Skip to main content
Log in

A Concept for the Estimation of Soil-Tool Abrasive Wear Using ASTM-G65 Test Data

  • Research Paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

In this paper, a new procedure for the prediction of soil-tool abrasive wear is presented which drastically reduces the duration and, therefore, the cost of simulations in comparison to conventional 3D wear modeling. The goal is to extend the experimental data from a single scratch test to the wear of mixtures by means of equations obtained from discrete element method (DEM) simulations and geometric relations. We are predicting abrasive wear with a combination of numerical and experimental approaches taking two shapes of particles into account. Single wear is quantified by measuring the width of scratch induced by a single quartz particle. Geometrical relations together with the particle’s microscopic picture are used to find the depth of scratch. DEM mixture simulations result in equations for the number of contacts and normal contact forces. Finally, the wear rate is calculated for a specific soil sample as an example to clarify the developed prediction procedure. The DEM simulations are performed using PFC\(^{3{\text {D}}}\) code for both a homogeneous soil sample and a mixture of two different soils. We are specially investigating a relation to predict the abrasive wear caused by a mixture of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Graff L (2010) Discrete element method simulation of wear due to soil-tool interaction. PhD thesis

  2. Bhole S D, Yu H (1992) Abrasive wear evaluation of tillage tool materials. Lubric Eng 48(12):925–934

    Google Scholar 

  3. Swanson P, Vetter A (1985) The measurement of abrasive particle shape and its effect on wear. ASLE Trans 28(2):225–230

    Article  Google Scholar 

  4. Natsis A, Petropoulos G, Pandazaras C (2008) Influence of local soil conditions on mouldboard ploughshare abrasive wear. Tribol Int 41(3):151–157

    Article  Google Scholar 

  5. Käsling H, Thuro K (2010) Determining abrasivity of rock and soil in the laboratory, vol 235. In: 11th IAEG Congress, Auckland, pp 1973–1980

  6. Beck F, Eberhard P (2015) Predicting abrasive wear with coupled Lagrangian methods. Comput Part Mech 2(1):51–62

    Article  Google Scholar 

  7. Tong J, Mohammad MA, Zhang J, Ma Y, Rong B, Chen D, Menon C (2010) DEM numerical simulation of abrasive wear characteristics of a bioinspired ridged surface. J Bionic Eng 7(2):175–181

    Article  Google Scholar 

  8. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  9. Shimizu Y, Hart R, Cundall P (2004) Numerical modeling in micromechanics via particle methods—2004. Proceedings of the 2nd international PFC symposium, Kyoto, 28–29 Oct 2004. CRC Press, Boca Raton

  10. ASTM (2000) G65: standard test method for measuring abrasion using the dry sand/rubber wheel apparatus. ASTM International, West Conshohocken

  11. Frechen-Quarzwerk (2009) Stoffdatenblatt quarzsand F36. https://www.sdbl.quarzwerke.com

  12. Zum Gahr KH (1987) Microstructure and wear of materials, vol 10. Elsevier, Amsterdam

    Google Scholar 

  13. Cundall PA, Hart RD (1992) Numerical modelling of discontinua. Eng Comput 9(2):101–113

    Article  Google Scholar 

  14. Itasca C (1999) Pfc 3d-user manual. Itasca Consulting Group, Minneapolis

    Google Scholar 

  15. Wessels N, Hackl K (2012) Cosserat parameter identification within the frame of the discrete element method. PAMM 12(1):447–448

    Article  Google Scholar 

  16. Wessels N, Hackl K (2016) Relating dem contact parameters to macroscopic material parameters. PAMM 16(1):563–564

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the German Research Foundation (DFG) in the framework of Project C4 and Project C5 of the Collaborative Research Center “Interaction Modeling in Mechanized Tunneling” (SFB 837). This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hackl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoormazdi, G., Küpferle, J., Röttger, A. et al. A Concept for the Estimation of Soil-Tool Abrasive Wear Using ASTM-G65 Test Data. Int J Civ Eng 17, 103–111 (2019). https://doi.org/10.1007/s40999-018-0333-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40999-018-0333-9

Keywords

Navigation