ML, Porter TR, Tronic TA, Mayer JM. Energy Environ Sci 5:7771–7780CrossRefGoogle Scholar
  31. 31.
    Choi GC, Knowles RR (2015) J Am Chem Soc 137:9226–9229CrossRefGoogle Scholar
  32. 32.
    Tarantino KT, Liu P, Knowles RR (2013) J Am Chem Soc 135:1002–10025CrossRefGoogle Scholar
  33. 33.
    Salamone M, Bietti M (2015) Acc Chem Res 48:2895–2903CrossRefGoogle Scholar
  34. 34.
    Mayer JM (2011) Acc Chem Res 44:36–46CrossRefGoogle Scholar
  35. 35.
    Mayer JM (2011) J Phys Chem Lett 2:1481–1489CrossRefGoogle Scholar
  36. 36.
    Both HAT and PCET have been observed to obey Marcus-type kinetics. The rate constant predicted by the Marcus cross relation is dependent on the driving force of the reaction: more favorable reactions typically result in more rapid kinetics. Consult [34] and [35] for detailsGoogle Scholar
  37. 37.
    Yayla HY, Knowles RR (2014) Synlett 20:2819–2826Google Scholar
  38. 38.
    Meyer TJ, Huynh MHV (2003) Inorg Chem 42:8140–8160CrossRefGoogle Scholar
  39. 39.
    Binstead RA, McGuire ME, Dovletoglou A, Seok WK, Roecker LE, Meyer TJ (1992) J Am Chem Soc 114:173–186CrossRefGoogle Scholar
  40. 40.
    Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947–3980CrossRefGoogle Scholar
  41. 41.
    Hammes-Shiffer S, Soudackov AV (2008) J Phys Chem B 112:14108–14123CrossRefGoogle Scholar
  42. 42.
    Lingwood M, Hammond JR, Hrovat DA, Mayer JM, Borden WT (2006) J Chem Theory Comput 2:740–745CrossRefGoogle Scholar
  43. 43.
    Pesterfield LL, Maddox JB, Crocker MS, Schweitzer GK (2012) J Chem Educ 89:891–899CrossRefGoogle Scholar
  44. 44.
    Pourbaix M (1945) Thermodynamique des solutions aqueuses diluées: représentation graphique du rôle du pH et du potentiel. Delft University of Technology, DissertationGoogle Scholar
  45. 45.
    Pourbaix M (1974) Atlas of Electrochemical Equilibria in Aqueous Solution. Houston, TexasGoogle Scholar
  46. 46.
    Behan RK, Hoffart LM, Stone KL, Krebs C, Green MT (2006) J Am Chem Soc 128:11471–11474CrossRefGoogle Scholar
  47. 47.
    Hayashi Y, Yamazaki I (1979) J Biol Chem 254:9101–9106Google Scholar
  48. 48.
    Green MT (2009) Curr Opin Chem Biol 13:84–88CrossRefGoogle Scholar
  49. 49.
    Yosca TH, Behan RK, Krest CM, Onderko EL, Langston MC, Green MT (2014) J Am Chem Soc 136:9124–9131CrossRefGoogle Scholar
  50. 50.
    Namuswe F, Kasper GD (2010) Narducci Sarjeant AA, Hayashi T, Krest CM, Green MT, Moënne-Loccoz P, Goldberg DP. J Am Chem Soc 132:157–167CrossRefGoogle Scholar
  51. 51.
    Moyer BA, Meyer TJ (1978) J Am Chem Soc 100:3601–3603CrossRefGoogle Scholar
  52. 52.
    Moyer BA, Meyer TJ (1981) Inorg Chem 20:436–444CrossRefGoogle Scholar
  53. 53.
    Lebeau EL, Binstead RA, Meyer TJ (2001) J Am Chem Soc 123:10535–10544CrossRefGoogle Scholar
  54. 54.
    Binstead RA, Moyer BA, Samuels GJ, Meyer TJ (1981) J Am Chem Soc 103:2897–2899CrossRefGoogle Scholar
  55. 55.
    Moyer BA, Sipe BK, Meyer TJ (1981) Inorg Chem 20:1475–1480CrossRefGoogle Scholar
  56. 56.
    Roecker L, Dobson JC, Vining WJ, Meyer TJ (1987) Inorg Chem 26:779–781CrossRefGoogle Scholar
  57. 57.
    Gilbert JA, Gersten SW, Meyer TJ (1982) J Am Chem Soc 104:6872–6873CrossRefGoogle Scholar
  58. 58.
    Gilbert J, Roecker L, Meyer TJ (1987) Inorg Chem 26:1126–1132CrossRefGoogle Scholar
  59. 59.
    Seok WK, Meyer TJ (2004) Inorg Chem 43:5205–5215113CrossRefGoogle Scholar
  60. 60.
    Gupta R, Taguchi T, Lassalle-Kaiser B, Bominaar EL, Yano J, Hendrich MP, Borovik AS (2015) Proc Nat Acad Sci. USA 112:5319–5324CrossRefGoogle Scholar
  61. 61.
    Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK (2006) Science 314:821–825CrossRefGoogle Scholar
  62. 62.
    Britt RD, Campbell KA, Peloquin JM, Gilchrist ML, Aznar CP, Dicus MM, Robblee J, Messinger J (2004) Biochim Biophys Acta 1655:158–171CrossRefGoogle Scholar
  63. 63.
    Yachandra VK, Sauer K, Klein MP (1996) Chem Rev 96:2927–2950CrossRefGoogle Scholar
  64. 64.
    Gupta R, MacBeth CE, Young VG Jr, Borovik AS (2002) J Am Chem Soc 124:1136–1137CrossRefGoogle Scholar
  65. 65.
    Gupta R, Borovik AS (2003) J Am Chem Soc 125:13234–13242CrossRefGoogle Scholar
  66. 66.
    Borovik AS (2011) Chem Soc Rev 40:1870–1874CrossRefGoogle Scholar
  67. 67.
    Parsell TH, Yang MY, Borovik AS (2009) J Am Chem Soc 131:2762–2763CrossRefGoogle Scholar
  68. 68.
    Goldsmith CR, Cole AP, Stack TDP (2005) J Am Chem Soc 127:9904–9912CrossRefGoogle Scholar
  69. 69.
    Goldsmith CR, Stack TDP (2006) Inorg Chem 45:6048–6055CrossRefGoogle Scholar
  70. 70.
    Olmstead WN, Margolin Z, Bordwell FG (1980) J Org Chem 45:3295–3299CrossRefGoogle Scholar
  71. 71.
    Bordwell FG, Cheng J, Ji GZ, Satish AV, Zhang X (1991) J Am Chem Soc 113:9790–9795CrossRefGoogle Scholar
  72. 72.
    Taguchi T, Stone KL, Gupta R, Kaiser-Lassalle B, Yano J, Hendrich MP, Borovik AS (2014) Chem Sci 5:3064–3071CrossRefGoogle Scholar
  73. 73.
    Shook RL, Peterson SM, Greaves J, Moore C, Rheingold AL, Borovik AS (2011) J Am Chem Soc 133:5810–5817CrossRefGoogle Scholar
  74. 74.
    Baldwin MJ, Pecoraro VL (1996) J Am Chem Soc 118:11325–11326CrossRefGoogle Scholar
  75. 75.
    Pecoraro VL, Baldwin MJ, Gelasco A (1994) Chem Rev 94:807–826CrossRefGoogle Scholar
  76. 76.
    Amin M, Vogt L, Vassiliev S, Rivalta I, Sultan MM, Bruce D, Brudvig GW, Batista VS, Gunner MR (2013) J Phys Chem B 117:6217–6226CrossRefGoogle Scholar
  77. 77.
    Caudle MT, Pecoraro VL (1997) J Am Chem Soc 119:3415–3416CrossRefGoogle Scholar
  78. 78.
    Lockwood MA, Wang K, Mayer JM (1999) J Am Chem Soc 121:11894–11895CrossRefGoogle Scholar
  79. 79.
    Larsen AS, Wang K, Lockwood MA, Rice GL, Won TJ, Lovell S, Sadilek M, Tureček F, Mayer JM (2002) J Am Chem Soc 124:10112–10123CrossRefGoogle Scholar
  80. 80.
    Wang K, Mayer JM (1997) J Am Chem Soc 119:1470–1471CrossRefGoogle Scholar
  81. 81.
    Thorp HH, Sarneski JE, Brudvig GW, Crabtree RH (1989) J Am Chem Soc 111:9249–9250CrossRefGoogle Scholar
  82. 82.
    Ruettinger WF, Ho DM, Dismukes GC (1999) Inorg Chem 38:1036–1037CrossRefGoogle Scholar
  83. 83.
    Maneiro M, Ruettinger WF, Bourles E, McLendon GL, Dismukes GC (2003) Proc Nat Acad Sci USA 100:3707–3712CrossRefGoogle Scholar
  84. 84.
    Carrel TG, Bourles E, Lin M, Dismukes GC (2003) Inorg Chem 42:2849–2858CrossRefGoogle Scholar
  85. 85.
    Bordwell FG, Zhang XM, Cheng JP (1993) J Org Chem 58:6410–6416CrossRefGoogle Scholar
  86. 86.
    Kaizer J, Klinker EJ, Oh NY, Rohde JU, Song WJ, Stubna A, Kim J, Münch E, Nam W, Que L (2004) J Am Chem Soc 126:472–473CrossRefGoogle Scholar
  87. 87.
    Price JC, Barr EW, Tirupati B, Krebs C, Bollinger JM (2003) J Am Chem Soc 125:13008–13009CrossRefGoogle Scholar
  88. 88.
    Nesheim JC, Lipscomb JD (1996) Biochemistry 35:10240–10247CrossRefGoogle Scholar
  89. 89.
    Kumar D, Hirao H, Que L, Shaik S (2005) J Am Chem Soc 127:8026–8027CrossRefGoogle Scholar
  90. 90.
    Mayer JM (1998) Acc Chem Res 31:441CrossRefGoogle Scholar
  91. 91.
    Park J, Lee YM, Nam W, Fukuzumi S (2013) J Am Chem Soc 135:5052–5061CrossRefGoogle Scholar
  92. 92.
    Park J, Morimoto Y, Lee YM, Nam W, Fukuzumi S (2012) J Am Chem Soc 134:3903–3911CrossRefGoogle Scholar
  93. 93.
    Wang D, Farquhar ER, Stubna A, Münch E, Que L (2009) Nature Chem 1:145–150CrossRefGoogle Scholar
  94. 94.
    Collins MJ, Ray K, Que L (2006) Inorg Chem 45:8009–8011CrossRefGoogle Scholar
  95. 95.
    Wang D, Que L (2013) Chem Commun 49:10682–10684CrossRefGoogle Scholar
  96. 96.
    Sawyer DT, Sobkowiak A, Robers JL (1995) Electrochemistry for Chemists. John Wiley and Sons, New YorkGoogle Scholar
  97. 97.
    Ramdhaine B, Stern CL, Goldberg DP (2001) J Am Chem Soc 123:9447–9448CrossRefGoogle Scholar
  98. 98.
    Goldberg DP (2007) Acc Chem Res 40:626–634CrossRefGoogle Scholar
  99. 99.
    Baglia RA, Prokop-Prigge KA, Neu HM, Siegler MA, Goldberg DP (2015) J Am Chem Soc 137:10874–10877CrossRefGoogle Scholar
  100. 100.
    Lansky DE, Goldberg DP (2006) Inorg Chem 45:5119–5125CrossRefGoogle Scholar
  101. 101.
    Lansky DE, Mandimustra B, Ramdhanie B, Clausén M, Penner-Hahn J, Zvyagin SA, Telser J, Krzystek J, Zhan R, Ou Z, Kadish KM, Zakharov L, Rheingold AL, Goldberg DP (2005) Inorg Chem 44:4485–4498CrossRefGoogle Scholar
  102. 102.
    Fukuzumi S, Kotani H, Prokop KA, Goldberg DP (2011) J Am Chem Soc 133:1859–1869CrossRefGoogle Scholar
  103. 103.
    Prokop KA, de Visser SP, Goldberg DP (2010) Angew Chem Int Ed 49:5091–5095CrossRefGoogle Scholar
  104. 104.
    Neu HM, Jung J, Baglia RA, Siegler MA, Ohkubo K, Fukuzumi S, Goldberg DP (2015) J Am Chem Soc 137:4614–4617CrossRefGoogle Scholar
  105. 105.
    Boaz NC, Bell SR, Groves JT (2015) J Am Chem Soc 137:2875–2885CrossRefGoogle Scholar
  106. 106.
    Bordwell FG (1988) Acc Chem Res 21:456–463CrossRefGoogle Scholar
  107. 107.
    Westlake BC, Brennaman MK, Concepcion JJ, Paul JJ, Bettis SE, Hampton SD, Miller SA, Lebedeva NV, Forbes MDE, Moran M, Meyer TJ, Papanikolas JM (2011) Proc Nat Acad Sci. USA 108:8554–8558CrossRefGoogle Scholar
  108. 108.
    Chen X, Ma G, Sun W, Dai H, Xiao D, Zhang Y, Qin X, Liu Y, Bu Y (2014) J Am Chem Soc 136:4515–4524CrossRefGoogle Scholar
  109. 109.
    Liu W, Huang X, Cheng MJ, Nielsen RJ, Goddard WA III, Groves JT (2012) Science 337:1322–1325CrossRefGoogle Scholar
  110. 110.
    Huang X, Bergsten TM, Groves JT (2015) J Am Chem Soc 137:5300–5303CrossRefGoogle Scholar
  111. 111.
    Liu W, Groves JT (2010) J Am Chem Soc 132:12847–12849CrossRefGoogle Scholar
  112. 112.
    Umile TP, Groves JT (2011) Angew Chem Int Ed 50:695–698CrossRefGoogle Scholar
  113. 113.
    Umile TP, Wang D, Groves JT (2011) Inorg Chem 50:10353–10362CrossRefGoogle Scholar
  114. 114.
    Svistunenko DA, Cooper CE (2004) Biophys J 87:582–595CrossRefGoogle Scholar
  115. 115.
    Sahlin M, Graslund A, Ehrenberg A, Sjöberg BM (1982) J Biol Chem 257:366–369Google Scholar
  116. 116.
    Debus RJ, Barry BA, Babcock GT, McIntosh L (1988) Proc Nat Acad Sci. USA 85:427–430CrossRefGoogle Scholar
  117. 117.
    Hsi LC, Hoganson CW, Babcock GT, Smith WL (199) Biochem Biophys Res Commun 202:1592–1598Google Scholar
  118. 118.
    Biczók L, Linschitz H (1995) J Phys Chem 99:1843–1844CrossRefGoogle Scholar
  119. 119.
    Biczók L, Gupta N, Linschitz H (1997) J Am Chem Soc 119:12601–12609CrossRefGoogle Scholar
  120. 120.
    Gupta N, Linschitz H, Biczók L (1997) Fullerene Sci Tech 5:343–353CrossRefGoogle Scholar
  121. 121.
    Maki T, Araki Y, Ishida Y, Onomura O, Matsumura Y (2001) J Am Chem Soc 123:3371–3372CrossRefGoogle Scholar
  122. 122.
    Costentin C, Robert M, Savéant JM (2007) J Am Chem Soc 129:9953–9963CrossRefGoogle Scholar
  123. 123.
    Lucarini M, Mugnaini V, Pedulli GF, Guerra M (2003) J Am Chem Soc 125:8318–8329CrossRefGoogle Scholar
  124. 124.
    Markle TF, Rhile IJ, DiPasquale AG, Mayer JM (2008) Proc Nat Acad Sci. USA 105:8185–8190CrossRefGoogle Scholar
  125. 125.
    Markle TF, Tronic TA, DiPasquale AG, Kaminsky W, Mayer JM (2012) J Phys Chem A 116:12249–12259CrossRefGoogle Scholar
  126. 126.
    Markle TF, Mayer JM (2008) Angew Chem Int Ed 47:738–740CrossRefGoogle Scholar
  127. 127.
    Rhile IJ, Markle TF, Nagao H, DiPasquale AG, Lam OP, Lockwood MA, Rotter K, Mayer JM (2006) J Am Chem Soc 128:6075–6076CrossRefGoogle Scholar
  128. 128.
    Costentin C, Robert M, Savéant JM (2010) Angew Chem Int Ed 49:3803–3806CrossRefGoogle Scholar
  129. 129.
    Thomas F, Jarjayes O, Jamet H, Hamman S, Saint-Aman E, Duboc C, Pierre JL (2004) Angew Chem Int Ed 43:594–597CrossRefGoogle Scholar
  130. 130.
    Reece SY, Nocera DG (2009) Annu Rev Biochem 78:673–699CrossRefGoogle Scholar
  131. 131.
    Nagle JF, Morowitz HJ (1978) Proc Nat Acad Sci USA 75:298–302CrossRefGoogle Scholar
  132. 132.
    Shinobu A, Agmon N (2009) J Phys Chem A 113:7253–7266CrossRefGoogle Scholar
  133. 133.
    Chen K, Hirst J, Camba R, Bonagura CA, Stout CD, Burgess BK, Armstrong FA (2000) Nature 405:814–817CrossRefGoogle Scholar
  134. 134.
    Rottenberg H (1998) Biochim Biophys Acta 1364:1–16CrossRefGoogle Scholar
  135. 135.
    Wraight CA (2006) Biochim Biophys Acta 1757:886–912CrossRefGoogle Scholar
  136. 136.
    Siegbahn PEM, Eriksson L, Himo F, Pavlov M (1998) J Phys Chem B 102:10622–10629CrossRefGoogle Scholar
  137. 137.
    Cui Q, Karplus M (2003) J Phys Chem B 107:1071–1078CrossRefGoogle Scholar
  138. 138.
    Sjödin M, Irebo T, Utas J, Lind J, Merényi G, Åkermark B, Hammarström L (2006) J Am Chem Soc 128:13076–13083CrossRefGoogle Scholar
  139. 139.
    Rhile IJ, Mayer JM (2004) J Am Chem Soc 126:12718–12719CrossRefGoogle Scholar
  140. 140.
    Sjödin M, Styring S, Åkermark B, Sun L, Hammarström L (2000) J Am Chem Soc 122:3932–3936CrossRefGoogle Scholar
  141. 141.
    Chen J, Kuss-Peterman M, Wenger OS (2014) Chem Eur J 20:4098–4104CrossRefGoogle Scholar
  142. 142.
    Rogge CE, Liu W, Wu G, Wang L-H, Kulmacz RJ, Tsai AL (2004) Biochemistry 43:1560–1568CrossRefGoogle Scholar
  143. 143.
    Dempsey JL, Winkler JR, Gray HB (2010) Chem Rev 110:7024–7039CrossRefGoogle Scholar
  144. 144.
    Gagliardi CJ, Westlake BC, Kent CA, Paul JJ, Papanikolas JM, Meyer TJ (2010) Coord Chem Rev 254:2459–2471CrossRefGoogle Scholar
  145. 145.
    Roffey RA, Kramer DM (1994) Govindjee, Sayre RT. Biochim Biophys Acta 1185:257–270CrossRefGoogle Scholar
  146. 146.
    Mamedov F, Sayre RT, Styring S (1998) Biochemistry 37:14245–14256CrossRefGoogle Scholar
  147. 147.
    Svensson B, Etchebest C, Tuffery P, van Kan P, Smith J, Styring S (1996) Biochemistry 35:14486–14502CrossRefGoogle Scholar
  148. 148.
    Wenger OS (2015) Coord Chem Rev 282–283:150–158CrossRefGoogle Scholar
  149. 149.
    Prier CK, Rankic DA, MacMillan DWC (2013) Chem Rev 113:5322–5363CrossRefGoogle Scholar
  150. 150.
    Concepcion JJ, Brennaman MK, Deyton JR, Lebedeva NV, Forbes MDE, Papnikolas JM, Meyer TJ (2007) J Am Chem Soc 129:6968–6969CrossRefGoogle Scholar
  151. 151.
    Bronner C, Wenger OS (2012) J Phys Chem Lett 3:70CrossRefGoogle Scholar
  152. 152.
    Pizano AA, Yang JL, Nocera DG (2012) Chem Sci 3:2457–2461CrossRefGoogle Scholar
  153. 153.
    Costentin C, Louault C, Robert M, Savéant JM (2009) Proc Nat Acad Sci USA 106:18143–18148CrossRefGoogle Scholar
  154. 154.
    Berry BW, Martinez-Rivera MC, Tommos C (2012) Proc Nat Acad Sci USA 109:9739–9743CrossRefGoogle Scholar
  155. 155.
    Tommos C, Skalicky JJ, Pilloud DL, Wand J, Dutton DP (1999) Biochemistry 38:9495–9507CrossRefGoogle Scholar
  156. 156.
    Martinez-Rivera MC, Berry BW, Valentine KG, Westerlund K, Hay S, Tommos C (2011) J Am Chem Soc 133:17786–17795CrossRefGoogle Scholar
  157. 157.
    O’Dea JJ, Osteryoung J, Osteryoung RA (1981) Anal Chem 53:695–701CrossRefGoogle Scholar
  158. 158.
    Miles AB, Compton RG (2000) J Phys Chem B 104:5331–5342CrossRefGoogle Scholar
  159. 159.
    Glover SD, Jorge C, Liang L, Valentine KG, Hammarström L, Tommos C (2014) J Am Chem Soc 136:14039–14051CrossRefGoogle Scholar
  160. 160.
    Zhang MT, Hammarström L (2011) J Am Chem Soc 133:8806–8809CrossRefGoogle Scholar
  161. 161.
    Zhang MT, Nilsson J, Hammarström L (2012) Energy Environ Sci 5:7732–7736CrossRefGoogle Scholar
  162. 162.
    Gagliardi CJ, Binstead RA, Thorp HH, Meyer TJ (2011) J Am Chem Soc 133:19594–19597CrossRefGoogle Scholar
  163. 163.
    Wang Y, Hirao H, Chen H, Onaka H, Nagano S, Shaik S (2008) J Am Chem Soc 130:7170–7171CrossRefGoogle Scholar
  164. 164.
    Makino M, Sugimoto H, Shiro Y, Asamizu S, Onaka H, Nagano S (2007) Proc Nat Acad Sci. USA 104:11591–11596CrossRefGoogle Scholar
  165. 165.
    De Montellano O (ed) (2015) Cytochrome P450: Structure, Mechanism, and Biochemistry. Springer, ChamGoogle Scholar
  166. 166.
    Ekberg M, Pötsch S, Sandin E, Thunnissen M, Nordlund P, Sahlin M, Sjöberg BM (1998) J Biol Chem 273:21003–21008CrossRefGoogle Scholar
  167. 167.
    Young ER, Rosenthal J, Hodgkiss JM, Nocera DG (2009) J Am Chem Soc 131:7678–7684CrossRefGoogle Scholar
  168. 168.
    Hodgkiss JM, Damrauer NH, Pressé S, Rosenthal J, Nocera DG (2006) J Phys Chem B 110:18853–18858CrossRefGoogle Scholar
  169. 169.
    Pressé S, Silbey R (2006) J Chem Phys 124:164504CrossRefGoogle Scholar
  170. 170.
    Clare LA, Pham AT, Magdaleno F, Acosta J, Woods JE, Cooksy AL, Smith DK (2013) J Am Chem Soc 135:18930CrossRefGoogle Scholar
  171. 171.
    Alligrant TM, Alvarez JC (2011) J Phys Chem C 115:10797–10805CrossRefGoogle Scholar
  172. 172.
    Nordlund P, Eklund H (1993) J Mol Bio 232:123–164CrossRefGoogle Scholar
  173. 173.
    Nordlund P, Sjöberg BM, Eklund H (1990) Nature 345:593–598CrossRefGoogle Scholar
  174. 174.
    Hogböm M, Galander M, Andersson M, Kolberg M, Hofbauer W, Lassman G, Nordlund P, Lendzian F (2003) Proc Nat Acad Sci USA 100:3209–3214CrossRefGoogle Scholar
  175. 175.
    Himo F, Seigbahn PEM (2003) Chem Rev 103:2421–2456CrossRefGoogle Scholar
  176. 176.
    Lendzian F (2005) Biochim Biophys Acta 1707:67–90CrossRefGoogle Scholar
  177. 177.
    Lendzian F, Sahlin M, MacMillan F, Bittl R, Fiege R, Pötsch S, Sjöberg BM, Gräslund A, Lubitz W, Lassmann G (1996) J Am Chem Soc 118:8111–8120CrossRefGoogle Scholar
  178. 178.
    Byrdin M, Eker APM, Vos MH, Brettel K (2003) Proc Nat Acad Sci USA 100:8676–8681CrossRefGoogle Scholar
  179. 179.
    Aubert C, Vos MH, Mathis P, Eker APM, Brettel K (2000) Nature 405:586–590CrossRefGoogle Scholar
  180. 180.
    Zieba AA, Richardson C, Lucero C, Dieng SD, Gindt YM, Schelvis JPM (2011) J Am Chem Soc 133:7824–7836CrossRefGoogle Scholar
  181. 181.
    Kapetanaki SM, Ramsey M, Gindt YM, Schelvis JPM (2004) J Am Chem Soc 126:6214CrossRefGoogle Scholar
  182. 182.
    Byrdin M, Sartor V, Eker APM, Vos MH, Aubert C, Brettel K, Mathis P (2004) Biochim Biophys Acta 1655:64–70CrossRefGoogle Scholar
  183. 183.
    Shih C, Museth AK, Abrahamsson M, Blanco-Rodriguez AM, Di Bilio AJ, Sudhamsu J, Crane BR, Ronayne KL, Towrie M, Vlcek A Jr, Richards JH, Winkler JR, Gray HB (2008) Science 320:1760–1762CrossRefGoogle Scholar
  184. 184.
    Stoll S, Shafaat HS, Krzystek J, Ozarowski A, Tauber MJ, Kim JE, Britt RD (2011) J Am Chem Soc 133:18098CrossRefGoogle Scholar
  185. 185.
    Farver O, Skov LK, Young S, Bonander N, Karlsson BG, Vännguard T, Pecht I (1997) J Am Chem Soc 119:5453–5454CrossRefGoogle Scholar
  186. 186.
    Fujita K, Nakamura N, Ohno H, Leigh BS, Niki K, Gray HB, Richards JH (2004) J Am Chem Soc 126:13954–13961CrossRefGoogle Scholar
  187. 187.
    Gilardi G, Mei G, Rosato N, Canters GW, Finazzi-Agrò A (1994) Biochemistry 33:1425CrossRefGoogle Scholar
  188. 188.
    Gagliardi CJ, Murphy CF, Binstead RA, Thorp HH, Meyer TJ (2015) J Phys Chem C 119:7028–7038CrossRefGoogle Scholar
  189. 189.
    Medina-Ramos J, Oyesanya O, Alvarez JC (2013) J Phys Chem C 117:902–912CrossRefGoogle Scholar
  190. 190.
    Kuss-Peterman M, Wenger OS (2013) J Phys Chem Lett 4:2535–2539CrossRefGoogle Scholar
  191. 191.
    Griesbaum K (1970) Angew Chem Int Ed 9:273–287CrossRefGoogle Scholar
  192. 192.
    Heiba EAI, Dessau RM (1967) J Org Chem 32:3837–3840CrossRefGoogle Scholar
  193. 193.
    Hoyle CE, Bowman CN (2010) Angew Chem Int Ed 49:1540–1573CrossRefGoogle Scholar
  194. 194.
    Tyson EL (2014) Niemeyer Zl, Yoon TP. J Org Chem 79:1427–1436CrossRefGoogle Scholar
  195. 195.
    LeBel NA, DeBoer A (1967) J Am Chem Soc 89:2784–2785CrossRefGoogle Scholar
  196. 196.
    Benati L, Leardini R, Minozzi M, Nanni D, Scialpi R, Spagnolo P, Strazzari S, Zanardi G (2004) Angew Chem Int Ed 43:3598–3601CrossRefGoogle Scholar
  197. 197.
    Denes F, Pichowicz M, Povie G, Renaud P (2014) Chem Rev 114:2587–2693CrossRefGoogle Scholar
  198. 198.
    Dang HS, Kim KM, Roberts BP (1998) Chem Commun 1413–1414Google Scholar
  199. 199.
    Zhao R, Lind J, Merenyi G, Eriksen TE (1994) J Am Chem Soc 116:12010–12015CrossRefGoogle Scholar
  200. 200.
    Fujisawa H, Hayakawa Y, Sasaki Y, Mukaiyama T (2001) Chem Lett 30:632–633CrossRefGoogle Scholar
  201. 201.
    Huyser ES, Kellogg RM (1966) J Org Chem 31:3366–3369CrossRefGoogle Scholar
  202. 202.
    Dang HS, Roberts BP (1999) Tet Lett 40:8929–8933CrossRefGoogle Scholar
  203. 203.
    Kemper J, Studer A (2005) Angew Chem Int Ed 44:4914CrossRefGoogle Scholar
  204. 204.
    Qvortrup K, Rankic DA, MacMillan DWC (2014) J Am Chem Soc 136:626–629CrossRefGoogle Scholar
  205. 205.
    Hager D, MacMillan DWC (2014) J Am Chem Soc 136:16986–16989CrossRefGoogle Scholar
  206. 206.
    Li JN, Liu L, Fu Y, Guo QX (2006) Tetrahedron 62:4453–4462CrossRefGoogle Scholar
  207. 207.
    Kolthoff IM, Chantooni MK, Bhowmik S (1968) J Am Chem Soc 90:23–28CrossRefGoogle Scholar
  208. 208.
    Newcomb M, Esker JL (1991) Tetrahedron Lett 32:1035–1038CrossRefGoogle Scholar
  209. 209.
    Boivin J, Callier-Dublanchet AC, Quiclet-Sire B, Schiano AM, Zard SZ (1995) Tetrahedron 51:6517–6528CrossRefGoogle Scholar
  210. 210.
    Guin J, Frolich R, Studer A (2008) Angew Chem Int Ed 47:779–782CrossRefGoogle Scholar
  211. 211.
    Choi CM, Guin J, Mück-Lichtenfeld C, Grimme S, Studer A (2011) Chem-Asian J 6:1197–1209CrossRefGoogle Scholar
  212. 212.
    Nicolaou KC, Baran PS, Zhong YL, Barluenga S, Hunt KW, Kranich R, Vega JA (2002) J Am Chem Soc 124:2233–2244CrossRefGoogle Scholar
  213. 213.
    Tang Y, Li C (2004) Org Lett 6:3229–3231CrossRefGoogle Scholar
  214. 214.
    Li Z, Song L, Li C (2013) J Am Chem Soc 135:4640–4643CrossRefGoogle Scholar
  215. 215.
    While many reactions presented throughout the review are done so as closed catalytic cycles, the community has become increasingly aware of potential chain mechanisms. In all instances, we defer to the mechanism presented by the author. For more information, consult: Cismesia MA, Yoon TP (2015) Chem Sci 6:5426–5434Google Scholar
  216. 216.
    Hanss D, Freys JC, Bernardinelli GR, Wenger OS (2009) Eur J Inorg Chem 2009:4850–4859CrossRefGoogle Scholar
  217. 217.
    Warren JJ, Menzeleev AR, Kretchmer JS, Miller TF III, Gray HB, Mayer JM (2013) J Phys Chem Lett 4:519–523CrossRefGoogle Scholar
  218. 218.
    Warren JJ, Mayer JM (2011) J Am Chem Soc 133:8544–8551CrossRefGoogle Scholar
  219. 219.
    Schrauben JN, Cattaneo M, Day TC, Tenderholt AL, Mayer JM (2012) J Am Chem Soc 134:16635–16645CrossRefGoogle Scholar
  220. 220.
    Megiatto JD Jr, Méndez-Hernández DD, Tejeda-Ferrari ME, Teillout AL, Llansola-Portolés MJ, Kodis G, Moore TA, Moore AL (2014) Nat Chem 6:423–428CrossRefGoogle Scholar
  221. 221.
    Edwards SJ, Soudackov AV, Hammes-Schiffer S (2009) J Phys Chem A 113:2117–2126CrossRefGoogle Scholar
  222. 222.
    Miller DC, Choi GC, Orbe HS, Knowles RR (2015) J Am Chem Soc 137:13492–13495CrossRefGoogle Scholar
  223. 223.
    Estes DP, Grills DC, Norton JR (2014) J Am Chem Soc 136:17362–17365CrossRefGoogle Scholar
  224. 224.
    Roth JP, Mayer JM (1999) Inorg Chem 38:2760–2761CrossRefGoogle Scholar
  225. 225.
    Manner VW, Mayer JM (2009) J Am Chem Soc 131:9874–9875CrossRefGoogle Scholar
  226. 226.
    Jonas RT, Stack TDP (1997) J Am Chem Soc 119:8566–8567CrossRefGoogle Scholar
  227. 227.
    Semproni SP, Milsmann C, Chirik PJ (2014) J Am Chem Soc 136:9211–9224CrossRefGoogle Scholar
  228. 228.
    Fang H, Ling Z, Lang K, Brothers PJ, Bruin B, Fu X (2014) Chem Sci 5:916–921CrossRefGoogle Scholar
  229. 229.
    Miyazaki S, Kojima T, Mayer JM, Fukuzumi S (2009) J Am Chem Soc 131:11615–11624CrossRefGoogle Scholar
  230. 230.
    Wu A, Mayer JM (2008) J Am Chem Soc 130:14745–14754CrossRefGoogle Scholar
  231. 231.
    Wu A, Masland J, Swartz RD, Kaminsky W, Mayer JM (2007) Inorg Chem 46:11190–11201CrossRefGoogle Scholar
  232. 232.
    Mislmann C, Semproni SP, Chirik PJ (2014) J Am Chem Soc 136:12099–12107CrossRefGoogle Scholar
  233. 233.
    Tarantino KT, Miller DC, Callon TA, Knowles RR (2015) J Am Chem Soc 137:6440–6443CrossRefGoogle Scholar
  234. 234.
    Huang K, Han JH, Cole AP, Musgrave CB, Waymouth RM (2005) J Am Chem Soc 127:3807–3816CrossRefGoogle Scholar
  235. 235.
    Huang K, Han JH, Musgrave CB, Waymouth RM (2006) Organometallics 25:3317–3323CrossRefGoogle Scholar
  236. 236.
    Gansauer A, von Laugenberg D, Kube C, Dahmen T, Michelmann A, Behlendorf M, Sure R, Seddiqzai M, Grimme S, Sadasivam DV, Fianu GD, Flowers RA (2015) Chem Eur J 21:280–289CrossRefGoogle Scholar
  237. 237.
    Jeftic L, Manning G (1970) J Electroanal Chem 26:195–200CrossRefGoogle Scholar
  238. 238.
    Quan M, Sanchez D, Wasylkiw MF, Smith DK (2007) J Am Chem Soc 129:12847–12856CrossRefGoogle Scholar
  239. 239.
    Gupta N, Linschitz H (1997) J Am Chem Soc 119:6384–6391CrossRefGoogle Scholar
  240. 240.
    Okamoto K, Ohkubo K, Kadish KM, Fukuzumi S (2004) J Phys Chem A 108:10405–10413CrossRefGoogle Scholar
  241. 241.
    Gomez M, Gomez-Castro CZ, Padilla-Martinez II, Martinez-Martinez FJ, Gonzalez FJ (2004) J Electroanal Chem 567:269–276CrossRefGoogle Scholar
  242. 242.
    Fukuzumi S, Ishikawa K, Hironaka K, Tanaka T (1987) J Chem Soc Perkin Trans II:751–760CrossRefGoogle Scholar
  243. 243.
    Fukuzumi S, Ishikawa M, Tanaka T (1989) J Chem Soc Perkin Trans II:1811–1816CrossRefGoogle Scholar
  244. 244.
    Ishikawa M, Fukuzumi S (1990) J Chem Soc, Faraday Trans 86:3531–3536CrossRefGoogle Scholar
  245. 245.
    Yuasa J, Yamada S, Fukuzumi S (2008) J Am Chem Soc 130:5808–5820CrossRefGoogle Scholar
  246. 246.
    Zhai L, Shukla R, Wadumethrige SH, Rathore R (2010) J Org Chem 75:4748–4760CrossRefGoogle Scholar
  247. 247.
    Turek AK, Hardee DJ, Ullman AM, Nocera DG, Jacobsen EN (2015) Angew Chem Int Ed 54: doi: 10.1002/ange.201508060
  248. 248.
    Bock CR, Connor JA, Gutierrez AR, Meyer TJ, Whitten DG, Sullivan BP, Nagle JK (1997) J Am Chem Soc 101:4815–4824CrossRefGoogle Scholar
  249. 249.
    Fukuzumi S, Mochizuki S, Tanaka T (1989) J Am Chem Soc 111:1497–1499CrossRefGoogle Scholar
  250. 250.
    Fukuzumi S, Mochizuki S, Tanaka T (1990) J Phys Chem 94:722–726CrossRefGoogle Scholar
  251. 251.
    Ishikawa M, Fukuzumi S (1990) J Chem Soc Chem Commun 1353–1355Google Scholar
  252. 252.
    Fukuzumi S, Kuroda S, Goto T, Ishikawa K, Tanaka T (1989) J Chem Soc Perkin Trans II:1047–1053CrossRefGoogle Scholar
  253. 253.
    Du J, Espelt LR, Guzei IA, Yoon TP (2011) Chem Sci 2:2115–2119CrossRefGoogle Scholar
  254. 254.
    Ischay MA, Anzovino ME, Du J, Yoon TP (2008) J Am Chem Soc 130:12886–12887CrossRefGoogle Scholar
  255. 255.
    Du J, Yoon TP (2009) J Am Chem Soc 131:14604–14605CrossRefGoogle Scholar
  256. 256.
    Rono LJ, Yayla HY, Wang DY, Armstrong MF, Knowles RR (2013) J Am Chem Soc 135:17735–17738CrossRefGoogle Scholar
  257. 257.
    Nakajima M, Fava E, Loescher S, Jiang Z, Rueping M (2015) Angew Chem Int Ed 54:8828–8832CrossRefGoogle Scholar
  258. 258.
    Mercer GJ, Sigman MS (2003) Org Lett 5:1591–1594CrossRefGoogle Scholar
  259. 259.
    DiRocco DA, Dykstra K, Krska S, Vachal P, Conway DV, Tudge M (2014) Angew Chem Int Ed 53:4802–4806CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • David C. Miller
    • 1
  • Kyle T. Tarantino
    • 1
  • Robert R. Knowles
    • 1
  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations