Effect of Burner Geometry on Heat Transfer Characteristics of an Impinging Inverse Diffusion Flame Jet with Swirl

Abstract

An experimental investigation is carried out on an inverse diffusion flame (IDF) burners having central air jet and being surrounded by fuel jets for an impingement heat transfer. A thorough investigation has been performed to study the effects of the diameter of air jet, orientation of fuel jets and swirl in the central air jet on an inverse diffusion flame shapes, mainly on heat transfer characteristics. The twisted tapes of twist ratios (TR) 2.5 and 3.75 (corresponding to the swirl numbers of 0.62 and 0.41) are used for two different IDF burners to create a swirling flame jet. A comparison is made between the two IDF burners for with and without swirl conditions operating at a fixed air jet Reynolds number (Rea) of 2000 and equivalence ratio (ϕ) varying from 0.4 to 1.4 for a fixed burner surface to impingement plate distance of 20 mm. It is observed that for the same operating conditions, diameter of an air jet and orientation of fuel jets impart a substantial change in an inverse diffusion flame behavior by enhancing air–fuel mixing intensity. The experimental results show that the burner with smaller air jet diameter along with swirl produces a higher heat transfer rate to an impingement plate. An experimental work provides a contribution to improve a combustion characteristic of IDF for impingement heating on a flat surface.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

Rea :

Reynolds number of air jet

m a :

Mass flow rate of air (kg/s)

d :

Diameter of air jet (m)

k :

Thermal conductivity (W/m k)

q″:

Heat flux (W/m2)

t :

Time (s)

T :

Temperature (K)

Z :

Quartz plate thickness (mm)

p :

Twisted tape pitch (mm)

w :

Width of twisted tape

S :

Swirl number

N :

Total number of pixels

stoic:

Stoichiometric

act:

Actual

i:

Initial

–:

Average

a:

Analytical

exp:

Experimental

r:

Relative

α :

Thermal diffusivity (m2/s)

ϕ :

Equivalence ratio

µ :

Absolute viscosity of air (Pa s)

A:

Air

F:

Fuel

RSS:

Root sum of squares

IDFs:

Inverse diffusion flames

IDFB1:

Inverse diffusion flame burner 1

IDFB2:

Inverse diffusion flame burner 2

H :

Distance between burner surface and target plate

TR:

Twist ratio

V :

Velocity

References

  1. Badiger S, Anil TR, Hindasageri V, Katti VV (2020) Heat transfer characteristics of an inverse diffusion flame with induced swirl. J Braz Soc Mech Sci Eng 42:252. https://doi.org/10.1007/s40430-020-02330-5

    Article  Google Scholar 

  2. Chen ZX, Langella I, Barlow RS, Swaminathan N (2020) Prediction of local extinction in pilot jet flames with inhomogeneous inlets using unstrained flamelets. Combust Flame 212:415–432. https://doi.org/10.1016/j.combustflame.2019.11.007

    Article  Google Scholar 

  3. Chinnici A, Mathan GJ, Dally BB (2020) Experimental and numerical study of the influence of syngas composition on the performance and stability-scale MILD combustor. Exp Therm Fluid Sci 115:110083. https://doi.org/10.1016/j.expthermflusci.2020.110083

    Article  Google Scholar 

  4. Choy YS, Zhen HS, Leung CW, Li HB (2012) Pollutant emission and noise radiation from open and impinging inverse diffusion flames. Appl Energy 91:82–89. https://doi.org/10.1016/j.apenergy.2011.09.013

    Article  Google Scholar 

  5. Dong LL, Cheung CS, Leung CW (2011) Combustion optimization of a port array inverse diffusion flame jet. Energy 36:2834–2846. https://doi.org/10.1016/j.energy.2011.02.025

    Article  Google Scholar 

  6. Dong LL, Cheung CS, Leung CW (2013a) Characterization of impinging region from an impinging inverse diffusion flame jet. Int J Heat Mass Transf 56:360–369. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.064

    Article  Google Scholar 

  7. Dong LL, Cheung CS, Leung CW (2013b) Heat transfer optimization of an impinging port-array inverse diffusion flame jet. Energy 49:182–192. https://doi.org/10.1016/j.energy.2012.10.041

    Article  Google Scholar 

  8. Elbaz AM, Roberts WL (2014a) Flame structure of methane inverse diffusion flame. Exp Therm Fluid Sci 56:23–32. https://doi.org/10.1016/j.expthermflusci.2013.11.011

    Article  Google Scholar 

  9. Elbaz AM, Roberts WL (2014b) Experimental characterization of methane inverse diffusion flame. Combust Sci Technol 186:1249–1272. https://doi.org/10.1080/00102202.2014.920835

    Article  Google Scholar 

  10. Elbaz AM, Roberts WL (2016) Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV. Fuel 165:447–461. https://doi.org/10.1016/j.fuel.2015.10.096

    Article  Google Scholar 

  11. Elbaz AM, Roberts WL (2020) Stability and structure of inverse swirl diffusion flames with weak to strong swirl. Exp Therm Fluid Sci 112:109989. https://doi.org/10.1016/j.expthermflusci.2019.109989

    Article  Google Scholar 

  12. Gupta AK, Lilley DG, Syred N (1984) Swirl flow. Abacus Press, Great Britain

    Google Scholar 

  13. Hindasageri V, Vedula RP, Prabhu SV (2015a) Heat transfer distribution of swirling flame jet impinging on a flat plate using twisted tapes. Int J Heat Mass Transf 91:1128–1139. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.038

    Article  Google Scholar 

  14. Hindasageri V, Vedula RP, Prabhu SV (2015b) Heat transfer distribution for three interacting methane–air premixed impinging flame jets. Int J Heat Mass Transf 88:914–925. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.098

    Article  Google Scholar 

  15. Hindasageri V, Kuntikana P, Vedula RP, Prabhu SV (2015c) An experimental and numerical investigation of heat transfer distribution of perforated plate burner flames impinging on a flat plate. Int J Therm Sci 94:156–169. https://doi.org/10.1016/j.ijthermalsci.2015.02.021

    Article  Google Scholar 

  16. Huang XQ, Leung CW, Chan CK, Probert SD (2006) Thermal characteristics of a premixed impinging circular laminar-flame jet with induced swirl. Appl Energy 83:401–411. https://doi.org/10.1016/j.apenergy.2005.04.001

    Article  Google Scholar 

  17. Kamali R, Mousavi SM, Binesh AR, Abolfazli-Esfahani J (2016) Large eddy simulation of the flameless oxidation in the IFRF furnace with varying inlet conditions. Int J Spray Comb Dyn 9:102–115. https://doi.org/10.1177/1756827716653850

    Article  Google Scholar 

  18. Kotb A, Saad H (2016) A comparison of the thermal and emission characteristics of co and counter swirl inverse diffusion flames. Int J Therm Sci 109:362–373. https://doi.org/10.1016/j.ijthermalsci.2016.06.015

    Article  Google Scholar 

  19. Kuntikana P, Prabhu SV (2017) Effect of mixture composition on heat transfer characteristics of impinging methane-air flame jets of tube burner equipped with twisted tapes. Int J Therm Sci 111:409–422. https://doi.org/10.1016/j.ijthermalsci.2016.09.024

    Article  Google Scholar 

  20. Mahesh S, Mishra DP (2010) Flame structure of LPG-air inverse diffusion flame in a backstep burner. Fuel 89:2145–2148. https://doi.org/10.1016/j.fuel.2010.01.030

    Article  Google Scholar 

  21. Miao J, Leung CW, Cheung CS, Huang ZH, Zhen HS (2016) Effect of hydrogen addition on overall pollutant emissions of inverse diffusion flame. Energy 104:284–294. https://doi.org/10.1016/j.energy.2016.03.114

    Article  Google Scholar 

  22. Mikofski MA, Williams TC, Shaddix CR, Belvins LG (2006) Flame height measurement of laminar inverse diffusion flames. Combust Flame 146:63–72. https://doi.org/10.1016/j.combustflame.2006.04.006

    Article  Google Scholar 

  23. Moffat RJ (1985) Using uncertainty analysis in the planning of an experiment. Trans ASME J Fluids Eng 107:173–178

    Article  Google Scholar 

  24. Mousavi SM, Abolfazli- Esfahani J (2014) Numerical investigation of the flameless oxidation of natural gas in the IFRF furnace using large eddy simulation. Int J Spray Combust Dyn 6:387–410. https://doi.org/10.1260/1756-8277.6.4.387

    Article  Google Scholar 

  25. Mousavi SM, Abolfazli-Esfahani J, Yazdi-Mamaghani M (2014) Numerical study of entropy generation in the flameless oxidation using large eddy simulation model and OpenFOAM software. Int J Thermodyn 17:202–208. https://doi.org/10.5541/ijot.530

    Article  Google Scholar 

  26. Mousavi SM, Kamali R, Sotoudeh F, Pourabidi R, Karimi N, In-Seuck J (2019) A comprehensive investigation of acoustic power level in a moderate or intense low oxygen dilution in a jet-in-hot-coflow under various working conditions. Aerosp Sci Technol 93:105339. https://doi.org/10.1016/j.ast.2019.105339

    Article  Google Scholar 

  27. Patel V, Shah R (2018) Experimental investigation on flame appearance and emission characteristics of LPG inverse diffusion flame with swirl. Appl Therm Eng 137:377–385. https://doi.org/10.1016/j.applthermaleng.2018.03.105

    Article  Google Scholar 

  28. Si J, Wang G, Li P, Mi J (2020) Optimization of global reaction mechanism for MILD combustion of methane using artificial neural network (ANN). Energy Fuels 34:3805–3815. https://doi.org/10.1021/acs.energyfuels.9b04413

    Article  Google Scholar 

  29. Suresh Kumar S, Hindasageri V, Parabhu SV (2017) Local heat transfer distribution on a flat plate impinged by a swirling jet generated by a twisted tape. Int J Therm Sci 111:351–368. https://doi.org/10.1016/j.ijthermalsci.2016.09.009

    Article  Google Scholar 

  30. Sze LK, Cheung CS, Leung CW (2004) Temperature distribution and heat transfer characteristics of an inverse diffusion flame with circumferentially arranged fuel ports. Int J Heat Mass Transf 47:3119–3129. https://doi.org/10.1016/j.ijheatmasstransfer.2004.02.015

    Article  Google Scholar 

  31. Sze LK, Cheung CS, Leung CW (2006) Appearance, temperature, and NOx emission of two inverse diffusion flames with different port design. Combust Flame 144:237–248. https://doi.org/10.1016/j.combustflame.2005.07.008

    Article  Google Scholar 

  32. Taamallah S, Dagan Y, Chakroun N, Shanbhogue SJ, Vogiatzaki K, Ghoniem AF (2019) Helical vortex core dynamics and flame interaction in turbulent premixed swirl combustion: a combined experimental and large eddy simulation investigation. Phys Fluids 31:025108. https://doi.org/10.1063/1.5065508

    Article  Google Scholar 

  33. Wang L-Y, Chatterjee S, An Q, Steinberg AM, Gulder OL (2019) Soot formation and flame structure in swirl-stabilized turbulent non-premixed methane combustion. Combust Flame 209:303–312. https://doi.org/10.1016/j.combustflame.2019.07.033

    Article  Google Scholar 

  34. Zhao Z, Yuen DW, Leung CW, Wong TT (2009) Thermal performance of a premixed impinging flame jet array with induced-swirl. Appl Therm Eng 29:159–166. https://doi.org/10.1016/j.applthermaleng.2008.02.016

    Article  Google Scholar 

  35. Zhen HS, Leung CW, Cheung CS (2010) Thermal and emission characteristics of a turbulent swirling inverse diffusion flame. Int J Heat Mass Transf 53:902–909. https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.034

    Article  Google Scholar 

  36. Zhen HS, Choy YS, Leung CW, Cheung CS (2011a) Effect of nozzle length on flame and emission behaviors of multi-fuel-jet inverse diffusion flame burner. Appl Energy 88:2917–2924. https://doi.org/10.1016/j.apenergy.2011.02.040

    Article  Google Scholar 

  37. Zhen HS, Leung CW, Cheung CS (2011b) Emission of impinging swirling and non-swirling inverse diffusion flames. Appl Energy 88:1629–1634. https://doi.org/10.1016/j.apenergy.2010.11.036

    Article  Google Scholar 

  38. Zhen HS, Leung CW, Cheung CS (2011c) A comparison of the thermal, emission and heat transfer characteristics of swirl-stabilized premixed and inverse diffusion flames. Energy Convers Manag 52:1263–1271. https://doi.org/10.1016/j.enconman.2010.09.023

    Article  Google Scholar 

  39. Zhen HS, Cheung CS, Leung CW, Li HB (2013) Thermal and heat transfer behaviors of an inverse diffusion flame with induced swirl. Fuel 103:212–219. https://doi.org/10.1016/j.fuel.2012.05.026

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shankar Badiger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Badiger, S., Katti, V.V., Hindasageri, V. et al. Effect of Burner Geometry on Heat Transfer Characteristics of an Impinging Inverse Diffusion Flame Jet with Swirl. Iran J Sci Technol Trans Mech Eng 45, 215–228 (2021). https://doi.org/10.1007/s40997-020-00380-7

Download citation

Keywords

  • Inverse diffusion swirling flame
  • Twisted tapes
  • Burner geometry
  • Infrared thermography
  • Heat flux distribution