Modeling and Analysis of Hybrid ARQ Scheme for Incremental Cooperative Communication in Underwater Acoustic Sensor Networks

Abstract

Underwater acoustic sensor network (UASN) is a vast network, in which the neighborhood of a transmitting node consists of many operating sensor nodes. By considering this as an advantage, we propose a hybrid automatic repeat request scheme for incremental cooperative communication (HARQ-INCC) in UASNs. The proposed scheme utilizes neighborhood sensor nodes during the instance of packet retransmission. It combines HARQ scheme with incremental cooperative communication; to enhance reliability and to optimize the energy efficiency. In this article, we present an analytical model to calculate the energy efficiency in UASNs for deep and shallow water scenarios, by examining the influence of acoustic fading, ambient noises and underwater channel characteristics. The analytical results show that HARQ-INCC outperforms the existing techniques for considerable distances between the source and destination nodes. We further propose an optimization algorithm to maximize the energy efficiency, by adjusting the modulation level and packet size as a function of the distance between source and destination nodes. The proposed optimization algorithm significantly enhances the energy efficiency of HARQ-INCC scheme. Finally, we analyze the energy efficiency of UASNs with respect to the variation in environmental parameters like waves and shipping noises. We validate the analytical results using ns-3 simulations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Abughalieh N, Steenhaut K, Nowé A, Anpalagan A (2014) Turbo codes for multi-hop wireless sensor networks with decode-and-forward mechanism. EURASIP J Wirel Commun Netw 2014(1):204. https://doi.org/10.1186/1687-1499-2014-204

    Article  Google Scholar 

  2. Cao R, Qu F, Yang L (2016) Asynchronous amplify-and-forward relay communications for underwater acoustic networks. IET Commun 10(6):677–684. https://doi.org/10.1049/iet-com.2014.1233

    Article  Google Scholar 

  3. Celik A, Saeed N, Al-Naffouri TY, Alouini M (2018) Modeling and performance analysis of multihop underwater optical wireless sensor networks. In: 2018 IEEE wireless communications and networking conference (WCNC), pp 1–6. https://doi.org/10.1109/WCNC.2018.8377388

  4. Coutinho RWL, Boukerche A, Loureiro AAF (2018a) Modeling power control and anypath routing in underwater wireless sensor networks. In: 2018 IEEE wireless communications and networking conference (WCNC), pp 1–6. https://doi.org/10.1109/WCNC.2018.8377329

  5. Coutinho RWL, Boukerche A, Vieira LFM, Loureiro AAF (2018b) Underwater wireless sensor networks: a new challenge for topology control-based systems. ACM Comput Surv 51(1):19:1–19:36. https://doi.org/10.1145/3154834

    Article  Google Scholar 

  6. Darehshoorzadeh A, Boukerche A (2015) Underwater sensor networks: a new challenge for opportunistic routing protocols. IEEE Commun Mag 53(11):98–107. https://doi.org/10.1109/MCOM.2015.7321977

    Article  Google Scholar 

  7. Domingo MC (2008) Overview of channel models for underwater wireless communication networks. Phys Commun 1(3):163–182. https://doi.org/10.1016/j.phycom.2008.09.001

    Article  Google Scholar 

  8. Domingo MC, Prior R (2008) Energy analysis of routing protocols for underwater wireless sensor networks. Comput Commun 31(6):1227–1238. https://doi.org/10.1016/j.comcom.2007.11.005

    Article  Google Scholar 

  9. Evologics (2018) Underwater acoustic modem. http://www.evologics.de/en/products/acoustics/ s2cm_hs.html. Accessed 27 Jan 2020

  10. Geethu KS, Babu AV (2015) Minimizing the total energy consumption in multi-hop UWASNs. Wirel Pers Commun 83(4):2693–2709. https://doi.org/10.1007/s11277-015-2564-2

    Article  Google Scholar 

  11. Geethu KS, Babu AV (2017) A hybrid ARQ scheme combining erasure codes and selective retransmissions for reliable data transfer in underwater acoustic sensor networks. EURASIP J Wirel Commun Netw 2017(1):32. https://doi.org/10.1186/s13638-017-0823-5

    Article  Google Scholar 

  12. Goldsmith A (2005) Wireless communications. Cambridge University Press, Cambridge

    Google Scholar 

  13. Ikki SS, Ahmed MH (2011) Performance analysis of cooperative diversity with incremental-best-relay technique over Rayleigh fading channels. IEEE Trans Commun 59(8):2152–2161. https://doi.org/10.1109/TCOMM.2011.053111.080672

    Article  Google Scholar 

  14. Kaushal H, Kaddoum G (2016) Underwater optical wireless communication. IEEE Access 4:1518–1547. https://doi.org/10.1109/ACCESS.2016.2552538

    Article  Google Scholar 

  15. Liau QY, Leow CY, Ding Z (2018) Amplify-and-forward virtual full-duplex relaying-based cooperative noma. IEEE Wirel Commun Lett 7(3):464–467. https://doi.org/10.1109/LWC.2017.2785303

    Article  Google Scholar 

  16. Liu L, Ma M, Liu C, Shu Y (2017) Optimal relay node placement and flow allocation in underwater acoustic sensor networks. IEEE Trans Commun 65(5):2141–2152. https://doi.org/10.1109/TCOMM.2017.2677448

    Article  Google Scholar 

  17. Lott C, Milenkovic O, Soljanin E (2007) Hybrid arq: theory, state of the art and future directions. In: 2007 IEEE information theory workshop on information theory for wireless networks, pp 1–5. https://doi.org/10.1109/ITWITWN.2007.4318035

  18. Lu Jin DH (2013) A slotted CSMA based reinforcement learning approach for extending the lifetime of underwater acoustic wireless sensor networks. Comput Commun 36(9):1094–1099. https://doi.org/10.1016/j.comcom.2012.10.007

    Article  Google Scholar 

  19. Maaz M, Lorandel J, Mary P, Prévotet JC, Hélard M (2016) Energy efficiency analysis of hybrid-arq relay-assisted schemes in LTE-based systems. EURASIP J Wirel Commun Netw 2016(1):22. https://doi.org/10.1186/s13638-016-0520-9

    Article  Google Scholar 

  20. Molland AF (2008) Chapter 1—the marine environment. In: The Maritime Engineering Reference Book. Butterworth-Heinemann, Oxford, pp 1–42. https://doi.org/10.1016/B978-0-7506-8987-8.00001-9

  21. Nasir H, Javaid N, Sher M, Qasim U, Khan ZA, Alrajeh N, Niaz IA (2016) Exploiting outage and error probability of cooperative incremental relaying in underwater wireless sensor networks. Sensors. https://doi.org/10.3390/s16071076

    Article  Google Scholar 

  22. Proakis JG, Salehi M (2014) Digital communications. McGraw Hill Education, New York

    Google Scholar 

  23. Qin H, Zhang Z, Wang R, Cai X, Jia Z (2017) Energy-balanced and depth-controlled routing protocol for underwater wireless sensor networks. Springer, Cham, pp 115–131. https://doi.org/10.1007/978-3-319-65482-9_8

    Google Scholar 

  24. Samad SA, Shenoy SK, Kumar GS (2011) Improving energy efficiency of underwater acoustic sensor networks using transmission power control: a cross-layer approach. Adv Comput Commun 192:93–101

    Article  Google Scholar 

  25. Shah SBH, Zhe C, Ahmed SH, Fuliang Y, Faheem M, Begum S (2018) Depth based routing protocol using smart clustered sensor nodes in underwater WSN. In: Proceedings of the 2nd international conference on future networks and distributed systems, ICFNDS ’18. ACM, New York, pp 53:1–53:7. https://doi.org/10.1145/3231053.3231119

  26. Sklar B (1988) Digital communications: fundamentals and applications. Prentice-Hall, Inc., Upper Saddle River

    Google Scholar 

  27. Stojanovic M (2007) On the relationship between capacity and distance in an underwater acoustic communication channel. ACM SIGMOBILE Mobile Comput Commun Rev 11(4):34. https://doi.org/10.1145/1347364.1347373

    Article  Google Scholar 

  28. Thorp WH (1967) Analytic description of the low-frequency attenuation coefficient. J Acoust Soc Am 42(1):270–270. https://doi.org/10.1121/1.1910566

    Article  Google Scholar 

  29. Tomasi B, Casari P, Badia L, Zorzi M (2015) Cross-layer analysis via Markov models of incremental redundancy hybrid ARQ over underwater acoustic channels. Ad Hoc Netw 34:62–74. https://doi.org/10.1016/j.adhoc.2014.07.013

    Article  Google Scholar 

  30. Tsai MF, Chilamkurti N, Shieh CK, Vinel A (2011) Mac-level forward error correction mechanism for minimum error recovery overhead and retransmission. Math Comput Model 53(11):2067–2077. https://doi.org/10.1016/j.mcm.2010.05.019

    Article  Google Scholar 

  31. Uysal M, Panayirci E, Nouri H (2016) Information theoretical performance analysis and optimisation of cooperative underwater acoustic communication systems. IET Commun 10(7):812–823. https://doi.org/10.1049/iet-com.2015.0640

    Article  Google Scholar 

  32. Wahid A, Lee S, Jeong HJ, Kim D (2011) EEDBR: energy-efficient depth-based routing protocol for underwater wireless sensor networks. Springer, Berlin, pp 223–234. https://doi.org/10.1007/978-3-642-24267-0_27

    Google Scholar 

  33. Wang S, Nie J (2010) Energy efficiency optimization of cooperative communication in wireless sensor networks. EURASIP J Wirel Commun Netw. https://doi.org/10.1155/2010/162326

    Article  Google Scholar 

  34. Wang C, Cho T, Tsai T, Jan M (2017) A cooperative multihop transmission scheme for two-way amplify-and-forward relay networks. IEEE Trans Veh Technol 66(9):8569–8574. https://doi.org/10.1109/TVT.2017.2687622

    Article  Google Scholar 

  35. Xiang-ping G, Yyan Y, Rong-lin H (2011) Analyzing the performance of channel in underwater wireless sensor networks (UWSN). Proc Eng 15:95–99. https://doi.org/10.1016/j.proeng.2011.08.020

    Article  Google Scholar 

  36. Xie P, Cui JH, Lao L (2006) VBF: vector-based forwarding protocol for underwater sensor networks. Springer, Berlin, pp 1216–1221. https://doi.org/10.1007/11753810_111

    Google Scholar 

  37. Xie P, Zhou Z, Nicolaou N, See A, Cui JH, Shi Z (2010) Efficient vector-based forwarding for underwater sensor networks. EURASIP J Wirel Commun Netw 2010(1):195,910. https://doi.org/10.1155/2010/195910

    Article  Google Scholar 

  38. Yan H, Shi ZJ, Cui JH (2008) DBR: depth-based routing for underwater sensor networks. Springer, Berlin, pp 72–86. https://doi.org/10.1007/978-3-540-79549-0_7

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Veerapu Goutham.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goutham, V., Harigovindan, V.P. Modeling and Analysis of Hybrid ARQ Scheme for Incremental Cooperative Communication in Underwater Acoustic Sensor Networks. Iran J Sci Technol Trans Electr Eng 45, 279–294 (2021). https://doi.org/10.1007/s40998-020-00348-y

Download citation

Keywords

  • Incremental cooperative communication
  • HARQ
  • Reed–Solomon codes
  • Energy efficiency