Advertisement

Cyclic Prefix-Based OFDM ISAR Imaging

  • Hamid Reza Hashempour
  • Mohmmad Ali Masnadi-Shirazi
  • Abbas Sheikhi
Research Paper
  • 57 Downloads

Abstract

In recent years, orthogonal frequency-division multiplexing (OFDM) synthetic aperture radar (SAR) imaging has been introduced and an inter-range-cell interference (IRCI) free OFDM SAR has also been proposed. In this paper, we use this idea and propose an IRCI free cyclic prefix (CP)-based OFDM inverse synthetic aperture radar (ISAR) imaging which provides a high range resolution ISAR image. However, in order to use this algorithm, the motion parameters of target should be determined. Thus, before applying the algorithm, the motion parameters are estimated through proposing an iterative entropy-based method (IEBM). The proposed imaging algorithm and the IEBM are verified by simulations for CP-based OFDM ISAR.

Keywords

Orthogonal frequency-division multiplexing (OFDM) Inverse synthetic aperture radar (ISAR) imaging Autofocusing Autofocus 

References

  1. Franken GEA, Nikookar H, van Genderen P (2006) Doppler tolerance of OFDM-coded radar signals. In: Proc. 3rd EuRAD Conf. Manchester, pp 108111Google Scholar
  2. Garmatyuk D, Schuerger J (2008) Conceptual design of a dual-use radar/communication system based on OFDM. In: Proc. IEEE MILCOM Conf. San Diego, p 17Google Scholar
  3. Garmatyuk D, Schuerger J, Kauffman K, Spalding S (2009) Wideband OFDM system for radar and communications. In: Proc. IEEE Radar Conf. Pasadena, p 16Google Scholar
  4. Sturm C, Pancera E, Zwick T, Wiesbeck W (2009) A novel approach to OFDM radar processing. In: Proc. IEEE Radar Conf. Pasadena, p 14Google Scholar
  5. Sit YL, Sturm C, Reichardt L, Zwick T, Wiesbeck W (2011) The OFDM joint radar-communication system: An overview. In: Proc. 3rd Int. Conf. SPACOMM. Budapest, pp 6974Google Scholar
  6. Sturm C, Wiesbeck W (2011) Waveform design and signal processing aspects for fusion of wireless communications and radar sensing. Proc IEEE 99(7):1236–1259CrossRefGoogle Scholar
  7. Riche V, Meric S, Baudais J, Pottier E (2012) Optimization of OFDM SAR signals for range ambiguity suppression. In: Proc. 9th EuRAD. Amsterdam, pp 278–281Google Scholar
  8. Riche V, Meric S, Pottier E, Baudais J-Y (2012) OFDM signal design for range ambiguity suppression in SAR configuration. In: Proc. IEEE Int. IGARSS. Munich, p 2156–2159Google Scholar
  9. Riche V, Meric S, Baudais J-Y, Pottier E (2014) Investigations on OFDM signal for range ambiguity suppression in SAR configuration. IEEE Trans Geosci Remote Sens 52(7):41944197CrossRefGoogle Scholar
  10. Kim J-H, Younis M, Moreira A, Wiesbeck W (2013) A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR. IEEE Geosci Remote Sens Lett 10(3):568572CrossRefGoogle Scholar
  11. Garmatyuk D (2006) Simulated imaging performance of UWB SAR based on OFDM. In: Proc. IEEE Int. Conf. Ultra-Wideband. Waltham, pp 237–242Google Scholar
  12. Garmatyuk D, Brenneman M (2011) Adaptive multicarrier OFDM SAR signal processing. IEEE Trans Geosci Remote Sens 49(10):37803790CrossRefGoogle Scholar
  13. Garmatyuk D (2012) Cross-range SAR reconstruction with multicarrier OFDM signals. IEEE Geosci Remote Sens Lett 9(5):808812CrossRefGoogle Scholar
  14. Berger C, Demissie B, Heckenbach J, Willett P, Zhou S (2010) Signal processing for passive radar using OFDM waveforms. IEEE J Sel Topics Signal Process 4(1):226238CrossRefGoogle Scholar
  15. Colone F, Woodbridge K, Guo H, Mason D, Baker C (2011) Ambiguity function analysis of wireless LAN transmissions for passive radar. IEEE Trans Aerosp Electron Syst 47(1):240264CrossRefGoogle Scholar
  16. Gutierrez Del Arroyo JR, Jackson JA (2013) WiMAX OFDM for passive SAR ground imaging. IEEE Trans Aerosp Electron Syst 49(2):945959CrossRefGoogle Scholar
  17. Falcone P, Colone F, Bongioanni C, Lombardo P (2010) Experimental results for OFDM WiFi-based passive bistatic radar. In: Proc. IEEE Radar Conf. Washington, DC, pp 516–521Google Scholar
  18. Colone F, Falcone P, Lombardo P (2010) Ambiguity function analysis of WiMAX transmissions for passive radar. In: Proc. IEEE Radar Conf. Washington, DC, p 689–694Google Scholar
  19. Chetty K, Woodbridge K, Guo H, Smith G (2010) Passive bistatic WiMAX radar for marine surveillance. In: Proc. IEEE Radar Conf. Washington, DC, p 188–193Google Scholar
  20. Zhang T, Xia X-G (2015) OFDM synthetic aperture radar imaging with sufficient cyclic prefix. IEEE Trans Geosci Remote Sens 53(1):394404MathSciNetGoogle Scholar
  21. Xia X-G, Zhang T, Kong L (2014) MIMO OFDM radar IRCI free range reconstruction with sufficient cyclic prefix. arXiv:1405.3899v2 [Unpublished (Online)]
  22. Cao Y, Xia X-G, Wang S (2014) IRCI free co-located MIMO radar based on sufficient cyclic prefix OFDM waveforms. arXiv:1406.1488 [Unpublished (Online)]
  23. Cao Y, Xia X-G (2015) IRCI free MIMO-OFDM SAR using circularly shifted Zadoff-Chu sequences. IEEE Geosci Remote Sens Lett 12(5):11261130Google Scholar
  24. Chen VC, Martorella M (2014) Inverse synthetic aperture radar imaging: principles, algorithms and applications. SciTech Publishing, EdisonCrossRefGoogle Scholar
  25. Martorella M, Berizzi F, Haywood B (2005) A contrast maximization based technique for 2D ISAR autofocusing. In: Proc. Inst. Elect. Eng. Radar, Sonar Navig., vol 152, no 4, pp 253–262Google Scholar
  26. Ozdemir C (2012) Inverse synthetic aperture radar imaging with MATLAB algorithms. Wiley, New YorkCrossRefGoogle Scholar
  27. Skolnik MI (2001) Introduction to radar systems. McGraw-Hill, New YorkGoogle Scholar
  28. Gray RM (2006) Toeplitz and circulant matrices: a review. Found Trends® Commun Inf Theory 2(3):155–239.Google Scholar
  29. Haywood B, Evans RJ (1989) Motion compensation for ISAR imaging. In: Proc. ASSPA, vol 89. Adelaide, pp 113–117Google Scholar
  30. Wahl DE, Eichel PH, Ghiglia DC, Jakowatz CV Jr (1994) Phase gradient autofocus-a robust tool for high resolution SAR phase correction. IEE Trans Aerosp Electron Syst 30(3):827835CrossRefGoogle Scholar
  31. Li X, Liu G, Ni J (1999) Autofocusing of ISAR images based on entropy minimization. IEEE Trans Aerosp Electron Syst 35(4):1240–1251CrossRefGoogle Scholar
  32. Wang J, Liu X, Zhou Z (2004) Minimum-entropy phase adjustment for ISAR. IEE Proc Radar Sonar Navig 151(4):203–209CrossRefGoogle Scholar
  33. Berizzi F, Martorella M, Haywood B, Dalle Mese E, Bruscoli S (2004) A survey on ISAR autofocusing techniques. In: Proceedings of the International Conference on Image Processing (ICIP), vol 1, p 912Google Scholar
  34. Chen CC, Andrews HC (1980) Target-motion-induced radar imaging. IEEE Trans Aerosp Electron Syst 16(1):214Google Scholar
  35. Sauer T, Schroth A (1995) Robust range alignment algorithm via Hough transforms in an ISAR imaging system. IEEE Trans Aerosp Electron Syst 31(3):1173–1177CrossRefGoogle Scholar
  36. Wang J, Kasilingam D (2003) Global range alignment for ISAR. IEEE Trans Aerosp Electron Syst 39(1):351–357CrossRefGoogle Scholar
  37. Zhu D, Wang L, Yu Y, Tao Q, Zhu Z (2009) Robust ISAR range alignment via minimizing the entropy of the average range profile. IEEE Geosci Remote Sens Lett 6(2):204–208CrossRefGoogle Scholar
  38. Stoica P, Selen Y (2004) Cyclic minimizers, majorization techniques, the expectation-maximization algorithm: a refresher. IEEE Signal Process Mag 21(1):112114CrossRefGoogle Scholar
  39. Press WH et al (1987) Numerical recipes: the art of scientific computing. Cambridge University Press, New York, pp 120–122Google Scholar
  40. Zhang S, Liu Y, Li X (2015) Fast entropy minimization based autofocusing technique for ISAR imaging. IEEE Trans Signal Process 63(13):34253434MathSciNetCrossRefGoogle Scholar

Copyright information

© Shiraz University 2018

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringShiraz UniversityShirazIslamic Republic of Iran

Personalised recommendations