Skip to main content
Log in

Modelling of Short-Term Interactions Between Concrete Support and the Excavated Damage Zone Around Galleries Drilled in Callovo–Oxfordian Claystone

  • Research Paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Production of energy from nuclear power plants generates high-level radioactive nuclear waste, harmful during dozens of 1000 years. Deep geological disposal of nuclear waste represents a reliable solutions for its safe isolation. Confinement of radioactive wastes relies on the multi-barrier concept in which isolation is provided by a series of engineered (canister, backfill) and natural (host rock) barriers. Few underground research laboratories have been built all over the world to test and validate storage solutions. The drilling of disposal drifts may generate cracks, fractures/strain localisation in shear bands within the rock surrounding the gallery especially in argillaceous rocks. These degradations affect the hydro-mechanical properties of the material, such as permeability, e.g., creating a preferential flow path for radionuclide migration. Hydraulic conductivity increase within this zone must remain limited to preserve the natural barrier. In addition, galleries are currently reinforced by different types of concrete supports such as shotcrete and/or prefab elements. Their purpose is twofold: avoiding partial collapse of the tunnel during drilling operations and limiting convergence of the surrounding rock. Properties of both concrete and rock mass are time dependent, due to shotcrete hydration and hydro-mechanical couplings within the host rock. By the use of a hydro-mechanical coupled finite-element code with a second-gradient regularization, this paper aims at investigating and predicting support and rock interactions (convergence and stress field). The effect of shotcrete hydration evolution, spraying time, and use of compressible wedges is studied to determine their relative influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Agency IAE (2004) From Obninsk beyond: nuclear power conference looks to future. https://www.iaea.org/newscenter/news/obninsk-beyond-nuclear-power-conference-looks-future. Accessed 11 Nov 2010

  2. Feiveson H, Mian Z, Ramana M, von Hippel F (2011) Managing nuclear spent fuel: policy lessons from a 10-country study. Bull Atom Sci 27:27

    Google Scholar 

  3. Agency ONE (1995)The environmental and ethical basis of geological disposal of longlived radioactive wastes. A collective opinion of the Radioactive Waste Management Committee of the OECD Nuclear Energy Agency. Technical report

  4. Andra D (2005) Evaluation of the feasibility of a geological repository in an argillaceous formation. Andra, Chatenay-Malabry

    Google Scholar 

  5. Félix B, Lebon P, Miguez R, Plas F (1996) A review of the andra’s research programmes on the thermo-hydromechanical behavior of clay in connection with the radioactive waste disposal project in deep geological formations. Eng Geol 41(1–4):35–50

    Article  Google Scholar 

  6. Blümling P, Bernier F, Lebon P, Martin CD (2007) The excavation damaged zone in clay formations time-dependent behaviour and influence on performance assessment. Phys Chem Earth Parts A/B/C 32(8):588–599

    Article  Google Scholar 

  7. Armand G, Leveau F, Nussbaum C, de La Vaissiere R, Noiret A, Jaeggi D, Landrein P, Righini C (2014) Geometry and properties of the excavation-induced fractures at the meuse/haute-marne url drifts. Rock Mech Rock Eng 47(1):21–41

    Article  Google Scholar 

  8. Pietruszczak S, Lydzba D, Shao J-F (2002) Modelling of inherent anisotropy in sedimentary rocks. Int J Solids Struct 39(3):637–648

    Article  MATH  Google Scholar 

  9. Pardoen B, Talandier J, Collin F (2016) Permeability evolution and water transfer in the excavation damaged zone of a ventilated gallery. Int J Rock Mech Min Sci 85:192–208

    Article  Google Scholar 

  10. Collin F, Chambon R, Charlier R (2006) A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models. Int J Numer Method Eng 65(11):1749–1772

    Article  MathSciNet  MATH  Google Scholar 

  11. Oreste P, Pella D (1997) Modelling progressive hardening of shotcrete in convergence-confinement approach to tunnel design. Tunn Undergr Sp Technol 12(3):425–431

    Article  Google Scholar 

  12. Bryne L (2014) Time dependent material properties of Shotcrete for hard rock tunneling. PhD thesis, KTH Stockholm

  13. Kim J, Ryu J, Hooton R (2008) Evaluation of strength and set behavior of mortar containing shotcrete set accelerators. Can J Civ Eng 35(4):400–407

    Article  Google Scholar 

  14. Won J, Hwang U-J, Kim C, Lee S (2013) Mechanical performance of shotcrete made with a high-strength cement-based mineral accelerator. Constr Build Mater 49:175–183

    Article  Google Scholar 

  15. Bryne L, Ansell A, Holmgren J (2014) Laboratory testing of early age bond strength of shotcrete on hard rock. Tunn Undergr Sp Technol 41(1):113–119

    Article  Google Scholar 

  16. Charron J-P, Marchand J, Bissonnette B, Gérard B (2001) Étude comparative de modèles phénoménologiques décrivant le comportement au jeune âge du béton. Partie 1. Can J Civ Eng 28(2):323–331

    Article  Google Scholar 

  17. Charron J-P, Marchand J, Bissonnette B, Gérard B (2001) Étude comparative de modèles phénoménologiques décrivant le comportement au jeune âge du béton. Partie 2. Can J Civ Eng 28(2):323–331

    Article  Google Scholar 

  18. De Schutter G (1999) Degree of hydration based Kelvin model for the basic creep of early age concrete. Mater Struct 32:260–265

    Article  Google Scholar 

  19. Tazawa E-I, Miyazawa S (1995) Influence of cement and admixture on autogenous shrinkage of cement paste. Cem Concr Res 25(2):281–287

    Article  Google Scholar 

  20. Kolani B, Buffo-Lacarrière L, Sellier A, Escadeillas G, Boutillon L, Linger L (2012) Hydration of slag-blended cements. Cement Concr Compos 34(9):1009–1018

    Article  Google Scholar 

  21. Briffaut M, Benboudjema F, Torrenti J-M, Nahas G (2012) Concrete early age basic creep: experiments and test of rheological modelling approaches. Constr Build Mater 36:373–380

    Article  Google Scholar 

  22. Gutsch A (2002) Properties of early age concrete–experiments and modelling. Mater Struct 35(246):76–79

    Article  Google Scholar 

  23. van Breugel K (1995) Numerical simulation of hydration and microstructural development in hardening cement-based materials. (I) theory. Cem Concr Res 25(2):319–331

    Article  Google Scholar 

  24. Buffo-Lacarrière L, Sellier A, Escadeillas G, Turatsinze A (2007) Multiphasic finite element modeling of concrete hydration. Cem Concr Res 37(2):131–138

    Article  Google Scholar 

  25. De Schutter G, Taerwe L (1996) Degree of hydration-based description of mechanical properties of early age concrete. Mater Struct 29(6):335–344

    Article  Google Scholar 

  26. Gawin D, Pesavento F, Schrefler BA (2007) Modelling creep and shrinkage of concrete by means of effective stresses. Mater Struct 40(6):579–591

    Article  Google Scholar 

  27. Hilaire A, Benboudjema F, Darquennes A, Berthaud Y, Nahas G (2014) Modeling basic creep in concrete at early-age under compressive and tensile loading. Nucl Eng Des 269:222–230

    Article  Google Scholar 

  28. Sellier A, Multon S, Buffo-Lacarrière L, Vidal T, Bourbon X, Camps G (2016) Concrete creep modelling for structural applications: Non-linearity, multi-axiality, hydration, temperature and drying effects. Cem Concr Res 79:301–315

    Article  Google Scholar 

  29. Sercombe J, Hellmich C, Ulm FJ, Mang H (2000) Modeling of early-age creep of shotcrete. I: model and model parameters. J Eng Mech 126:284–291

    Article  Google Scholar 

  30. Buffo-Lacarrière L, Sellier A, Turatsinze A, Escadeillas G (2011) Finite element modelling of hardening concrete: application to the prediction of early age cracking for massive reinforced structures. Mater Struct 44(10):1821–1835

    Article  Google Scholar 

  31. Benboudjema F, Torrenti JM (2008) Early-age behaviour of concrete nuclear containments. Nucl Eng Des 238(10):2495–2506

    Article  Google Scholar 

  32. Meschke G (1996) Consideration of aging of shotcrete in the context of a 3D viscoplastic material model. Int J Numer Eng 39(3):3123–3143

    Article  MATH  Google Scholar 

  33. Hellmich C, Sercombe J, Ulm FJ, Mang H (2000) Modeling of early-age creep of shotcrete. II: Application to tunneling. J Eng Mech 126:292–299

    Article  Google Scholar 

  34. Galli G, Grimaldi A, Leonardi A (2004) Three-dimensional modelling of tunnel excavation and lining. Comput Geotech 31(3):171–183

    Article  Google Scholar 

  35. Buffo-Lacarrière L, Sellier A (2011) Chemo-mechanical modeling requirements for the assessment of concrete structure service life. J Eng Mech 137(9):625–633

    Article  Google Scholar 

  36. Olivella S, Gens A (1996) Numerical formulation for a simulator (code-bright)for the coupled analysis of saline media. Eng Comput 13:87–112

    Article  MATH  Google Scholar 

  37. Khalili N, Habte M, Zargarbashi S (2008) A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hystereses. Comput Geotech 35(6):872–889

    Article  Google Scholar 

  38. Khoshghalb A, Khalili N (2013) A meshfree method for fully coupled analysis of flow and deformation in unsaturated porous media. Int J Numer Anal Meth Geomech 37(7):716–743

    Article  Google Scholar 

  39. Cheng A-D (1997) Material coefficients of anisotropic poroelasticity. Int J Rock Mech Min Sci 34(2):199–205

    Article  MathSciNet  Google Scholar 

  40. Pardoen B (2015) Hydro-mechanical analysis of the fracturing induced by the excavation of nuclear waste repository galleries using shear banding. PhD Thesis, University of Liege

  41. Van Eekelen H (1980) Isotropic yield surfaces in three dimensions for use in soil mechanics. Int J Numer Anal Meth Geomech 4(1):89–101

    Article  MATH  Google Scholar 

  42. Hajiabdolmajid V, Kaiser P (2002) Brittleness of rock and stability assessment in hard rock tunneling. Tunn Undergr Sp Technol 18(1):35–48

    Article  Google Scholar 

  43. Martin C, Chandler N (1994) The progressive fracture of lac du bonnet granite. Int J Rock Mech Min Sci Geomech Abstr 31(6):643–659

    Article  Google Scholar 

  44. Chen L, Shao J-F, Huang H (2010) Coupled elastoplastic damage modeling of anisotropic rocks. Comput Geotech 37(1):187–194

    Article  Google Scholar 

  45. Pietruszczak S, Pande G (2001) Description of soil anisotropy based on multi-laminate framework. Int J Numer Anal Meth Geomech 25(2):197–206

    Article  MATH  Google Scholar 

  46. Jia Y, Bian H, Duveau G, Su K, Shao J-F (2008) Hydromechanical modelling of shaft excavation in meuse/haute-marne laboratory. Phys Chem Earth Parts A/B/C 33:S422–S435

    Article  Google Scholar 

  47. Zhou H, Jia Y, Shao J-F (2008) A unified elastic-plastic and viscoplastic damage model for quasi-brittle rocks. Int J Rock Mech Min Sci 45(8):1237–1251

    Article  Google Scholar 

  48. Perzyna P (1966) Fundamental problems in viscoplasticity. Adv Appl Mech 9:243–377

    Article  Google Scholar 

  49. Pardoen B, Collin F (2017) Modelling the influence of strain localisation and viscosity on the behaviour of underground drifts drilled in claystone. Comput Geotech 85:351–367

    Article  Google Scholar 

  50. Collin F, Caillerie D, Chambon R (2009) Analytical solutions for the thick-walled cylinder problem modeled with an isotropic elastic second gradient constitutive equation. Int J Solids Struct 46(22):3927–3937

    Article  MATH  Google Scholar 

  51. Germain P La (1973) Méthode des puissances virtuelles en mécanique des milieux continus. J Méc 12:236–274

    MATH  Google Scholar 

  52. Chambon R, Caillerie D, El Hassan N (1998) One-dimensional localisation studied with a second grade model. Eur J Mech A Solids 17(4):637–656

    Article  MathSciNet  MATH  Google Scholar 

  53. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  54. Charlier R (1987) Approche unifié de quelques problèmes non linéaires de mécanique des milieux continus par la méthode des éléments finis (grandes déformations des métaux et des sols, contact unilatéral de solides, conduction thermique et écoulements en milieu poreux). PhD Thesis, University of Liege

  55. Collin F (2003) Couplages thermo-hydro-mécaniques dans les sols et les roches tendres partiellement saturés. PhD thesis, Université de Liège, Liège,Belgique

  56. Panet M, Guenot A (1983) Analysis of convergence behind the face of a tunnel: tunnelling 82, proceedings of the 3rd international symposium, Brighton, 7–11 June 1982, pp 197–204. London: Imm, 1982. Int J Rock Mech Min Sci Geomech Abstr 20:A16

    Article  Google Scholar 

  57. Prudêncio LR (1998) Accelerating admixtures for shotcrete. Cement Concr Compos 20(2–3):213–219

    Article  Google Scholar 

  58. Leca E (1989) Analysis of NATM and shield tunneling in soft ground. PhD Thesis, Virginia Polytechnic Institute and State University

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Cerfontaine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argilaga, A., Collin, F., Lacarrière, L. et al. Modelling of Short-Term Interactions Between Concrete Support and the Excavated Damage Zone Around Galleries Drilled in Callovo–Oxfordian Claystone. Int J Civ Eng 17, 1–18 (2019). https://doi.org/10.1007/s40999-018-0317-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40999-018-0317-9

Keywords

Navigation