International Journal of Civil Engineering

, Volume 15, Issue 3, pp 419–429 | Cite as

Correlations Between Electrical Resistivity and Geotechnical Parameters for Jiangsu Marine Clay Using Spearman’s Coefficient Test

  • Jun Lin
  • Guojun Cai
  • Songyu Liu
  • Anand J. Puppala
  • Haifeng Zou
Research Paper


The correlations and relationships between electrical resistivity and geotechnical parameters of soils have become very important for site investigation. However, there is a lack of understanding about the relationships between electrical resistivity and geotechnical parameter values. The resistivity piezocone penetration tests and laboratory tests have been conducted for geotechnical investigations of marine clay in Jiangsu province of China to establish quantitative relationships between electrical and geotechnical data. The geotechnical investigation reveals that electrical resistivity values are very low for marine clay in Jiangsu, ranging from 5 to 10 Ω m. The correlations between electrical resistivity and geotechnical parameters are examined using Spearman’s rank correlation test that is a rank-based test for correlation between two variables without any assumption about the data distribution. It was shown that the electrical resistivity has strong bonds with the moisture content, void ratio, salt content and plasticity index. In terms of quantitative relationships, good fitting relationships between electrical resistivity and selected geotechnical parameters are observed. The statistical analysis indicates that the electrical resistivity is a good indirect predictor of selected geotechnical parameters. The data studied demonstrates the usefulness of the in situ resistivity method in geotechnical investigations, which have an advantage over other geotechnical methods in cost performance.


Resistivity piezocone penetration test Marine clay Electrical resistivity Geotechnical parameters Spearman’s rank correlation 



Majority of the work presented in this paper was funded by the Foundation for the New Century Excellent Talents of China (Grant No. NCET-13-0118), the Foundation of Jiangsu Province Outstanding Youth (Grant No. BK20140027), the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (Grant No. 201353), the High Level Talent Project of Peak of Six Talents in Jiangsu Province (Grant No. 2015-ZBZZ-001). the Fundamental Research Funds for the Central Universities (Grant No. 2242016K41062). These financial supports are gratefully acknowledged.


  1. 1.
    Sudha K, Israil M, Mittal S, Rai J (2009) Soil characterization using electrical resistivity tomography and geotechnical investigations. J Appl Geophys 67(1):74–79CrossRefGoogle Scholar
  2. 2.
    Fard MK, Shariatmadari N, Keramati M, Kalarijani HJ (2014) An experimental investigation on the mechanical behavior of MSW. Int J Civ Eng 12(4):292–303Google Scholar
  3. 3.
    Kim JH, Yoon H, Lee J (2010) Void ratio estimation of soft soils using electrical resistivity cone probe. J Geotech Geoenviron Eng 137(1):86–93CrossRefGoogle Scholar
  4. 4.
    Bathe A, Bryson LS (2009) Determination of selected geotechnical properties of soil using electrical conductivity testing. Geotechn Test J 32(3):252–261Google Scholar
  5. 5.
    Khodaparast M, Rajabi A, Mohammadi M (2015) The new empirical formula based on dynamic probing test results in fine cohesive soils. Int J Civ Eng 13(2):105–113Google Scholar
  6. 6.
    Ampadu SI, Arthur TD (2006) The dynamic cone penetrometer in compaction verification on a model road pavement. Geotech Test J 29(1):1–10Google Scholar
  7. 7.
    Phoon KK, Quek ST, An P (2003) Identification of statistically homogeneous soil layers using modified Bartlett statistics. J Geotech Geoenviron Eng 129(7):649–659CrossRefGoogle Scholar
  8. 8.
    Phoon KK, Quek ST, An P (2004) Geostatistical analysis of cone penetration test (CPT) sounding using the modified Bartlett test. Can Geotech J 41(2):356–365CrossRefGoogle Scholar
  9. 9.
    Cai G, Zhang T, Puppala AJ, Liu S (2015) Thermal characterization and prediction model of typical soils in Nanjing area of China. Eng Geol 191:23–30CrossRefGoogle Scholar
  10. 10.
    Gupta SC, Hanks RJ (1972) Influence of water content on electrical conductivity of the soil. Soil Sci Soc Am J 36(6):855–857CrossRefGoogle Scholar
  11. 11.
    Kalinski RJ, Kelly WE (1993) Estimating water content of soils from electrical resistivity. Geotech Test J 16(3):323–329CrossRefGoogle Scholar
  12. 12.
    Kibria G, Hossain MS (2012) Investigation of geotechnical parameters affecting electrical resistivity of compacted clays. J Geotech Geoenviron Eng 138(12):1520–1529CrossRefGoogle Scholar
  13. 13.
    Long M, Donohue S, L’Heureux JS, Solberg IL, Rønning JS, Limacher R, Lecomte I (2012) Relationship between electrical resistivity and basic geotechnical parameters for marine clays. Can Geotech J 49(10):1158–1168CrossRefGoogle Scholar
  14. 14.
    Cosenza P, Marmet E, Rejiba F, Cui YJ, Tabbagh A, Charlery Y (2006) Correlations between geotechnical and electrical data: a case study at Garchy in France. J Appl Geophys 60(3):165–178CrossRefGoogle Scholar
  15. 15.
    Han T, Best AI, Sothcott J, North LJ, MacGregor LM (2015) Relationships among low frequency (2 Hz) electrical resistivity, porosity, clay content and permeability in reservoir sandstones. J Appl Geophys 112:279–289CrossRefGoogle Scholar
  16. 16.
    Samouëlian A, Cousin I, Tabbagh A, Bruand A, Richard G (2005) Electrical resistivity survey in soil science: a review. Soil Tillage Res 83:173–193CrossRefGoogle Scholar
  17. 17.
    McCarter WJ (1984) The electrical resistivity characteristics of compacted clays. Géotechnique 34(2):263–267CrossRefGoogle Scholar
  18. 18.
    McCarter WJ, Desmazes P (1997) Soil characterization using electrical measurements. Géotechnique 47(1):179–183CrossRefGoogle Scholar
  19. 19.
    Abu-Hassanein ZS, Benson CH, Blotz LR (1996) Electrical resistivity of compacted clays. J Geotech Eng 122(5):397–406CrossRefGoogle Scholar
  20. 20.
    Lundberg AB, Dijkstra J, Tol FV, Broere W (2012) Investigation of in situ soil density change by resistivity measurements. GeoCongress, ASCE, pp 2590–2597Google Scholar
  21. 21.
    Dijkstra J, Broere W, Van Tol AF (2012) Electrical resistivity method for the measurement of density changes near a probe. Géotechnique 62(8):721–725CrossRefGoogle Scholar
  22. 22.
    Sreedeep S, Singh DN (2005) Estimating unsaturated hydraulic conductivity of fine-grained soils using electrical resistivity measurements. J ASTM Int 2(1):10–1520Google Scholar
  23. 23.
    Gorman T, Kelly WE (1990) Electrical-hydraulic properties of unsaturated Ottawa sands. J Hydrol 118(1):1–18CrossRefGoogle Scholar
  24. 24.
    Giao PH, Chung SG, Kim DY, Tanaka H (2003) Electric imaging and laboratory resistivity testing for geotechnical investigation of Pusan clay deposits. J Appl Geophys 52(4):157–175CrossRefGoogle Scholar
  25. 25.
    Liu SY, Shao GH, Du YJ, Cai GJ (2011) Depositional and geotechnical properties of marine clays in Lianyungang, China. Eng Geol 121(1):66–74CrossRefGoogle Scholar
  26. 26.
    Cai G, Puppala AJ, Liu S (2014) Characterization on the correlation between shear wave velocity and piezocone tip resistance of Jiangsu clays. Eng Geol 171:96–103CrossRefGoogle Scholar
  27. 27.
    Cai G, Liu S, Puppala AJ (2012) Reliability assessment of CPTU-based pile capacity predictions in soft clay deposits. Eng Geol 141:84–91CrossRefGoogle Scholar
  28. 28.
    ASTM Designation Standard D5778-12 (2012) Standard test method for electronic friction cone and piezocone penetration testing of soils. ASTM International, West Conshohocken, PAGoogle Scholar
  29. 29.
    Gautheir TD (2001) Detecting trends using Spearman’s rank correlation coefficient. Environ Forensics 2(4):359–362CrossRefGoogle Scholar
  30. 30.
    Lehmann EL, D’abrera HJ (2006) Nonparametrics: statistical methods based on ranks. Springer, New YorkMATHGoogle Scholar
  31. 31.
    Myers JL, Well A, Lorch RF (2010) Research design and statistical analysis. Routledge, LondonGoogle Scholar
  32. 32.
    Helsel DR, Hirsch RM (1992) Statistical methods in water resources, vol 49. Elsevier, OxfordCrossRefGoogle Scholar
  33. 33.
    Zar JH (1972) Significance testing of the Spearman rank correlation coefficient. J Am Stat Assoc 67(339):578–580CrossRefMATHGoogle Scholar
  34. 34.
    Dahlin T, Larsson R, Leroux V, Svensson M, Wisén R (2001) Geofysik I släntstabilitetsutredningar. Swedish Geotechnical Institute, Report No. 62Google Scholar
  35. 35.
    Lunne T, Robertosn PK, Powell JJM (1997) Cone penetration testing in geotechnical practice. EF Spon, LondonGoogle Scholar
  36. 36.
    Pozdnyakov AI, Pozdnyakova LA, Karpachevskii LO (2006) Relationship between water tension and electrical resistivity in soils. Eurasian Soil Sci 39(1):S78–S83CrossRefGoogle Scholar
  37. 37.
    Mitchell JK (1993) Fundamentals of soil behavior. Wiley, New YorkGoogle Scholar
  38. 38.
    Bryson LS (2005) Evaluation of geotechnical parameters using electrical resistivity measurements. Geofront ASCE GSP 133:1–12MathSciNetGoogle Scholar
  39. 39.
    Gay DA, Morgan FD, Vichabian Y, Sogade JA, Reppert P, Wharton AE (2006) Investigations of andesitic volcanic debris terrains: part 2-geotechnical. Geophysics 71:B9–B15CrossRefGoogle Scholar

Copyright information

© Iran University of Science and Technology 2016

Authors and Affiliations

  • Jun Lin
    • 1
  • Guojun Cai
    • 1
  • Songyu Liu
    • 1
  • Anand J. Puppala
    • 2
  • Haifeng Zou
    • 1
  1. 1.Institute of Geotechnical EngineeringSoutheast UniversityNanjingChina
  2. 2.Department of Civil EngineeringThe University of Texas at ArlingtonArlingtonUSA

Personalised recommendations