Effects of Aftershocks on the Potential Damage of FRP-Retrofitted Reinforced Concrete Structures


This study investigates the effects of aftershocks on the potential damage of reinforced concrete (RC) structures retrofitted by fibre-reinforced polymer (FRP). An eight-storey RC frame that was poorly confined due to deficient transverse reinforcement was selected and then retrofitted by FRP wraps to provide external confinement. Inelastic time history and damage analyses of the frame under single earthquakes and mainshock–aftershock sequences were performed. FRP retrofit did not ensure a damage-free structure, and it minimised the damage though. The results indicated different contributions of aftershocks to the damage of the retrofitted frame, and this finding illustrates the limitations of current seismic codes. The damage caused by single earthquakes is proposed to be used as a criterion for dealing with the effects of aftershocks as follows. If the mainshocks cause minor or light damage, the effect of aftershocks is negligible, whereas the effect of aftershocks needs to be considered if the mainshocks cause moderate or severe damage. The outcomes of this study can be used in making decisions about whether the effects of aftershocks should be considered.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. 1.

    Huang L, Zhao L, Yan L (2018) Flexural performance of RC beams strengthened with polyester FRP composites. Int J Civ Eng 16(6):715–724. https://doi.org/10.1007/s40999-016-0140-0

    Google Scholar 

  2. 2.

    Bagheri M, Chahkandi A, Jahangir H (2019) Seismic reliability analysis of RC frames rehabilitated by glass fiber-reinforced polymers. Int J Civ Eng 17(11):1785–1797. https://doi.org/10.1007/s40999-019-00438-x

    Google Scholar 

  3. 3.

    Lam L, Teng JG (2003) Design-oriented stress–strain model for FRP-confined concrete. Constr Build Mater 17:471–489. https://doi.org/10.1016/S0950-0618(03)00045-X

    Google Scholar 

  4. 4.

    Wei Y-Y, Wu Y-F (2012) Unified stress–strain model of concrete for FRP-confined columns. Constr Build Mater 26:381–392. https://doi.org/10.1016/j.conbuildmat.2011.06.037

    MathSciNet  Google Scholar 

  5. 5.

    Samaan M, Mirmiran A, Shahawy M (1998) Model of concrete confined by fiber composites. J Struct Eng 124(9):1025–1031. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025)

    Google Scholar 

  6. 6.

    Pellegrino C, Modena C (2010) Analytical model for FRP confinement of concrete columns with and without internal steel reinforcement. J Compos Constr 14(6):693–705. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000127

    Google Scholar 

  7. 7.

    Harajli MH, Rteil AA (2004) Effect of confinement using fiber-reinforced polymer or fiber-reinforced concrete on seismic performance of gravity load-designed columns. ACI Struct J 101(1):47–56

    Google Scholar 

  8. 8.

    Sheikh SA, Yau G (2002) Seismic behavior of concrete columns confined with steel and fiber-reinforced polymers. ACI Struct J 99(1):72–80

    Google Scholar 

  9. 9.

    Mukherjee A, Joshi M (2005) FRPC reinforced concrete beam-column joints under cyclic excitation. Compos Struct 70:185–199. https://doi.org/10.1016/j.compstruct.2004.08.022

    Google Scholar 

  10. 10.

    Rahai A, Akbarpour H (2014) Experimental investigation on rectangular RC columns strengthened with CFRP composites under axial load and biaxial bending. Compos Struct 108:538–546. https://doi.org/10.1016/j.compstruct.2013.09.015

    Google Scholar 

  11. 11.

    Balsamo A, Colombo A, Manfredi G, Negro P, Prota A (2005) Seismic behavior of a full-scale RC frame repaired using CFRP laminates. Eng Struct 27:769–780. https://doi.org/10.1016/j.engstruct.2005.01.002

    Google Scholar 

  12. 12.

    Ludovico MD, Prota A, Manfredi G, Cosenza E (2008) Seismic strengthening of an under-designed RC structure with FRP. Earthq Eng Struct Dyn 37:141–162. https://doi.org/10.1002/eqe.749

    Google Scholar 

  13. 13.

    Ludovico MD, Manfredi G, Mola E, Negro P, Prota A (2008) Seismic behavior of a full-scale RC structure retrofitted using GFRP laminates. J Struct Eng 134(5):810–821. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:5(810)

    Google Scholar 

  14. 14.

    Garcia R, Hajirasouliha I, Pilakoutas K (2010) Seismic behaviour of deficient RC frames strengthened with CFRP composites. Eng Struct 32:3075–3085. https://doi.org/10.1016/j.engstruct.2010.05.026

    Google Scholar 

  15. 15.

    Mortezaei A, Ronagh HR, Kheyroddin A (2010) Seismic evaluation of FRP strengthened RC buildings subjected to near-fault ground motions having fling step. Compos Struct 92:1200–1211. https://doi.org/10.1016/j.compstruct.2009.10.017

    Google Scholar 

  16. 16.

    Eslami A, Ronagh HR (2013) Effect of FRP wrapping in seismic performance of RC buildings with and without special detailing: a case study. Compos B Eng 45(1):1265–1274. https://doi.org/10.1016/j.compositesb.2012.09.031

    Google Scholar 

  17. 17.

    Cao VV, Ronagh HR (2014) Reducing the seismic damage of reinforced concrete frames using FRP confinement. Compos Struct 118:403–415. https://doi.org/10.1016/j.compstruct.2014.07.038

    Google Scholar 

  18. 18.

    Cao VV, Pham SQ (2019) Comparison of CFRP and GFRP wraps on reducing seismic damage of deficient reinforced concrete structures. Int J Civ Eng 17(11):1667–1681. https://doi.org/10.1007/s40999-019-00429-y

    Google Scholar 

  19. 19.

    Zhang Y, Chen J, Sun C (2017) Damage-based strength reduction factor for nonlinear structures subjected to sequence-type ground motions. Soil Dyn Earthq Eng 92:298–311. https://doi.org/10.1016/j.soildyn.2016.10.002

    Google Scholar 

  20. 20.

    Ruiz-García J (2012) Mainshock–aftershock ground motion features and their influence in building’s seismic response. J Earthq Eng 16(5):719–737. https://doi.org/10.1080/13632469.2012.663154

    Google Scholar 

  21. 21.

    Wang G, Wang Y, Lu W, Yan P, Zhou W, Chen M (2017) Damage demand assessment of mainshock-damaged concrete gravity dams subjected to aftershocks. Soil Dyn Earthq Eng 98:141–154. https://doi.org/10.1016/j.soildyn.2017.03.034

    Google Scholar 

  22. 22.

    Zhai C-H, Wen W-P, Chen Z, Li S, Xie L-L (2013) Damage spectra for the mainshock–aftershock sequence-type ground motions. Soil Dyn Earthq Eng 45:1–12. https://doi.org/10.1016/j.soildyn.2012.10.001

    Google Scholar 

  23. 23.

    Yaghmaei-Sabegh S, Ruiz-García J (2016) Nonlinear response analysis of SDOF systems subjected to doublet earthquake ground motions: a case study on 2012 Varzaghan-Ahar events. Eng Struct 110:281–292. https://doi.org/10.1016/j.engstruct.2015.11.044

    Google Scholar 

  24. 24.

    Faisal A, Majid TA, Hatzigeorgiou GD (2013) Investigation of story ductility demands of inelastic concrete frames subjected to repeated earthquakes. Soil Dyn Earthq Eng 44:42–53. https://doi.org/10.1016/j.soildyn.2012.08.012

    Google Scholar 

  25. 25.

    Hosseinpour F, Abdelnaby AE (2017) Fragility curves for RC frames under multiple earthquakes. Soil Dyn Earthq Eng 98:222–234. https://doi.org/10.1016/j.soildyn.2017.04.013

    Google Scholar 

  26. 26.

    Han R, Li Y, van de Lindt J (2015) Impact of aftershocks and uncertainties on the seismic evaluation of non-ductile reinforced concrete frame buildings. Eng Struct 100:149–163. https://doi.org/10.1016/j.engstruct.2015.05.039

    Google Scholar 

  27. 27.

    Mirtaheri M, Amini M, Rad MD (2017) The effect of mainshock–aftershock on the residual displacement of buildings equipped with cylindrical frictional damper. Earthq Struct 12(5):515–527. https://doi.org/10.12989/eas.2017.12.5.515

    Google Scholar 

  28. 28.

    Zhai C-H, Zheng Z, Li S, Pan X (2018) The capacity loss of a RCC building under mainshock–aftershock seismic sequences. Earthq Struct 15(3):295–306. https://doi.org/10.12989/eas.2018.15.3.295

    Google Scholar 

  29. 29.

    Li R, Ge H, Maruyama R (2017) Assessment of post-earthquake serviceability for steel arch bridges with seismic dampers considering mainshock–aftershock sequences. Earthq Struct 13(2):137–150. https://doi.org/10.12989/eas.2017.13.2.137

    Google Scholar 

  30. 30.

    Xie X, Lin G, Duan YF, Zhao JL, Wang RZ (2012) Seismic damage of long span steel tower suspension bridge considering strong aftershocks. Earthq Struct 3(5):767–781. https://doi.org/10.12989/eas.2012.3.5.767

    Google Scholar 

  31. 31.

    Li Q, Ellingwood BR (2007) Performance evaluation and damage assessment of steel frame buildings under main shock–aftershock earthquake sequences. Earthq Eng Struct Dyn 36(3):405–427. https://doi.org/10.1002/eqe.667

    Google Scholar 

  32. 32.

    Hatzigeorgiou GD, Liolios AA (2010) Nonlinear behaviour of RC frames under repeated strong ground motions. Soil Dyn Earthq Eng 30(10):1010–1025. https://doi.org/10.1016/j.soildyn.2010.04.013

    Google Scholar 

  33. 33.

    Amadio C, Fragiacomo M, Rajgelj S (2003) The effects of repeated earthquake ground motions on the non-linear response of SDOF systems. Earthq Eng Struct Dyn 32(2):291–308. https://doi.org/10.1002/eqe.225

    Google Scholar 

  34. 34.

    Hatzigeorgiou GD (2010) Behavior factors for nonlinear structures subjected to multiple near-fault earthquakes. Comput Struct 88(5):309–321. https://doi.org/10.1016/j.compstruc.2009.11.006

    Google Scholar 

  35. 35.

    Hatzigeorgiou GD, Beskos DE (2009) Inelastic displacement ratios for SDOF structures subjected to repeated earthquakes. Eng Struct 31(11):2744–2755. https://doi.org/10.1016/j.engstruct.2009.07.002

    Google Scholar 

  36. 36.

    Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):185–188

    Google Scholar 

  37. 37.

    Morfidis K, Kostinakis K (2017) The role of masonry infills on the damage response of R/C buildings subjected to seismic sequences. Eng Struct 131:459–476. https://doi.org/10.1016/j.engstruct.2016.10.039

    Google Scholar 

  38. 38.

    Shcherbakov R, Turcotte DL (2004) A modified form of Bath’s law. Bull Seismol Soc Am 94(5):1968–1975. https://doi.org/10.1785/012003162

    Google Scholar 

  39. 39.

    Li Y, Song R, Lindt JWVD (2014) Collapse fragility of steel structures subjected to earthquake mainshock–aftershock sequences. J Struct Eng 140(12):04014095. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001019

    Google Scholar 

  40. 40.

    Ronagh HR, Eslami A (2013) On flexural retrofitting of RC buildings using GFRP/CFRP: a comparative study. Compos: Part B 46:188–196. https://doi.org/10.1016/j.compositesb.2012.09.072

    Google Scholar 

  41. 41.

    ICBO (1994) Uniform Building Code. International Conference of Building Officials, Whittier, California

  42. 42.

    ASCE (2000) Prestandard and commentary for the seismic rehabilitation of buildings. Prepared for Federal Emergency Management Agency, FEMA Publication No. 356. Federal Emergency Management Agency, Washington, DC

  43. 43.

    Luca AD, Nardone F, Matta F, Nanni A, Lignola GP, Prota A (2011) Structural evaluation of full-scale FRP-confined reinforced concrete columns. J Compos Constr 15(1):112–123. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000152

    Google Scholar 

  44. 44.

    Wang L-M, Wu Y-F (2008) Effect of corner radius on the performance of CFRP-confined square concrete columns: test. Eng Struct 30:493–505. https://doi.org/10.1016/j.engstruct.2007.04.016

    Google Scholar 

  45. 45.

    Computers and Structures Inc (2017) SAP2000 Version 19.2.0

  46. 46.

    Takeda T, Sozen MA, Nielsen NN (1970) Reinforced concrete response to simulated earthquakes. J Struct Div 96:2557–2573

    Google Scholar 

  47. 47.

    Park R, Priestley MJN, Gill WD (1982) Ductility of square-confined concrete columns. J Struct Div 108:929–950

    Google Scholar 

  48. 48.

    Kent DC, Park R (1971) Flexural members with confined concrete. J Struct Div 97(7):1969–1990

    Google Scholar 

  49. 49.

    Lam L, Teng JG (2003) Design-oriented stress–strain model for FRP-confined concrete in rectangular columns. J Reinf Plast Compos 22(13):1149–1186. https://doi.org/10.1177/0731684403035429

    Google Scholar 

  50. 50.

    Harajli MH, Hantouche E, Soudki K (2006) Stress–strain model for fiber-reinforced polymer jacketed concrete columns. ACI Struct J 103(5):672–682

    Google Scholar 

  51. 51.

    Wu G, Wu ZS, Lü ZT (2007) Design-oriented stress–strain model for concrete prisms confined with FRP composites. Constr Build Mater 21(5):1107–1121. https://doi.org/10.1016/j.conbuildmat.2005.12.014

    Google Scholar 

  52. 52.

    Youssef MN, Feng MQ, Mosallam AS (2007) Stress–strain model for concrete confined by FRP composites. Compos B Eng 38(5–6):614–628. https://doi.org/10.1016/j.compositesb.2006.07.020

    Google Scholar 

  53. 53.

    Rocca S, Galati N, Nanni A (2009) Interaction diagram methodology for design of FRP-confined reinforced concrete columns. Constr Build Mater 23(4):1508–1520. https://doi.org/10.1016/j.conbuildmat.2008.06.010

    Google Scholar 

  54. 54.

    Paulay T, Priestley MJN (eds) (1992) Seismic design of reinforced concrete and masonry buildings. Wiley, New York

  55. 55.

    Baji H (2017) Calibration of the FRP resistance reduction factor for FRP-confined reinforced concrete building columns. J Compos Constr 21(3):04016107. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000769

    Google Scholar 

  56. 56.

    Sheikh SA, Khoury SS (1993) Confined concrete columns with stubs. ACI Struct J 90(4):414–431

    Google Scholar 

  57. 57.

    Chaudat T, Garnier C, Cvejic S, Poupin S, Le Corre M, Mahe M (2005) ECOLEADER Project no. 2: seismic tests on a reinforced concrete bare frame with FRP retrofitting-Tests Report. SEMT/EMSI/RT/05-006/A. CEA, Saclay, (France)

  58. 58.

    Internet-Site for European Strong-Motion Data (2018)

  59. 59.

    ASCE (2010) Minimum design loads for buildings and other structures. ASCE/SEI 7-10. American Society of Civil Engineers

  60. 60.

    SeismoMatch Version 2018

  61. 61.

    Cao VV, Ronagh H, Ashraf M, Baji H (2014) A new damage index for reinforced concrete structures. Earthq Struct 6(6):581–609. https://doi.org/10.12989/eas.2014.6.6.581

    Google Scholar 

Download references


This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under Grant Number C2018-20-28.

Author information



Corresponding author

Correspondence to Vui Van Cao.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, V.V. Effects of Aftershocks on the Potential Damage of FRP-Retrofitted Reinforced Concrete Structures. Int J Civ Eng (2020). https://doi.org/10.1007/s40999-020-00533-4

Download citation


  • FRP
  • Confinement
  • Damage
  • RC structure
  • Mainshock
  • Aftershock