Skip to main content
Log in

Numerical Simulation of Soil Stress State Variations due to Mini-Pile Penetration in Clay

  • Research Paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

During installation of prefabricated piles in saturated clayey soils, excess pore water pressure (EPWP) is generated around the pile shaft and tip. The developed excess pore pressure is extremely important for evaluation of changes of stress state in clay and subsequent pile bearing capacity. Therefore, the main objective of this paper is to present a numerical finite-element model (FEM) to simulate a mini-pile installation and subsequent pore water pressure dissipation over time. The mini-pile is inserted from the ground surface into the soil to the desired depth. The numerical model is validated using the results of a physical model in which a piezocone is penetrated into a consolidation chamber containing saturated clay. The effects of Over-Consolidation Ratio (OCR), coefficient of lateral soil pressure (K 0), penetration rate (PR), and soil hydraulic conductivity (K i ) on soil stress state are investigated. The verification results have shown that the numerical model has successfully simulated the penetration of mini-pile, generation, and subsequently dissipation of the excess pore water pressure (EPWP). The parametric study revealed that increasing the OCR and K 0 has resulted in increase of the effective radial stresses on the pile skin compared to its initial value, after dissipation of EPWP. The results indicate that the variations in radial stresses at the end of dissipation are independent from the penetration rate. The dissipation of EPWP is more correlated with horizontal hydraulic conductivity of the soil, because the dissipation rate is accelerated in the radial direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Trochanis AM, Bielak J, Christiano P (1991) Three-dimensional nonlinear study of piles. J Geotech Eng 117(3):429–447

    Article  Google Scholar 

  2. Sharafi H, Sojoudi Y (2016) Experimental and numerical study of pile-stabilized slopes under surface load conditions. Int J Civil Eng. doi:10.1007/s40999-016-0017-2

    Google Scholar 

  3. Mabsout ME, Tassoulas JL (1994) A finite element model for the simulation of pile driving. Int J Numer Methods Eng 37(2):257–278. doi:10.1002/nme.1620370206

    Article  MATH  Google Scholar 

  4. Lee J, Kim Y, Jeong S (2010) Three-dimensional analysis of bearing behavior of piled raft on soft clay. Comput Geotech 37(1):103–114

    Article  Google Scholar 

  5. Mabsout M, Sadek S (2003) A study of the effect of driving on pre-bored piles. Int J Numer Anal Methods Geomech 27(2):133–146

    Article  MATH  Google Scholar 

  6. Chung S-H, Yang S-R (2016) Numerical analysis of small-scale model pile in unsaturated clayey soil. Int J Civil Eng. doi:10.1007/s40999-016-0065-7

    Google Scholar 

  7. Broere W, van Tol AF (2006) Modelling the bearing capacity of displacement piles in sand. Proc ICE Geotech Eng 159(3):195–206

    Article  Google Scholar 

  8. Said I, De Gennaro V, Frank R (2009) Axisymmetric finite element analysis of pile loading tests. Comput Geotech 36(1–2):6–19. doi:10.1016/j.compgeo.2008.02.011

    Article  Google Scholar 

  9. Abu-Farsakh MY, Voyiadjis GZ, Tumay MT (1998) Numerical analysis of the miniature piezocone penetration tests (PCPT) in cohesive soils. Int J Numer Anal Methods Geomech 22 (10):791–818. doi:10.1002/(SICI)1096-9853(1998100)22:10<791::AID-NAG941>3.0.CO;2-6

    Article  MATH  Google Scholar 

  10. Sheng D, Eigenbrod KD, Wriggers P (2005) Finite element analysis of pile installation using large-slip frictional contact. Comput Geotech 32(1):17–26. doi:10.1016/j.compgeo.2004.10.004

    Article  Google Scholar 

  11. Hügel H, Henke S, Kinzler S (2008) High-performance Abaqus simulations in soil mechanics. In: Proceedings of Abaqus users conference, pp 192–205

  12. Sheng D, Nazem M, Carter JP (2009) Some computational aspects for solving deep penetration problems in geomechanics. Comput Mech 44(4):549–561

    Article  MATH  Google Scholar 

  13. Dijkstra J, Broere W, Heeres OM (2011) Numerical simulation of pile installation. Comput Geotech 38(5):612–622. doi:10.1016/j.compgeo.2011.04.004

    Article  Google Scholar 

  14. Dijkstra J, Broere W, van Tol AF (2009) Eulerian simulation of the installation process of a displacement pile. In: Contemporary topics in in situ testing, analysis, and reliability of foundations. American Society of Civil Engineers, Reston, pp 135–142

  15. Qiu G, Henke S, Grabe J (2011) Application of a coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformations. Comput Geotech 38(1):30–39

    Article  Google Scholar 

  16. Pucker T, Grabe J (2012) Numerical simulation of the installation process of full displacement piles. Comput Geotech 45(0):93–106. doi:10.1016/j.compgeo.2012.05.006

    Article  Google Scholar 

  17. Mahutka K, König F, Grabe J (2006) Numerical modelling of pile jacking, driving and vibratory driving. In: Triantafyllidis T (ed) Proceedings of the international conference on numerical modelling of construction processes in geotechnical engineering for urban environment, pp 235–246

  18. Liyanapathirana D (2009) Arbitrary Lagrangian Eulerian based finite element analysis of cone penetration in soft clay. Comput Geotech 36(5):851–860

    Article  Google Scholar 

  19. Tolooiyan A, Gavin K (2011) Modelling the cone penetration test in sand using cavity expansion and arbitrary lagrangian eulerian finite element methods. Comput Geotech 38(4):482–490. doi:10.1016/j.compgeo.2011.02.012

    Article  Google Scholar 

  20. Abu-Farsakh M, Rosti F, Souri A (2015) Evaluating pile installation and subsequent thixotropic and consolidation effects on setup by numerical simulation for full-scale pile load tests. Can Geotech J 52(11):1734–1746

    Article  Google Scholar 

  21. Rosti F, Abu- Farsakh M Numerical Simulation of Pile Installation and Setup for Bayou Lacassine Site. In: IFCEE 2015, 2015.

  22. Elias MB (2008) Numerical simulation of pile installation and setup. Dissertation, The University of Wisconsin, Milwaukee, WI

  23. Fakharian K, Attar I, Haddad H (2013) Contributing factors on setup and the effects on pile design parameter. In: Proceeding of the 18 th international conference on soil mechanics and geotechnical engineering. Paris

  24. Kurup P, Voyiadjis G, Tumay M (1994) Calibration chamber studies of piezocone test in cohesive soils. J Geotech Eng 120(1):81–107

    Article  Google Scholar 

  25. Systèmes D (2012) Abaqus 6.12 User’s manual. Dessault Systémes Simulia Corp, Providence, USA

  26. Tekeste M, Raper R, Tollner E, Way T (2007) Finite element analysis of cone penetration in soil for prediction of hardpan location. Trans ASABE 50(1):23–31

    Article  Google Scholar 

  27. Abu-Farsakh M, Tumay M, Voyiadjis G (2003) Numerical parametric study of piezocone penetration test in clays. Int J Geomech 3(2):170–181

    Article  Google Scholar 

  28. Ahmadi M, Robertson P (2008) A numerical study of chamber size and boundary E ects on CPT tip resistance in NC Sand. Scientia Iranica 15(5):541–553

    Google Scholar 

  29. O’Neill MW, Lecture) (2001) Side resistance in piles and drilled shafts. J Geotech Geoenviron Eng 127(1):3–16

    Article  Google Scholar 

  30. Yu-nong L, Jing-pei L (2009) Behavior of the penetration process of model jacked pile in layered soil. Electron J Geotech Eng 14(Bund. P):1–10

  31. Society CG (2006) Canadian Foundation Engineering Manual. Can Geotech Soc

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Fakharian.

Ethics declarations

Funding

No funding information available.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanmohammadi, M., Fakharian, K. Numerical Simulation of Soil Stress State Variations due to Mini-Pile Penetration in Clay. Int J Civ Eng 16, 409–419 (2018). https://doi.org/10.1007/s40999-016-0141-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40999-016-0141-z

Keywords

Navigation