Skip to main content
Log in

A conceptual framework for service life prediction of reinforced concrete structures

  • Research Article
  • Published:
Journal of Building Pathology and Rehabilitation Aims and scope Submit manuscript

Abstract

This paper presents a conceptual framework methodology concerning service life prediction of concrete structures by using deterministic or probabilistic processes, which are included from collecting data until the decision-making. This methodology provides guidelines to generate new degradation models and accomplish new service life studies of either existing structures or new ones in literature. In the first case, it is possible to estimate how many years are necessary for the structure to reach the desired limit state (durability, service or of security). It can also provide support in project design by selecting durability requirements such as covering thickness, concrete strength, type of cement, water–cement ratio, among other factors that influence the service life of concrete structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Garcia-Alonso MC et al (2010) Corrosion behaviour of new stainless steels reinforcing bars embedded in concrete. Cem Concr Res 37:1463–1471. https://doi.org/10.1016/j.cemconres.2007.06.003

    Article  Google Scholar 

  2. Mehta PK, Monteiro PJM (2014) Concrete: microstructure, properties, and materials, 4th edn. McGraw-Hill, New York

    Google Scholar 

  3. NACE International—THE NATIONAL ASSOCIATION OF CORROSION ENGINEERS (2002) Corrosion costs and preventive strategies in the United States. FHWA-RD-01-156. http://www.nace.org/nace/content/publicaffairs/cocorrindex.asp, Accessed 05 May 2008

  4. Meira GR, Padaratz IJ (2002) Custos de recuperação e prevenção em estruturas de concreto armado: uma análise comparativa. In IX, Encontro Nacional de Tecnologia do Ambiente Construído, pp 1425–1432

  5. Andrade JJO, Possan E, Dal Molin DCC (2017) Considerations about the service life prediction of reinforced concrete structures inserted in chloride environments. J Build Pathol Rehabilit 2(6):1–8. https://doi.org/10.1007/s41024-017-0025-x

    Article  Google Scholar 

  6. Pang L, Li Q (2016) Service life prediction of RC structures in marine environment using long term chloride ingress data: comparison between exposure trials and real structure surveys. Constr Build Mater 113:979–987. https://doi.org/10.1016/j.conbuildmat.2016.03.156

    Article  Google Scholar 

  7. Possan E (2010) Carbonation modeling and service life prediction of concrete structures in urban environment. Porto Alegre. Engineering School, Federal University of Rio Grande do Sul. PhD Thesis in Engineering

  8. Dal Molin DCC, et al (2016) Contribuição à Previsão da Vida Útil de Estruturas de Concreto. Avaliação de Desempenho de Tecnologias Construtivas Inovadoras: Materiais e Sustentabilidade. s.l.: Editora Scienza, pp 223–270. http://dx.doi.org/10.5935/978-85-5953-005-6.2016C008

    Chapter  Google Scholar 

  9. FIB Bulletin 53 (2010) Model code for structural concrete textbook on behaviour, design and performance. Fédération Internationale du Béton, vol 3, p 390, Design of durable concrete structures

  10. International Organization for Standardzation. ISO 13823 (2008) General principles on the design of structures for durability. ISO/TC, 2008, Geneva

  11. British Standards Institution. BS 7543 (2015) Guide to durability of buildings and building elements, products and components. British standards institution, London, United Kingdom

  12. Associação Brasileira de Normas Técnicas. ABNT NBR 15575 (2013) Desempenho de Edifícios Habitacionais. Partes 1-6. Rio de Janeiro

  13. International Organization for Standardization. ISO 16204 (2012) Durability, service life design of concrete structures: general information. Switzerland

  14. Clifton JR (1990) Methods for predicting the remaining service life of concrete. In: 5th International conference—durability of building materials and components, Brighton, United Kingdom, pp 361–373

  15. Helene PRL (1997) Vida útil das estruturas de concreto. In: VI Congresso de controle de qualidade – CONPAT, Porto Alegre: Rio Grande do Sul, Brasil

  16. Andrade JJO (2001) Contribution to the service life prediction of reinforced concrete structures affected by reinforcement corrosion: initiation by chlorides. PhD Thesis in Engineering, Engineering School, Federal University of Rio Grande do Sul

  17. Rostam S (2005) Service life design of concrete structures: a challenge to designers as well as to owners. Asian J Civil Eng (Build Hous) 6(5):423–445

    Google Scholar 

  18. Baroghel-Bouny V (2014) Durability indicators: a basic tool for performance—based evaluation and prediction of durability. In: Proceedings of international seminar on durability and lifetime evaluation of concrete structures, Higashi-Hiroshima

  19. Possan E (2004) Contribuição ao estudo da carbonatação do concreto com adição de sílica ativa em ambiente natural e acelerado. Porto Alegre, PRPPG (UFRGS), p 153

  20. Morgan DL (1997) Focus groups as qualitative research: qualitative research methods. Sage Publications, London

    Book  Google Scholar 

  21. Altmann F et al (2012) A fuzzy-probabilistic durability concept for strain-hardening cement-based composites (SHCCs) exposed to chlorides Part 1: concept development. Cem Concr Compos 34:754–762. https://doi.org/10.1016/j.cemconcomp.2012.02.014

    Article  Google Scholar 

  22. Shier DR, Wallenius KT (1999) Applied mathematical modeling: a multidisciplinary approach. CRC Press, Boca Raton

    Book  Google Scholar 

  23. Bender EA (2000) Introduction to mathematical modeling. Dover Publications, New York

    MATH  Google Scholar 

  24. Muntean A, et al (2005) A note on limitations of the use of accelerated concrete-carbonation tests for service-life predictions. Universität Bremen, pp 1–15

  25. Thiéry M (2005) Modélisation de la carbonatation atmosphérique des bétons: Prise en compte des effets cinétiques et de l’état hydrique. Ecole Nationale des Ponts et Chaussées. Thèse de doctorat, Paris

  26. Pauletti C (2009) Estimate of natural carbonation of cement materials based on accelerated tests and prediction models. PhD Thesis in Engineering. Engineering School, Federal University of Rio Grande do Sul, Porto Alegre

  27. Duan A, Dai J, Jin W (2015) Probabilistic approach for durability design of concrete structures in marine environments. J Mater Civil Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001023

    Article  Google Scholar 

  28. Siemes T (1985) Durability: a probabilistic approach. Durab Build Mater 3(2):101–113

    Google Scholar 

  29. Da Silva TJ (1998) Predicción de la Vida Útil de Forjados Unidireccionales de Hormigón Mediante Modelos Matemáticos de Deterioro. Tesis Doctoral. Universidad Politécnica de Catalunya, Barcelona

  30. Noortwijk JMV, Frangopol DM (2004) Two probabilistic life-cycle maintenance models for deteriorating civil infrastructures. Probab Eng Mech 19:345–359. https://doi.org/10.1016/j.probengmech.2004.03.002

    Article  Google Scholar 

  31. Possan E, Andrade JJO (2014) Markov chains and reliability analysis for reinforced concrete structure service life. Mater Res 17:593–602. https://doi.org/10.1590/S1516-14392014005000074

    Article  Google Scholar 

  32. Felix EF, Possan E, Carrazedo R (2017) Análise paramétrica da carbonatação em estruturas de concreto armado via Redes Neurais Artificiais. REVISTA ALCONPAT 7:302–316. https://doi.org/10.21041/ra.v7i3.245

    Article  Google Scholar 

  33. Frangopol DM, Lin K-Y, Estes AC (1997) Life-cycle cost design of deteriorating structures. J Struct Eng 123:1390–1401. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:10(1390)

    Article  Google Scholar 

  34. LIFECON (2003) Methodology and data for calculation of life cycle costs (LCC) of maintenance and repair methods and works. Deliverable 5.2. Project G1RD-CT-2000-0037

  35. Ferreira RM, Jalali S (2006) Software for probability-based durability analysis of concrete structures. In: Concrete Repair, Rehabilitation and Retrofitting. Taylor & Francis Group, London

  36. Possan E, Felix EF, Thomaz WA (2016) CO2 uptake by carbonation of concrete during life cycle of building structures. J Build Pathol Rehabilit 1:7. https://doi.org/10.1007/s41024-016-0010-9

    Article  Google Scholar 

  37. Guimarães ATC (2000) Service life of reinforced concrete structures in marine environment. D.Sc. thesis, USP, São Paulo

Download references

Acknowledgements

The authors thank National Council for Scientific and Technological Development (CNPq) to support the doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Possan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Possan, E., Dal Molin, D.C.C. & Andrade, J.J.O. A conceptual framework for service life prediction of reinforced concrete structures. J Build Rehabil 3, 2 (2018). https://doi.org/10.1007/s41024-018-0031-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41024-018-0031-7

Keywords

Navigation