Topics in Current Chemistry

, 374:1 | Cite as

Photo-Triggered Click Chemistry for Biological Applications

  • András Herner
  • Qing Lin
Part of the following topical collections:
  1. Cycloadditions in Bioorthogonal Chemistry


In the last decade and a half, numerous bioorthogonal reactions have been developed with a goal to study biological processes in their native environment, i.e., in living cells and animals. Among them, the photo-triggered reactions offer several unique advantages including operational simplicity with the use of light rather than toxic metal catalysts and ligands, and exceptional spatiotemporal control through the application of an appropriate light source with pre-selected wavelength, light intensity and exposure time. While the photoinduced reactions have been studied extensively in materials research, e.g., on macromolecular surface, the adaptation of these reactions for chemical biology applications is still in its infancy. In this chapter, we review the recent efforts in the discovery and optimization the photo-triggered bioorthogonal reactions, with a focus on those that have shown broad utility in biological systems. We discuss in each cases the chemical and mechanistic background, the kinetics of the reactions and the biological applicability together with the limiting factors.


Bioorthogonal reaction Photo-triggered reaction Photoclick Tetrazole Nitrile imine Azirine Cyclopropenone o-Naphthoquinone methide o-Quinodimethanes Hetero Diels–Alder reaction 



Two-photon excitation


Cu-catalyzed azide–alkyne cycloaddition




Absorption coefficient


Quantum yield


Highest occupied molecular orbital




Lowest unoccupied molecular orbital


Phosphate buffer


Phosphate buffered saline


Protecting group


Strain-promoted azide–alkyne cycloaddition


Unnatural amino acid





Work on the tetrazole-based photoclick chemistry in QL lab was supported by the National Institutes of Health (GM 085092). AH thanks the Rosztoczy Foundation (to A.H.) for a scholarship.


  1. 1.
    Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40:2004CrossRefGoogle Scholar
  2. 2.
    Saxon E, Bertozzi CR (2000) Science 287:2007CrossRefGoogle Scholar
  3. 3.
    Prescher JA, Bertozzi CR (2005) Nat Chem Biol 1:13CrossRefGoogle Scholar
  4. 4.
    Lowe AB (2014) Polym Chem 5:4820CrossRefGoogle Scholar
  5. 5.
    Lowe AB (2014) Polymer 55:5517CrossRefGoogle Scholar
  6. 6.
    Sammes PG (1976) Tetrahedron 32:405CrossRefGoogle Scholar
  7. 7.
    Diao L, Yang C, Wan P (1995) J Am Chem Soc 117:5369CrossRefGoogle Scholar
  8. 8.
    Padwa A (1976) Acc Chem Res 9:371CrossRefGoogle Scholar
  9. 9.
    Poloukhtine A, Popik VV (2003) J Org Chem 68:7833CrossRefGoogle Scholar
  10. 10.
    Mayer G, Heckel A (2006) Angew Chem Int Ed 45:4900CrossRefGoogle Scholar
  11. 11.
    Su MD, Liao HY, Chung WS, Chu SY (1999) J Org Chem 64:6710CrossRefGoogle Scholar
  12. 12.
    Huisgen R, Seidel M, Wallbillich G, Knupfer H (1962) Tetrahedron 17:3CrossRefGoogle Scholar
  13. 13.
    Clovis JS, Eckell A, Huisgen R, Sustmann R (1967) Chem Ber 100:60CrossRefGoogle Scholar
  14. 14.
    Toubro NH, Holm A (1980) J Am Chem Soc 102:2093CrossRefGoogle Scholar
  15. 15.
    Zheng SL, Wang Y, Yu Z, Lin Q, Coppens P (2009) J Am Chem Soc 131:18036CrossRefGoogle Scholar
  16. 16.
    Weinberg P, Csongar C, Grummt UW (1989) J Photochem Photobiol A 50:11CrossRefGoogle Scholar
  17. 17.
    Lohse V, Leihkauf P, Csongar C, Tomaschewski G (1988) J Prakt Chem 330:406CrossRefGoogle Scholar
  18. 18.
    Houk KN, Sims J, Watts CR, Luskus LJ (1973) J Am Chem Soc 95:7301CrossRefGoogle Scholar
  19. 19.
    Molteni G, Orlandi M, Broggini G (2000) J Chem Soc Perk Trans 1:3742CrossRefGoogle Scholar
  20. 20.
    Padwa A, Nahm S, Sato E (1978) J Org Chem 43:1664CrossRefGoogle Scholar
  21. 21.
    Meier H, Heimgartner H (1985) Helv Chim Acta 68:1283CrossRefGoogle Scholar
  22. 22.
    Darkow R, Yoshikawa M, Kitao T, Tomaschewski G, Schellenberg J (1994) J Polym Sci A Polym Chem 32:1657CrossRefGoogle Scholar
  23. 23.
    Kaya E, Vrabel M, Deiml C, Prill S, Fluxa VS, Carell T (2012) Angew Chem Int Ed 51:4466CrossRefGoogle Scholar
  24. 24.
    Wang XS, Lee YJ, Liu WR (2014) Chem Commun 50:3176CrossRefGoogle Scholar
  25. 25.
    Ito S, Tanaka Y, Kakehi A, Kondo K (1976) Bull Chem Soc Jpn 49:1920CrossRefGoogle Scholar
  26. 26.
    Koguro K, Oga T, Mitsui S, Orita R (1998) Synthesis 6:910CrossRefGoogle Scholar
  27. 27.
    Lenda F, Guenoun F, Tazi B, Larbi NB, Allouchi H, Martinez J, Lamaty F (2005) Eur J Org Chem 326 Google Scholar
  28. 28.
    An P, Yu Z, Lin Q (2013) Chem Commun 49:9920CrossRefGoogle Scholar
  29. 29.
    Wang Y, Rivera Vera CI, Lin Q (2007) Org Lett 9:4155CrossRefGoogle Scholar
  30. 30.
    Wells RL, Han A (1985) Int J Radiat Biol 47:17Google Scholar
  31. 31.
    Wang Y, Hu WJ, Song W, Lim RKV, Lin Q (2008) Org Lett 10:3725CrossRefGoogle Scholar
  32. 32.
    Yu Z, Ho LY, Wang Z, Lin Q (2011) Bioorg Med Chem Lett 21:5033CrossRefGoogle Scholar
  33. 33.
    An P, Yu Z, Lin Q (2013) Org Lett 15:5496CrossRefGoogle Scholar
  34. 34.
    Yu Z, Ohulchanskyy TY, An P, Prasad PN, Lin Q (2013) J Am Chem Soc 135:16766CrossRefGoogle Scholar
  35. 35.
    McClure DS (1954) J Chem Phys 22:1668CrossRefGoogle Scholar
  36. 36.
    Furuta T, Wang SS, Dantzker JL, Dore TM, Bybee WJ, Callaway EM, Denk W, Tsien RY (1999) Proc Natl Acad Sci USA 96:1193CrossRefGoogle Scholar
  37. 37.
    Lang K, Chin JW (2014) ACS Chem Biol 9:16CrossRefGoogle Scholar
  38. 38.
    Liu CC, Schultz PG (2010) Annu Rev Biochem 79:413CrossRefGoogle Scholar
  39. 39.
    Song W, Wang Y, Qu J, Madden MM, Lin Q (2008) Angew Chem Int Ed 47:2832CrossRefGoogle Scholar
  40. 40.
    Song W, Yu Z, Madden MM, Lin Q (2010) Mol BioSyst 6:1576CrossRefGoogle Scholar
  41. 41.
    Song W, Wang Y, Qu J, Lin Q (2008) J Am Chem Soc 130:9654CrossRefGoogle Scholar
  42. 42.
    Wang Y, Song W, Hu WJ, Lin Q (2009) Angew Chem Int Ed 48:5330CrossRefGoogle Scholar
  43. 43.
    Wang Y, Lin Q (2009) Org Lett 11:3570CrossRefGoogle Scholar
  44. 44.
    Wang J, Zhang W, Song W, Wang Y, Yu Z, Li J, Wu M, Wang L, Zang J, Lin Q (2010) J Am Chem Soc 132:14812CrossRefGoogle Scholar
  45. 45.
    Yu Z, Lim RKV, Lin Q (2010) Chem Eur J 16:13325CrossRefGoogle Scholar
  46. 46.
    Lang K, Davis L, Torres-Kolbus J, Chou C, Deiters A, Chin JW (2012) Nat Chem 4:298CrossRefGoogle Scholar
  47. 47.
    Plass T, Milles S, Koehler C, Szymański J, Mueller R, Wießler M, Schultz C, Lemke EA (2012) Angew Chem Int Ed 124:4166CrossRefGoogle Scholar
  48. 48.
    Bianco A, Townsley FM, Greiss S, Lang K, Chin JW (2012) Nat Chem Biol 8:748CrossRefGoogle Scholar
  49. 49.
    Bach RD, Dmitrenko O (2004) J Am Chem Soc 126:4444CrossRefGoogle Scholar
  50. 50.
    Schleyer PVR, William JE, Blanchard KR (1970) J Am Chem Soc 92:2377CrossRefGoogle Scholar
  51. 51.
    Gordon MS (1980) J Am Chem Soc 102:7419CrossRefGoogle Scholar
  52. 52.
    Yu Z, Pan Y, Wang Z, Wang J, Lin Q (2012) Angew Chem Int Ed 51:10600CrossRefGoogle Scholar
  53. 53.
    Patterson DM, Nazarova LA, Xie B, Kamber DN, Prescher JA (2012) J Am Chem Soc 134:18638CrossRefGoogle Scholar
  54. 54.
    Yang J, Seckute J, Cole CM, Devaraj NK (2012) Angew Chem Int Ed 51:7476CrossRefGoogle Scholar
  55. 55.
    Kamber DN, Nazarova LA, Liang Y, Lopez SA, Patterson DM, Shih HW, Houk KN, Prescher JA (2013) J Am Chem Soc 135:13680CrossRefGoogle Scholar
  56. 56.
    Yu Z, Lin Q (2014) J Am Chem Soc 136:4153CrossRefGoogle Scholar
  57. 57.
    Taylor MT, Blackman ML, Dmitrenko O, Fox M (2011) J Am Chem Soc 133:9646CrossRefGoogle Scholar
  58. 58.
    Lee Y-J, Wu B, Raymond JE, Zeng Y, Fang X, Wooley KL, Liu WR (2013) ACS Chem Biol 8:1664CrossRefGoogle Scholar
  59. 59.
    Li F, Zhang H, Sun Y, Pan Y, Zhou J, Wang J (2013) Angew Chem Int Ed 52:9700CrossRefGoogle Scholar
  60. 60.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Science 313:1642CrossRefGoogle Scholar
  61. 61.
    Rust MJ, Bates M, Zhuang X (2006) Nat Methods 3:793CrossRefGoogle Scholar
  62. 62.
    Yu Z, Ho LY, Lin Q (2011) J Am Chem Soc 133:11912CrossRefGoogle Scholar
  63. 63.
    Madden MM, Rivera Vera CI, Song W, Lin Q (2009) Chem Commun 5588Google Scholar
  64. 64.
    Karle IL, Flippen-Anderson JL, Uma K, Balaram P (1990) Proteins 7:62CrossRefGoogle Scholar
  65. 65.
    Karle IL, Flippen-Anderson JL, Uma K, Balaram P (1993) Biopolymers 33:827CrossRefGoogle Scholar
  66. 66.
    Madden MM, Muppidi A, Li Z, Li X, Chen J, Lin Q (2011) Bioorg Med Chem Lett 21:1472CrossRefGoogle Scholar
  67. 67.
    Alge DL, Anseth KS (2013) Nat Mater 12:950CrossRefGoogle Scholar
  68. 68.
    Fan Y, Deng C, Cheng R, Meng F, Zhong Z (2013) Biomacromolecules 14:2814CrossRefGoogle Scholar
  69. 69.
    He M, Li J, Tan S, Wang R, Zhang Y (2013) J Am Chem Soc 135:18718CrossRefGoogle Scholar
  70. 70.
    Simone C, Forcales SV, Hill DA, Imbalzano AN, Latella L, Puri PL (2004) Nat Genet 36:738CrossRefGoogle Scholar
  71. 71.
    Padwa A, Smolanoff J (1971) J Am Chem Soc 93:548CrossRefGoogle Scholar
  72. 72.
    Albrecht E, Mattay J, Steenken S (1997) J Am Chem Soc 119:11605CrossRefGoogle Scholar
  73. 73.
    Lim RKV, Lin Q (2010) Chem Commun 46:7993CrossRefGoogle Scholar
  74. 74.
    Mueller JO, Schmidt FG, Blinco JP, Barner-Kowollik C (2015) Angew Chem Int Ed 54:10284CrossRefGoogle Scholar
  75. 75.
    Carey FA, Sundberg RJ (2007) Advanced organic chemistry: part b: reactions and synthesis, 5th edn. Springer, New York, pp 481–487. E-ISBN 978-0-387-44899-2 (part B)Google Scholar
  76. 76.
    Liu F, Paton RS, Kim S, Liang Y, Houk KN (2013) J Am Chem Soc 135:15642CrossRefGoogle Scholar
  77. 77.
    Rossin R, van den Bosch SM, ten Hoeve W, Carvelli M, Versteegen RM, Lub J, Robillard MS (2013) Bioconj Chem 24:1210CrossRefGoogle Scholar
  78. 78.
    Arumugam S, Popik VV (2011) J Am Chem Soc 133:15730CrossRefGoogle Scholar
  79. 79.
    Arumugam S, Orski SV, Locklin J, Popik VV (2012) J Am Chem Soc 134:179CrossRefGoogle Scholar
  80. 80.
    Arumugam S, Guo J, Mbua NE, Friscourt F, Lin N, Nekongo E, Boons GJ, Popik VV (2014) Chem Sci 5:1591CrossRefGoogle Scholar
  81. 81.
    Arumugam S, Popik VV (2014) J Org Chem 79:2702CrossRefGoogle Scholar
  82. 82.
    Li Q, Dong T, Liu X, Lei X (2013) J Am Chem Soc 135:4996CrossRefGoogle Scholar
  83. 83.
    Charlton JL, Alauddin MM (1987) Tetrahedron 43:2873CrossRefGoogle Scholar
  84. 84.
    Segura JL, Martin N (1999) Chem Rev 99:3199CrossRefGoogle Scholar
  85. 85.
    Gruendling T, Oehlenschlaeger KK, Frick E, Glassner M, Schmid C, Barner-Kowollik C (2011) Macromol Rapid Commun 32:807CrossRefGoogle Scholar
  86. 86.
    Glassner M, Oehlenschlaeger KK, Gruendling T, Barner-Kowollik C (2011) Macromolecules 44:4681CrossRefGoogle Scholar
  87. 87.
    Pauloehrl T, Delaittre G, Winkler V, Welle A, Bruns M, Boerner HG, Greiner AM, Bastmeyer M, Barner-Kowollik C (2012) Angew Chem Int Ed 51:1071CrossRefGoogle Scholar
  88. 88.
    Mellows SM, Sammes PG (1971) J Chem Soc Chem Comm 21Google Scholar
  89. 89.
    Winkler M, Mueller JO, Oehlenschlaeger KK, de Espinosa LM, Meier MAR, Barner-Kowollik C (2012) Macromolecules 45:5012CrossRefGoogle Scholar
  90. 90.
    Kennedy DC, McKay CS, Legault MCB, Danielson DC, Blake JA, Pegoraro AF, Stolow A, Mester Z, Pezacki JP (2011) J Am Chem Soc 133:17993CrossRefGoogle Scholar
  91. 91.
    Haldón E, Nicasio MC, Pérez PJ (2015) Org Biomol Chem 13:9528CrossRefGoogle Scholar
  92. 92.
    Yang M, Jalloh AS, Wei W, Zhao J, Wu P, Chen PR (2014) Nat Commun 5:4981CrossRefGoogle Scholar
  93. 93.
    Agard NJ, Prescher JA, Bertozzi CR (2004) J Am Chem Soc 126:15046CrossRefGoogle Scholar
  94. 94.
    Dommerholt J, van Rooijen O, Borrmann A, Guerra CF, Bickelhaupt FM, van Delft FL (2014) Nat Commun 5:5378CrossRefGoogle Scholar
  95. 95.
    Gold B, Dudley GB, Alabugin IV (2013) J Am Chem Soc 135:1558CrossRefGoogle Scholar
  96. 96.
    Poloukhtine A, Popik VV (2006) J Phys Chem A 110:1749CrossRefGoogle Scholar
  97. 97.
    Poloukhtine AA, Mbua NE, Wolfert MA, Boons GJ, Popik VV (2009) J Am Chem Soc 131:15769CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of ChemistryState University of New York at BuffaloBuffaloUSA

Personalised recommendations