Performance and Aeroacoustic Noise Prediction for an Array of Small-Scale Vertical Axis Wind Turbines

Abstract

Small-scale vertical axis wind turbines are good candidates for urban area use where, due to various obstacles, the airflow is turbulent. In urban areas, air velocity is mostly low and site specific, so just in a few places, like tall buildings, there are suitable airflow situation in order to use turbine, so it is a good idea to install more than one turbine in such locations. On the other hand, acoustic noise that is emitted from turbines may bother people living in that area. In the current study, power performance of small-scale vertical axis wind turbines in a V-form array configuration is investigated using detached eddy simulation method. Also, Ffowcs Williams and Hawkings acoustic analogy formulation is conducted in order to predict the noise radiation level of turbines. Results showed that power performance of most of the turbines increased due to venturi effect that is made by low speed regions behind turbines. Acoustic noise analysis showed that there is a strong enhancement in sound pressure level in receivers compared with the isolated turbine.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Ahmadi-Baloutaki M, Carriveau R, Ting DS (2016) A wind tunnel study on the aerodynamic interaction of vertical axis wind turbines in array configurations. Renew Energy 96:904–913

    Article  Google Scholar 

  2. Bastankhah M, Porté-Agel F (2017) A new miniature wind turbine for wind tunnel experiments. Part II: wake structure and flow dynamics. Energies 10(7):923

    Article  Google Scholar 

  3. Belkacem B, Paraschivoiu M (2016) CFD analysis of a finite linear array of Savonius wind turbines. J Phys 753(10):102008

    Google Scholar 

  4. Benim AC, Diederich M, Gül F, Oclon P, Taler J (2018) Computational and experimental investigation of the aerodynamics and aeroacoustics of a small wind turbine with quasi-3D optimization. Energy Convers. Manag. 177:143–149

    Article  Google Scholar 

  5. Berglund B, Lindvall T, Schwela DH (1995) Guidelines for community noise. World Health Organization, Geneva

    Google Scholar 

  6. Betz A (2014) Introduction to the theory of flow machines. Elsevier, Amsterdam

    Google Scholar 

  7. Bremseth J, Duraisamy K (2016) Computational analysis of vertical axis wind turbine arrays. Theor Comput Fluid Dyn 30(5):387–401

    Article  Google Scholar 

  8. Brownstein ID, Kinzel M, Dabiri JO (2016) Performance enhancement of downstream vertical-axis wind turbines. J Renew Sustain Energy 8(5):053306

    Article  Google Scholar 

  9. Chamorro LP, Porté-Agel F (2009) A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects. Bound Layer Meteorol 132(1):129–149

    Article  Google Scholar 

  10. Curle N (1955) The influence of solid boundaries upon aerodynamic sound. Proc R Soc 231:505–514

    MathSciNet  MATH  Google Scholar 

  11. Dabiri JO (2011) Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays. J Renew Sustain Energy 3(4):043104

    Article  Google Scholar 

  12. Di Francescantonio P (1997) A new boundary integral formulation for the prediction of sound radiation. J. Sound Vib. 202(4):491–509

    Article  Google Scholar 

  13. Duraisamy K, Lakshminarayan V (2014) Flow physics and performance of vertical axis wind turbine arrays. AIAA paper, 3139

  14. EWEA (2009) Wind energy-the facts: a guide to the technology, economics, and future of wind power. Earth Scan Press, p 32

  15. Ghasemian M, Nejat A (2015) Aero-acoustics prediction of a vertical axis wind turbine using Large Eddy Simulation and acoustic analogy. Energy 88:711–717

    Article  Google Scholar 

  16. Howell R, Qin N, Edwards J, Durrani N (2010) Wind tunnel and numerical study of a small vertical axis wind turbine. Renew Energy 35(2):412–422

    Article  Google Scholar 

  17. Jimenez A, Crespo A, Migoya E, Garcia J (2008) Large-eddy simulation of spectral coherence in a wind turbine wake. Environ Res Lett 3(1):015004

    Article  Google Scholar 

  18. Jiménez Á, Crespo A, Migoya E (2010) Application of a LES technique to characterize the wake deflection of a wind turbine in yaw. Wind Energy 13(6):559–572

    Article  Google Scholar 

  19. Kinzel M, Mulligan Q, Dabiri JO (2012) Energy exchange in an array of vertical-axis wind turbines. J. Turbul. 13(1):N38

    Article  Google Scholar 

  20. Kinzel M, Araya DB, Dabiri JO (2015) Turbulence in vertical axis wind turbine canopies. Phys. Fluids 27(11):115102

    Article  Google Scholar 

  21. Lindblad D, Jareteg A, Petit O (2014) Implementation and run-time mesh refinement for the k–ω SST DES turbulence model when applied to airfoils. Chalmers University of Technology, Göteborg

    Google Scholar 

  22. Maizi M, Mohamed MH, Dizene R, Mihoubi MC (2018) Noise reduction of a horizontal wind turbine using different blade shapes. Renew Energy 117:242–256

    Article  Google Scholar 

  23. Mereu R, Federici D, Ferrari G, Schito P, Inzoli F (2017) Parametric numerical study of Savonius wind turbine interaction in a linear array. Renew Energy 113:1320–1332

    Article  Google Scholar 

  24. Mo JO, Choudhry A, Arjomandi M, Lee YH (2013) Large eddy simulation of the wind turbine wake characteristics in the numerical wind tunnel model. J. Wind Eng. Ind. Aerodyn. 112:11–24

    Article  Google Scholar 

  25. Mohamed MH (2014) Aero-acoustics noise evaluation of H-rotor Darrieus wind turbines. Energy 65:596–604

    Article  Google Scholar 

  26. Mohamed MH (2016) Reduction of the generated aero-acoustics noise of a vertical axis wind turbine using CFD (computational fluid dynamics) techniques. Energy 96:531–544

    Article  Google Scholar 

  27. Mukinović M, Brenner G, Rahimi A (2010) Analysis of vertical axis wind turbines. New Results Numer Exp Fluid Mech VII:587–594

    MATH  Google Scholar 

  28. Peng HY, Lam HF (2017) A study of twin co- and counter-rotating vertical axis wind turbines with computational fluid dynamics. In: The 16th world wind energy conference

  29. Sawyer S, Fried l, Shukla SH, Liming Q (2018) Global wind report 2018—annual market update

  30. Shamsoddin S, Porté-Agel F (2016) A large-eddy simulation study of vertical axis wind turbine wakes in the atmospheric boundary layer. Energies 9(5):366

    Article  Google Scholar 

  31. Sharma V, Cortina G, Margairaz F, Parlange MB, Calaf M (2018) Evolution of flow characteristics through finite-sized wind farms and influence of turbine arrangement. Renew Energy 115:1196–1208

    Article  Google Scholar 

  32. Stevens RJ, Gayme DF, Meneveau C (2014) Large eddy simulation studies of the effects of alignment and wind farm length. J Renew Sustain Energy 6(2):023105

    Article  Google Scholar 

  33. Storey RC, Norris SE, Stol KA, Cater JE (2013) large eddy simulation of dynamically controlled wind turbines in an offshore environment. Wind Energy 16(6):845–864

    Article  Google Scholar 

  34. Takao M, Kuma H, Maeda T, Kamada Y, Oki M, Minoda A (2009) A straight-bladed vertical axis wind turbine with a directed guide vane row-Effect of guide vane geometry on the performance. J. Therm. Sci. 18(1):54–57

    Article  Google Scholar 

  35. Veisi AA, Mayam MHS (2017) Effects of blade rotation direction in the wake region of two in-line turbines using large eddy simulation. Appl. Energy 197:375–392

    Article  Google Scholar 

  36. Vogt RJ, Crum T, Reed JR, Ray CA, Chrisman J, Palmer R, Isom B, Burgess D, Paese M (2007) Weather radars and wind farms–working together for mutual benefit. WINDPOWER (preprints)

  37. Wang C, Prinn RG (2010) Potential climatic impacts and reliability of very large-scale wind farms. Atmos. Chem. Phys. 10(4):2053–2061

    Article  Google Scholar 

  38. Wasala SH, Storey RC, Norris SE, Cater JE (2015) Aeroacoustic noise prediction for wind turbines using large eddy simulation. J. Wind Eng. Ind. Aerodyn. 145:17–29

    Article  Google Scholar 

  39. Wekesa DW, Wang C, Wei Y, Zhu W (2016) Experimental and numerical study of turbulence effect on aerodynamic performance of a small-scale vertical axis wind turbine. J. Wind Eng. Ind. Aerodyn. 157:1–4

    Article  Google Scholar 

  40. Whittlesey RW, Liska S, Dabiri JO (2010) Fish schooling as a basis for vertical axis wind turbine farm design. Bioinspir Biomim 5(3):035005

    Article  Google Scholar 

  41. Wu YT, Porté-Agel F (2011) Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations. Bound Layer Meteorol 138(3):345–366

    Article  Google Scholar 

  42. Wu YT, Porté-Agel F (2013) Simulation of turbulent flow inside and above wind farms: model validation and layout effects. Bound Layer Meteorol 146:1–25

    Article  Google Scholar 

  43. Xie S, Archer CL, Ghaisas N, Meneveau C (2017) Benefits of collocating vertical-axis and horizontal-axis wind turbines in large wind farms. Wind Energy 20(1):45–62

    Article  Google Scholar 

  44. Zanforlin S, Nishino T (2016) Fluid dynamic mechanisms of enhanced power generation by closely spaced vertical axis wind turbines. Renewable Energy 99:1213–1226

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Reza Kamali.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamani, O., Kamali, R. Performance and Aeroacoustic Noise Prediction for an Array of Small-Scale Vertical Axis Wind Turbines. Iran J Sci Technol Trans Mech Eng 45, 229–243 (2021). https://doi.org/10.1007/s40997-020-00385-2

Download citation

Keywords

  • Detached eddy simulation
  • V-form array configuration
  • Wind turbine noise
  • H-Darus rotor