Skip to main content
Log in

Copper(I) Complexes for Thermally Activated Delayed Fluorescence: From Photophysical to Device Properties

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Molecules that exhibit thermally activated delayed fluorescence (TADF) represent a very promising emitter class for application in electroluminescent devices since all electrically generated excitons can be transferred into light according to the singlet harvesting mechanism. Cu(I) compounds are an important class of TADF emitters. In this contribution, we want to give a deeper insight into the photophysical properties of this material class and demonstrate how the emission properties depend on molecular and host rigidity. Moreover, we show that with molecular optimization a significant improvement of selected emission properties can be achieved. From the discussed materials, we select one specific dinuclear complex, for which the two Cu(I) centers are four-fold bridged to fabricate an organic light emitting diode (OLED). This device shows the highest efficiency (of 23 % external quantum efficiency) reported so far for OLEDs based on Cu(I) emitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Notes

  1. ‘Small molecule' is a widely-used, yet ambiguous term. It is most often used to distinguish isolated molecules with a molecular weight of less than 1,000 Da from polymers.

  2. Bipyridine (bpy) was used instead of dmbpy. However, the absorption spectrum of the methylated ligand is not expected to deviate significantly from that of bpy.

  3. It is remarked that an estimation of ΔE (S1 − T1) from the spectra is only possible if both states, S1 and T1, result from transitions between the same molecular orbitals. For the investigated compounds, this condition is fulfilled.

References

  1. Yersin H, Rausch AF, Czerwieniec R, Hofbeck T, Fischer T (2011) Coord Chem Rev 255:2622

    Article  CAS  Google Scholar 

  2. Yersin H, Rausch AF, Czerwieniec R (2012) In: Brütting W, Adachi C (eds) Physics of organic semiconductors. Wiley VCH, Weinheim, p 371

    Google Scholar 

  3. Czerwieniec R, Yu J, Yersin H (2011) Inorg Chem 50:8293

    Article  CAS  Google Scholar 

  4. Parker CA, Hatchard CG (1961) Trans Faraday Soc 57:1894

    Article  Google Scholar 

  5. Tang CW, VanSlyke SA (1987) Appl Phys Lett 51:913

    Article  CAS  Google Scholar 

  6. Tang CW, VanSlyke SA, Chen CH (1989) J Appl Phys 65:3610

    Article  CAS  Google Scholar 

  7. Shinar J (ed) (2003) Organic light-emitting devices: a survey. Springer, New York

    Google Scholar 

  8. Müllen K, Scherf U (eds) (2006) Organic light emitting devices: synthesis, properties and applications. Wiley VCH, Weinheim

    Google Scholar 

  9. He SJ, Wang ZB, Wang DK, Jiang N, Lu ZH (2013) Appl Phys Lett 103:083301

    Article  CAS  Google Scholar 

  10. Aziz H, Popovic ZD (2004) Chem Mater 16:4522

    Article  CAS  Google Scholar 

  11. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Nature 347:539

    Article  CAS  Google Scholar 

  12. Bocksrocker T, Hoffmann J, Eschenbaum C, Pargner A, Preinfalk J, Maier-Flaig F, Lemmer U (2013) Org Electron 14:396

    Article  CAS  Google Scholar 

  13. Bocksrocker T, Eschenbaum C, Preinfalk JB, Hoffmann J, Asche-Tauscher J, Maier-Flaig F, Lemmer U (2012) Renew energy environ opt photonics congr [OSA technical digest (online)]. Optical Society of America, Eindhoven, p LM3A4

    Google Scholar 

  14. Braun D, Heeger AJ, Kroemer H (1991) J Electron Mater 20:945

    Article  CAS  Google Scholar 

  15. Braun D, Heeger AJ (1991) Appl Phys Lett 58:1982

    Article  CAS  Google Scholar 

  16. Spreitzer H, Becker H, Kluge E, Kreuder W, Schenk H, Demandt R, Schoo H (1998) Adv Mater 10:1340

    Article  CAS  Google Scholar 

  17. Gustafsson G, Cao Y, Treacy GM, Klavetter F, Colaneri N, Heeger AJ (1992) Nature 357:477

    Article  CAS  Google Scholar 

  18. Helfrich W, Schneider WG (1966) J Chem Phys 44:2902

    Article  CAS  Google Scholar 

  19. Yersin H (2004) Top Curr Chem 241:1

    Article  CAS  Google Scholar 

  20. Reufer M, Walter MJ, Lagoudakis PG, Hummel AB, Kolb JS, Roskos HG, Scherf U, Lupton JM (2005) Nat Mater 4:340

    Article  CAS  Google Scholar 

  21. Reineke S, Thomschke M, Lüssem B, Leo K (2013) Rev Mod Phys 85:1245

    Article  CAS  Google Scholar 

  22. Yersin H, Donges D (2001) Top Curr Chem 214:81

    Article  CAS  Google Scholar 

  23. Hedley GJ, Ruseckas A, Samuel IDW (2008) J Phys Chem A 113:2

    Article  CAS  Google Scholar 

  24. Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Nature 395:151

    Article  CAS  Google Scholar 

  25. Adachi C, Baldo MA, Thompson ME, Forrest SR (2001) J Appl Phys 90:5048

    Article  CAS  Google Scholar 

  26. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Appl Phys Lett 75:4

    Article  CAS  Google Scholar 

  27. Baldo MA, Thompson ME, Forrest SR (2000) Nature 403:750

    Article  CAS  Google Scholar 

  28. Hofbeck T, Yersin H (2010) Inorg Chem 49:9290

    Article  CAS  Google Scholar 

  29. Yersin H, Finkenzeller WJ (2008) In: Yersin H (ed) Highly efficient OLEDs with phosphorescent materials. Wiley-VCH, Weinheim, p 1

    Google Scholar 

  30. Tsuzuki T, Tokito S (2007) Adv Mater 19:276

    Article  CAS  Google Scholar 

  31. Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K (2003) J Am Chem Soc 125:12971

    Article  CAS  Google Scholar 

  32. Cheng G, Kui SCF, Ang WH, Ko M-Y, Chow PK, Kwong CL, Kwok CC, Ma C, Guan X, Low KH, Su SJ, Che CM (2014) Chem Sci 5:4819

    Article  CAS  Google Scholar 

  33. Fleetham T, Li G, Wen L, Li J (2014) Adv Mater 26:7116

    Article  CAS  Google Scholar 

  34. Li G, Fleetham T, Turner E, Hang X-C, Li J (2015) Adv Opt Mater 3:390

    Article  CAS  Google Scholar 

  35. Yersin H (ed) (2008) Highly efficient OLEDs with phosphorescent materials. Wiley-VCH, Weinheim

    Google Scholar 

  36. Deaton JC, Castellano FN (2016) In: Zysman-Colman E (ed) Iridium(III) in optoelectronic and photonics applications. Wiley VCH, Weinheim, Germany (in press)

  37. Giebink NC, Forrest SR (2008) Phys Rev B 77:235215

    Article  CAS  Google Scholar 

  38. Che CM, Kwok CC, Lai SW, Rausch AF, Finkenzeller WJ, Zhu N, Yersin H (2010) Chem Eur J 16:233

    Article  CAS  Google Scholar 

  39. Adachi C, Kwong RC, Djurovich P, Adamovich V, Baldo MA, Thompson ME, Forrest SR (2001) Appl Phys Lett 79:2082

    Article  CAS  Google Scholar 

  40. Rossi E, Colombo A, Dragonetti C, Roberto D, Ugo R, Valore A, Falciola L, Brulatti P, Cocchi M, Williams JAG (2012) J Mater Chem 22:10650

    Article  CAS  Google Scholar 

  41. Iwamura M, Takeuchi S, Tahara T (2015) Acc Chem Res 48:782

    Article  CAS  Google Scholar 

  42. Iwamura M, Takeuchi S, Tahara T (2007) J Am Chem Soc 129:5248

    Article  CAS  Google Scholar 

  43. Murawski C, Leo K, Gather MC (2013) Adv Mater 25:6801

    Article  CAS  Google Scholar 

  44. Turro NJ (1978) Modern molecular chemistry. Benjamin/Cummings Publishing Company Inc., Menlo Park

    Google Scholar 

  45. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Nature 492:234

    Article  CAS  Google Scholar 

  46. Zhang QS, Li B, Huang SP, Nomura H, Tanaka H, Adachi C (2014) Nature Photonics 8:326

    Article  CAS  Google Scholar 

  47. Goushi K, Yoshida K, Sato K, Adachi C (2012) Nature Photonics 6:253

    Article  CAS  Google Scholar 

  48. Nakanotani H, Masui K, Nishide J, Shibata T, Adachi C (2013) Sci Rep 3:2127

    Article  Google Scholar 

  49. Yersin H, Mataranga-Popa NL, Czerwieniec R, Bolz A (2015) WO 2015/121239 A1

  50. Blasse G, McMillin DR (1980) Chem Phys Lett 70:1

    Article  CAS  Google Scholar 

  51. Ma Y, Che CM, Chao HY, Zhou X, Chan WH, Shen J (1999) Adv Mater 11:852

    Article  CAS  Google Scholar 

  52. Ma YG, Chan WH, Zhou XM, Che CM (1999) New J Chem 23:263

    Article  Google Scholar 

  53. Dumur F (2015) Org Electron 21:27

    Article  CAS  Google Scholar 

  54. Zhang Q, Zhou Q, Cheng Y, Wang L, Ma D, Jing X, Wang F (2004) Adv Mater 16:432

    Article  CAS  Google Scholar 

  55. Keller S, Constable EC, Housecroft CE, Neuburger M, Prescimone A, Longo G, Pertegas A, Sessolo M, Bolink HJ (2014) Dalton Trans 43:16593

    Article  CAS  Google Scholar 

  56. Chen XL, Yu RM, Zhang QK, Zhou LJ, Wu CY, Zhang Q, Lu CZ (2013) Chem Mater 25:3910

    Article  CAS  Google Scholar 

  57. Che G, Su Z, Li W, Chu B, Li M, Hu Z, Zhang Z (2006) Appl Phys Lett 89:103511

    Article  CAS  Google Scholar 

  58. Zhang Q, Komino T, Huang S, Matsunami S, Goushi K, Adachi C (2012) Adv Funct Mater 22:2327

    Article  CAS  Google Scholar 

  59. Chen X-L, Yu R, Zhang Q-K, Zhou L-J, Wu X-Y, Zhang Q, Lu C-Z (2013) Chem Mater 25:3910

    Article  CAS  Google Scholar 

  60. Wada A, Zhang Q, Yasuda T, Takasu I, Enomoto S, Adachi C (2012) Chem Commun 48:5340

    Article  CAS  Google Scholar 

  61. Bergmann L, Friedrichs J, Mydlak M, Baumann T, Nieger M, Bräse S (2013) Chem Commun 49:6501

    Article  CAS  Google Scholar 

  62. Linfoot CL, Leitl MJ, Richardson P, Rausch AF, Chepelin O, White FJ, Yersin H, Robertson N (2014) Inorg Chem 53:10854

    Article  CAS  Google Scholar 

  63. Linfoot CL, Richardson P, Hewat TE, Moudam O, Forde MM, Collins A, White F, Robertson N (2010) Dalton Trans 39:8945

    Article  CAS  Google Scholar 

  64. Cuttell DG, Kuang SM, Fanwick PE, McMillin DR, Walton RA (2002) J Am Chem Soc 124:6

    Article  CAS  Google Scholar 

  65. Czerwieniec R, Yersin H (2015) Inorg Chem 54:4322

    Article  CAS  Google Scholar 

  66. Igawa S, Hashimoto M, Kawata I, Yashima M, Hoshino M, Osawa M (2013) J Mater Chem C 1:542

    Article  CAS  Google Scholar 

  67. Osawa M, Kawata I, Ishii R, Igawa S, Hashimoto M, Hoshino M (2013) J Mater Chem C 1:4375

    Article  CAS  Google Scholar 

  68. Osawa M, Hoshino M, Hashimoto M, Kawata I, Igawa S, Yashima M (2015) Dalton Trans 44:8369

    Article  CAS  Google Scholar 

  69. Leitl MJ, Krylova VA, Djurovich PI, Thompson ME, Yersin H (2014) J Am Chem Soc 136:16032

    Article  CAS  Google Scholar 

  70. Krylova VA, Djurovich PI, Conley BL, Haiges R, Whited MT, Williams TJ, Thompson ME (2014) Chem Commun 50:7176

    Article  CAS  Google Scholar 

  71. Krylova VA, Djurovich PI, Aronson JW, Haiges R, Whited MT, Thompson ME (2012) Organometallics 31:7983

    Article  CAS  Google Scholar 

  72. Krylova VA, Djurovich PI, Whited MT, Thompson ME (2010) Chem Commun 46:6696

    Article  CAS  Google Scholar 

  73. Osawa M (2014) Chem Commun 50:1801

    Article  CAS  Google Scholar 

  74. Tsuboyama A, Kuge K, Furugori M, Okada S, Hoshino M, Ueno K (2007) Inorg Chem 46:1992

    Article  CAS  Google Scholar 

  75. Araki H, Tsuge K, Sasaki Y, Ishizaka S, Kitamura N (2007) Inorg Chem 46:10032

    Article  CAS  Google Scholar 

  76. Liu Z, Qayyum MF, Wu C, Whited MT, Djurovich PI, Hodgson KO, Hedman B, Solomon EI, Thompson ME (2011) J Am Chem Soc 133:3700

    Article  CAS  Google Scholar 

  77. Liu ZW, Qiu J, Wei F, Wang JQ, Liu XC, Helander MG, Rodney S, Wang ZB, Bian ZQ, Lu ZH, Thompson ME, Huang CH (2014) Chem Mater 26:2368

    Article  CAS  Google Scholar 

  78. Leitl MJ, Küchle FR, Mayer HA, Wesemann L, Yersin H (2013) J Phys Chem A 117:11823

    Article  CAS  Google Scholar 

  79. Tsuge K, Chishina Y, Hashiguchi H, Sasaki Y, Kato M, Ishizaka S, Kitamura N (2016) Coord Chem Rev 306:636

    Article  CAS  Google Scholar 

  80. Tsuge K (2013) Chem Lett 42:204

    Article  CAS  Google Scholar 

  81. Yersin H, Leitl MJ, Czerwieniec R (2014) Proc SPIE 9183:91830N

    Article  Google Scholar 

  82. Yersin H, Monkowius U, Fischer T, Hofbeck T (2009) DE 10 2009 030 475 A1

  83. Yersin H, Monkowius U, Fischer T, Hofbeck T, Baumann T, Grab T (2015) EP 2 408 787 B1

  84. Zink DM, Bächle M, Baumann T, Nieger M, Kuhn M, Wang C, Klopper W, Monkowius U, Hofbeck T, Yersin H, Bräse S (2013) Inorg Chem 52:2292

    Article  CAS  Google Scholar 

  85. Musina EI, Shamsieva AV, Strelnik ID, Gerasimova TP, Krivolapov DB, Kolesnikov IE, Grachova EV, Tunik SP, Bannwarth C, Grimme S, Katsyuba SA, Karasik AA, Sinyashin OG (2016) Dalton Trans 45:2250

    Article  CAS  Google Scholar 

  86. Volz D, Wallesch M, Fléchon C, Danz M, Verma A, Navarro JM, Zink DM, Bräse S, Baumann T (2015) Green Chem 17:1988

    Article  CAS  Google Scholar 

  87. Volz D, Hirschbiel AF, Zink DM, Friedrichs J, Nieger M, Baumann T, Bräse S, Barner-Kowollik C (2014) J Mater Chem C 2:1457

    Article  CAS  Google Scholar 

  88. Volz D, Zink DM, Bocksrocker T, Friedrichs J, Nieger M, Baumann T, Lemmer U, Bräse S (2013) Chem Mater 25:3414

    Article  CAS  Google Scholar 

  89. Volz D, Baumann T, Flügge H, Mydlak M, Grab T, Bächle M, Barner-Kowollik C, Bräse S (2012) J Mater Chem 22:20786

    Article  CAS  Google Scholar 

  90. Volz D, Nieger M, Friedrichs J, Baumann T, Bräse S (2013) Langmuir 29:3034

    Article  CAS  Google Scholar 

  91. Zink DM, Volz D, Baumann T, Mydlak M, Flügge H, Friedrichs J, Nieger M, Bräse S (2013) Chem Mater 25:4471

    Article  CAS  Google Scholar 

  92. Zink DM, Baumann T, Friedrichs J, Nieger M, Bräse S (2013) Inorg Chem 52:13509

    Article  CAS  Google Scholar 

  93. Wallesch M, Volz D, Zink DM, Schepers U, Nieger M, Baumann T, Bräse S (2014) Chem Eur J 20:6578

    Article  CAS  Google Scholar 

  94. Volz D, Chen Y, Wallesch M, Liu R, Fléchon C, Zink DM, Friedrichs J, Flügge H, Steininger R, Göttlicher J, Heske C, Weinhardt L, Bräse S, So F, Baumann T (2015) Adv Mater 27:2538

    Article  CAS  Google Scholar 

  95. Wallesch M, Volz D, Fléchon C, Zink DM, Bräse S, Baumann T (2014) Proc SPIE 9183:918309

    Article  Google Scholar 

  96. Ni T, Liu X, Zhang T, Bao H, Zhan G, Jiang N, Wang J, Liu Z, Bian Z, Lu Z, Huang C (2015) J Mater Chem C 3:5835

    Article  CAS  Google Scholar 

  97. Cheng G, So GKM, To WP, Chen Y, Kwok CC, Ma CS, Guan XG, Chang X, Kwok WM, Che CM (2015) Chem Sci 6:4623

    Article  CAS  Google Scholar 

  98. Hashimoto M, Igawa S, Yashima M, Kawata I, Hoshino M, Osawa M (2011) J Am Chem Soc 133:10348

    Article  CAS  Google Scholar 

  99. Zhang Q, Ding J, Cheng Y, Wang L, Xie Z, Jing X, Wang F (2007) Adv Funct Mater 17:2983

    Article  CAS  Google Scholar 

  100. Moudam O, Kaeser A, Delavaux-Nicot B, Duhayon C, Holler M, Accorsi G, Armaroli N, Seguy I, Navarro J, Destruel P, Nierengarten JF (2007) Chem Commun: 3077

  101. Qin L, Zhang Q, Sun W, Wang J, Lu C, Cheng Y, Wang L (2009) Dalton Trans: 9388

  102. Czerwieniec R, Kowalski K, Yersin H (2013) Dalton Trans 42:9826

    Article  CAS  Google Scholar 

  103. Vorontsov II, Graber T, Kovalevsky AY, Novozhilova IV, Gembicky M, Chen YS, Coppens P (2009) J Am Chem Soc 131:6566

    Article  CAS  Google Scholar 

  104. Liu XF, Li RF, Ma LF, Feng X, Ding YQ (2016) New J Chem 40:619

    Article  CAS  Google Scholar 

  105. Chen XL, Lin CS, Wu XY, Yu R, Teng T, Zhang QK, Zhang Q, Yang WB, Lu CZ (2015) J Mater Chem C 3:1187

    Article  CAS  Google Scholar 

  106. Capano G, Rothlisberger U, Tavernelli I, Penfold TJ (2015) J Phys Chem A 119:7026

    Article  CAS  Google Scholar 

  107. Hsu CW, Lin CC, Chung MW, Chi Y, Lee GH, Chou PT, Chang CH, Chen PY (2011) J Am Chem Soc 133:12085

    Article  CAS  Google Scholar 

  108. Kaeser A, Mohankumar M, Mohanraj J, Monti F, Holler M, Cid JJ, Moudam O, Nierengarten I, Karmazin-Brelot L, Duhayon C, Delavaux-Nicot B, Armaroli N, Nierengarten JF (2013) Inorg Chem 52:12140

    Article  CAS  Google Scholar 

  109. Femoni C, Muzzioli S, Palazzi A, Stagni S, Zacchini S, Monti F, Accorsi G, Bolognesi M, Armaroli N, Massi M, Valenti G, Marcaccio M (2013) Dalton Trans 42:997

    Article  CAS  Google Scholar 

  110. Armaroli N, Accorsi G, Holler M, Moudam O, Nierengarten JF, Zhou Z, Wegh RT, Welter R (2006) Adv Mater 18:1313

    Article  CAS  Google Scholar 

  111. Deaton JC, Switalski SC, Kondakov DY, Young RH, Pawlik TD, Giesen DJ, Harkins SB, Miller AJM, Mickenberg SF, Peters JC (2010) J Am Chem Soc 132:9499

    Article  CAS  Google Scholar 

  112. Ohara H, Kobayashi A, Kato M (2014) Dalton Trans 43:17317

    Article  CAS  Google Scholar 

  113. Cid JJ, Mohanraj J, Mohankumar M, Holler M, Monti F, Accorsi G, Karmazin-Brelot L, Nierengarten I, Malicka JM, Cocchi M, Delavaux-Nicot B, Armaroli N, Nierengarten JF (2014) Polyhedron 82:158

    Article  CAS  Google Scholar 

  114. Jesser A, Rohrmüller M, Schmidt WG, Herres-Pawlis S (2014) J Comput Chem 35:1

    Article  CAS  Google Scholar 

  115. Niehaus TA, Hofbeck T, Yersin H (2015) RSC advances

  116. Hua L, Iwamura M, Takeuchi S, Tahara T (2015) Phys Chem Chem Phys 17:2067

    Article  CAS  Google Scholar 

  117. Gliemann G, Yersin H (1985) Clusters. Springer, Berlin, p 87

    Book  Google Scholar 

  118. Azumi T, O’Donnell CM, McGlynn SP (1966) J Chem Phys 45:2735

    Article  CAS  Google Scholar 

  119. Tschierlei S, Karnahl M, Rockstroh N, Junge H, Beller M, Lochbrunner S (2014) Chem Phys Chem 15:3709

    Article  CAS  Google Scholar 

  120. Iwamura M, Watanabe H, Ishii K, Takeuchi S, Tahara T (2011) J Am Chem Soc 133:7728

    Article  CAS  Google Scholar 

  121. Yersin H, Strasser J (2000) Coord Chem Rev 208:331

    Article  CAS  Google Scholar 

  122. Yersin H, Humbs W, Strasser J (1997) Top Curr Chem 191:153

    Article  CAS  Google Scholar 

  123. Yersin H, Donges D, Nagle JK, Sitters R, Glasbeek M (2000) Inorg Chem 39:770

    Article  CAS  Google Scholar 

  124. Arnby CH, Jagner S, Dance I (2004) CrystEngComm 6:257

    Article  CAS  Google Scholar 

  125. Araki H, Tsuge K, Sasaki Y, Ishizaka S, Kitamura N (2005) Inorg Chem 44:9667

    Article  CAS  Google Scholar 

  126. Hofbeck T, Monkowius U, Yersin H (2015) J Am Chem Soc 137:399

    Article  CAS  Google Scholar 

  127. Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J (2011) Adv Mater 23:926

    Article  CAS  Google Scholar 

  128. Brütting W, Frischeisen J, Schmidt TD, Scholz BJ, Mayr C (2013) Phys Status Solidi A 210:44

    Article  CAS  Google Scholar 

  129. Leiva AM, Rivera L, Loeb B (1991) Polyhedron 10:347

    Article  CAS  Google Scholar 

  130. Williams EL, Haavisto K, Li J, Jabbour GE (2007) Adv Mater 19:197

    Article  CAS  Google Scholar 

  131. Gneuß T, Leitl MJ, Finger LH, Rau N, Yersin H, Sundermeyer J (2015) Dalton Trans 44:8506

    Article  CAS  Google Scholar 

  132. Yersin H, Czerwieniec R, Monkowius U (2011) DE 10 2011 000282 A1

  133. Wei F, Zhang T, Liu X, Li X, Jiang N, Liu Z, Bian Z, Zhao Y, Lu Z, Huang C (2014) Organ Electron 15:3292

    Article  CAS  Google Scholar 

  134. Franco E, López-Torres E, Mendiola M, Sevilla M (2000) Polyhedron 19:441

    Article  CAS  Google Scholar 

  135. Manbeck GF, Brennessel WW, Eisenberg R (2011) Inorg Chem 50:3431

    Article  CAS  Google Scholar 

  136. Yang L, Powell DR, Houser RP (2007) Dalton Trans: 955

  137. Yersin H, Czerwieniec R, Monkowius U (2010) DE10 2010 031831

  138. Liaptsis G, Hertel D, Meerholz K (2013) Angew Chem Int Ed 125:9742

    Article  Google Scholar 

  139. Xiang C, Chopra N, Wang J, Brown C, Ho S, Mathai M, So F (2014) Organ Electron 15:1702

    Article  CAS  Google Scholar 

  140. Yersin H (2004) Proc SPIE 5214:124

    Article  CAS  Google Scholar 

  141. Czerwieniec R, Hofbeck T, Leitl MJ, Monkowius U, Yersin H (2013) DE 10 2013 106 426 A1

Download references

Acknowledgments

The authors thank the German Ministry for Education and Research (BMBF) for funding in the scope of the cyCESH project (FKN 13N12668). The authors (T.B., D.V., D.M.Z.) gratefully acknowledge the collaboration with the groups of Prof. Franky So (NCSU), Prof. Christopher Barner-Kowollik (KIT), Prof Clemens Heske (KIT, UNLV), Prof. Uli Lemmer (KIT), and Prof. Stefan Bräse (KIT), as well as the scientific division of CYNORA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Volz or Hartmut Yersin.

Additional information

This article is part of the topical collection “Photoluminescent Materials and Electroluminescent Devices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leitl, M.J., Zink, D.M., Schinabeck, A. et al. Copper(I) Complexes for Thermally Activated Delayed Fluorescence: From Photophysical to Device Properties. Top Curr Chem (Z) 374, 25 (2016). https://doi.org/10.1007/s41061-016-0019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0019-1

Keywords

Navigation