Heat Transfer Enhancement in a Double Pipe Heat Exchanger Using Different Fin Geometries in Turbulent Flow


Heat transfer enhancement is widely used for improving heat exchanger performance in industrial processes. This is accomplished by increasing the surface area of the heat exchange surface by using fins or inserts of different geometries. The present work is an experimental study of heat transfer when using different fin geometries for the heat exchange surface in a double pipe heat exchanger. The fin geometries included interrupted rectangular fins, circular fins and helical ribs. The heat transfer coefficient and pressure drop were experimentally determined for a range of Reynolds numbers of hot and cold fluids. The results showed that extending the surface using different fin geometries enhanced the heat transfer coefficient, but was dependent on the Reynolds number of both fluids. The maximum heat transfer enhancement was obtained for a rectangular fin and the minimum was for a circular fin. In the case of the finned tubes, the lowest pressure drop was observed for the circular fin and highest for the rectangular fin.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


p :

Pressure drop (N/m2)

A :

Area (m2)

C p :

Specific heat (J/kg K)

D :

Diameter (m)

f :

Friction factor

L :

Length (m)

m :

Mass flow rate (kg/s)

N :

Number of measurements

Q :

Heat transfer rate (W)


Reynolds number

s :

Standard deviation

T :

Temperature (K)

u :

Velocity (m/s)

U o :

Overall heat transfer coefficient based on outside area (W/m2 K)

x av :

Average value

x i :

Parameter’s value







ρ :

Density (kg/m3)






  1. Ali IM, Mussa MA, Mustafa MM (2017) Experimental investigation of forced convection heat transfer in open cell copper fins. Al-Nahrain J Eng Sci (NJES) 20(1):272–280

    Google Scholar 

  2. Blasius H (1913) Mitt, Forchungsarbeit Surbocit. VDZ 131:1

    Google Scholar 

  3. Chen JJJ (1985) A single correlation for mass (heat) transfer in turbulent smooth and rough tube flow. Int Commun Heat Mass Transf 12:219

    Article  Google Scholar 

  4. Drew TB, Koo EC, McAdams WH (1932) The friction factors for clean round pipes. Trans AIChE, pp 28–56

  5. Duan L, Ling X, Peng H (2018) Flow and heat transfer characteristics of a double-tube structure internal finned tube with blossom shape internal fins. Appl Therm Eng 128:1102–1115

    Article  Google Scholar 

  6. Gorman JM, Krautbauer KR, Sparrow EM (2016) Thermal and fluid flow first-principles numerical design of an enhanced double pipe heat exchanger. Appl Therm Eng 107:194–206

    Article  Google Scholar 

  7. Hasan BO (2003) Heat, mass, and momentum analogies to estimate corrosion rates under turbulent flow conditions. Ph.D., Thesis Department of Chemical Engineering, University of AL-Nahrain, Iraq

  8. Hasan BO (2007) Turbulent Prandtl number and its use in prediction of heat transfer coefficient. Coll Eng J (NUCEJ) Al-Nahrain Univ 10(1):53–64

    MathSciNet  Google Scholar 

  9. Hasan BO (2013) Heat transfer analysis in thermal entrance region under turbulent flow conditions. Asia Pac J Chem Eng 8:578–592

    Article  Google Scholar 

  10. Hasan BO, Nathan GJ, Ashman PJ, Craig RA, Kelso RM (2012) The use of turbulence generators to mitigate crystallization fouling under cross flow conditions. Desalination 288(1):108–117

    Article  Google Scholar 

  11. Hasan BO, Jwair EA, Craig RA (2017) The effect of heat transfer enhancement on the crystallization fouling in a double pipe heat exchanger. Exp Therm Fluid Sci 86:272–280

    Article  Google Scholar 

  12. Jayakumara JS, Mahajania SM, Mandala JC, Vijayanb PK, Bhoia R (2008) Experimental and CFD estimation of heat transfer in helically coiled heat exchangers. Chem Eng Res Des 86(3):221–232

    Article  Google Scholar 

  13. Ji T, Kim Y, Hyun JM (2007) Pressure drop and heat transfer correlations for triangular folded fin heat sinks. IEEE Trans Compon Packag Technol 30(1):3–8

    Article  Google Scholar 

  14. Knudsen JD, Katz DL (1958) Fluid dynamics and heat transfer. McGraw-Hill, New York

    Google Scholar 

  15. Majdi HS, Alabdly HA, Hasan BO, Hathal MM (2019) Oil fouling in double-pipe heat exchanger under liquid–liquid dispersion and the influence of copper oxide nanofluid. Heat Transf-Asian Res 48:1963–1981

    Article  Google Scholar 

  16. Majidi D, Alighardashi H, Farhadi F (2018) Experimental studies of heat transfer of air in a double-pipe helical heat exchanger. Appl Therm Eng 133:276–282

    Article  Google Scholar 

  17. Masliyah J, Nandakumar K (1976) Heat transfer in internally finned tubes. J Heat Transf 98(2):257–261

    Article  Google Scholar 

  18. Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1:3–17

    Article  Google Scholar 

  19. Moitsheki RJ (2011) Steady one-dimensional heat flow in a longitudinal triangular and parabolic fin. Commun Nonlinear Sci Numer Simul 16(10):3971–3980

    Article  Google Scholar 

  20. Monica JI, Bhatkar VW (2015) Optimization of longitudinal fin profile for double pipe heat exchanger. Int Res J Eng Technol 02(04):517–529

    Google Scholar 

  21. Naikel S, Probert SD, Wood CI (1987) Natural-convection characteristics of a horizontally-based vertical rectangular fin-array in the presence of a shroud. Appl Energy 28:295–319

    Article  Google Scholar 

  22. Nikurdse J (1932) VDI-Forschungsheft 356

  23. Omidi M, Farhadi M, Jafari M (2017) A comprehensive review on double pipe heat exchangers. Appl Therm Eng 110:1075–1090

    Article  Google Scholar 

  24. Sheikholeslami M, Jafaryar M, Li Z (2018) Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf 124:980–989

    Article  Google Scholar 

  25. Sheikholeslami M, Haq R, Shafee A, Li Z, Elaraki YG, Tlili I (2019) Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf 135:470–478

    Article  Google Scholar 

  26. Shewale OM, Mane PA, Gazge S, Hameed PP (2014) Experimental investigation of double pipe heat exchanger with Helical fins on the inner rotating tube. Int J Res Eng Technol 3(7):98–102

    Article  Google Scholar 

  27. Slaiman QJ, Abu-Khader MM, Hasan BO (2007) Prediction of heat transfer coefficient based on eddy diffusivity concept. Trans IChemE Part A Chem Eng Res Des 85(A4):455–464

    Article  Google Scholar 

  28. Syed KS, Ishaq M, Iqbal Z (2015) Numerical study of an innovative design of a finned double-pipe heat exchanger with variable fin-tip thickness. Energy Convers Manag 98(1):69–80

    Article  Google Scholar 

  29. Thirumarimurugan M, Kannadasan T, Ramasamy E (2008) Performance analysis of shell and tube heat exchanger using miscible system. Am J Appl Sci 5(5):548–552

    Article  Google Scholar 

  30. Worachest S (2013) Partially wet fin efficiency for the longitudinal fins of rectangular, triangular, concave parabolic, and convex parabolic profiles. J Frankl Inst 350(6):1424–1442

    Article  Google Scholar 

  31. Zhang L, Hongmei G, Jianhua W, Wenjuan D (2012) Compound heat transfer enhancement for shell side of double-pipe heat exchanger by helical fins and vortex generators. Heat Mass Transf 48(7):1113–1124

    Article  Google Scholar 

Download references


Sincere thanks to Dr. Richard A. Craig/Australia, for providing editorial services for this paper.

Author information



Corresponding author

Correspondence to Basim O. Hasan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohsen, O.A., Muhammed, M.A.R. & Hasan, B.O. Heat Transfer Enhancement in a Double Pipe Heat Exchanger Using Different Fin Geometries in Turbulent Flow. Iran J Sci Technol Trans Mech Eng (2020). https://doi.org/10.1007/s40997-020-00377-2

Download citation


  • Heat transfer
  • Fins
  • Turbulent flow
  • Double pipe
  • Pressure drop