Solidification of Cascaded PCM Storages Embedded Within a Channel Under Various Forced Air Flow Strategies

Abstract

In recent years, latent heat storage systems have been received considerable attention as they can provide high thermal storage capacity and optimize energy consumption. Cascaded phase change materials (PCMs) are a significant strategy to manage the gap between energy supply and demand, especially in renewable thermal energy applications. This work is devoted to investigate the unsteady freezing process of cascaded latent heat thermal energy storage systems inside a channel under different forced airflow strategies for winter conditions. Cold air flows through cascaded PCMs in five various ways and starts changing their initial liquid status to the final solid phase. Results discuss the heat transfer and phase transition features of each strategy in four various Reynolds numbers. Two-dimensional finite volume method is utilized to solve the governing equations of incompressible fluid flow in which conduction and convection mechanisms within PCM chambers are taken into account. According to numerical results, U-type and counter flow schemes lead to quick solidification in all Reynolds numbers, while in one-side channel strategy, the system takes a longer time to be completely solidified in all Reynolds numbers except Re = 300 in which parallel flow and middle inlets methods cause later freezing. The aspect ratio of PCM cavities and outlet temperature of the flowing air are also studied for various cases. Results demonstrated that the lower aspect ratio of the counter flow strategy could solidify the PCM faster and could remove the higher value of heat from cavities (higher outlet temperature).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14(2):615–628

    Article  Google Scholar 

  2. Al-Abidi AA, Mat S, Sopian K, Sulaiman MY, Mohammad AT (2013) Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins. Int J Heat Mass Transf 61:684–695

    Article  Google Scholar 

  3. Aydin D, Casey SP, Riffat S (2015) The latest advancements on thermochemical heat storage systems. Renew Sustain Energy Rev 41:356–367

    Article  Google Scholar 

  4. Bayon A, Liu M, Sergeev D, Grigore M, Bruno F, Müller M (2019) Novel solid–solid phase-change cascade systems for high-temperature thermal energy storage. Sol Energy 177:274–283

    Article  Google Scholar 

  5. Brousseau P, Lacroix M (1996) Study of the thermal performance of a multi-layer PCM storage unit. Energy Convers Manag 37(5):599–609

    Article  Google Scholar 

  6. Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19(3):291–312

    Article  Google Scholar 

  7. Cheng X, Zhai X (2018) Thermal performance analysis of a cascaded cold storage unit using multiple PCMs. Energy 143:448–457

    Article  Google Scholar 

  8. Chiu JN, Martin V (2013) Multistage latent heat cold thermal energy storage design analysis. Appl Energy 112:1438–1445

    Article  Google Scholar 

  9. Darzi AR, Farhadi M, Jourabian M (2013) Lattice Boltzmann simulation of heat transfer enhancement during melting by using nanoparticles. Iran J Sci Technol Trans Mech Eng 37(M1):23

    Google Scholar 

  10. Darzi AAR, Jourabian M, Farhadi M (2016) Melting and solidification of PCM enhanced by radial conductive fins and nanoparticles in cylindrical annulus. Energy Convers Manag 118:253–263

    Article  Google Scholar 

  11. Du Y, Ding Y (2016) Towards improving charge/discharge rate of latent heat thermal energy storage (LHTES) by embedding metal foams in phase change materials (PCMs). Chem Eng Process 108:181–188

    Article  Google Scholar 

  12. El Ganaoui M, Bontoux P, Morvan D (1999) Localisation d’un front de solidification en interaction avec un bain fondu instationnaire. Comptes Rendus de l’Académie des Sciences-Series IIB-Mechanics-Physics-Astronomy 327(1):41–48

    MATH  Article  Google Scholar 

  13. Erek A, İlken Z, Acar MA (2005) Experimental and numerical investigation of thermal energy storage with a finned tube. Int J Energy Res 29(4):283–301

    Article  Google Scholar 

  14. Esen M, Durmuş A, Durmuş A (1998) Geometric design of solar-aided latent heat store depending on various parameters and phase change materials. Sol Energy 62(1):19–28

    Article  Google Scholar 

  15. Farid MM, Kanzawa A (1989) Thermal performance of a heat storage module using PCM’s with different melting temperatures: mathematical modeling. J Sol Energy Eng 111(2):152–157

    Article  Google Scholar 

  16. Fernández AI, Barreneche C, Miró L, Brückner S, Cabeza LF (2014) Thermal energy storage (TES) systems using heat from waste. In: Cabeza LF (ed) Advances in thermal energy storage systems: methods and applications, 1st edn. Woodhead Publishing, Cambridge, pp 479–492

    Google Scholar 

  17. Gong ZX, Mujumdar AS (1997) Thermodynamic optimization of the thermal process in energy storage using multiple phase change materials. Appl Therm Eng 17(11):1067–1083

    Article  Google Scholar 

  18. Gopalan KS, Eswaran V (2016) Numerical investigation of thermal performance of PCM based heat sink using structured porous media as thermal conductivity enhancers. Int J Therm Sci 104:266–280

    Article  Google Scholar 

  19. Hamza H, Hanchi N, Abouelkhayrat B, Lahjomri J, Oubarra A (2016) Location and thickness effect of two phase change materials between layers of roof on energy consumption for air-conditioned room. J Therm Sci Eng Appl 8(2):021009

    Article  Google Scholar 

  20. Horbaniuc B, Dumitrascu G, Popescu A (1999) Mathematical models for the study of solidification within a longitudinally finned heat pipe latent heat thermal storage system. Energy Convers Manag 40(15–16):1765–1774

    Article  Google Scholar 

  21. Jourabian M, Farhadi M, Darzi AAR (2013) Convection-dominated melting of phase change material in partially heated cavity: lattice Boltzmann study. Heat Mass Transf 49(4):555–565

    Article  Google Scholar 

  22. Jourabian M, Farhadi M, Darzi AAR (2016) Heat transfer enhancement of PCM melting in 2D horizontal elliptical tube using metallic porous matrix. Theoret Comput Fluid Dyn 30(6):579–603

    Article  Google Scholar 

  23. Li YQ, He YL, Song HJ, Xu C, Wang WW (2013) Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials. Renew Energy 59:92–99

    Article  Google Scholar 

  24. Mahdi JM, Nsofor EC (2016) Solidification of a PCM with nanoparticles in triplex-tube thermal energy storage system. Appl Therm Eng 108:596–604

    Article  Google Scholar 

  25. Mazraeh AE, Babayan M, Yari M, Sefidan AM, Saha SC (2018) Theoretical study on the performance of a solar still system integrated with PCM-PV module for sustainable water and power generation. Desalination 443:184–197

    Article  Google Scholar 

  26. Michels H, Pitz-Paal R (2007) Cascaded latent heat storage for parabolic trough solar power plants. Sol Energy 81(6):829–837

    Article  Google Scholar 

  27. Mosaffa AH, Talati F, Tabrizi HB, Rosen MA (2012) Analytical modeling of PCM solidification in a shell and tube finned thermal storage for air conditioning systems. Energy Build 49:356–361

    Article  Google Scholar 

  28. Pasupathy A, Velraj R (2008) Effect of double layer phase change material in building roof for year round thermal management. Energy Build 40(3):193–203

    Article  Google Scholar 

  29. Peiró G, Gasia J, Miró L, Cabeza LF (2015) Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) versus single PCM configuration for thermal energy storage. Renew Energy 83:729–736

    Article  Google Scholar 

  30. Prasad JS, Muthukumar P, Anandalakshmi R, Niyas H (2018) Comparative study of phase change phenomenon in high temperature cascade latent heat energy storage system using conduction and conduction-convection models. Sol Energy 176:627–637

    Article  Google Scholar 

  31. Rathod MK, Banerjee J (2015) Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins. Appl Therm Eng 75:1084–1092

    Article  Google Scholar 

  32. Salomoni VA, Majorana CE, Giannuzzi GM, Miliozzi A, Di Maggio R, Girardi F, Mele D, Lucentini M (2014) Thermal storage of sensible heat using concrete modules in solar power plants. Sol Energy 103:303–315

    Article  Google Scholar 

  33. Seeniraj RV, Narasimhan NL (2008) Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs. Sol Energy 82(6):535–542

    Article  Google Scholar 

  34. Sefidan AM, Sojoudi A, Saha SC, Cholette M (2017a) Multi-layer PCM solidification in a finned triplex tube considering natural convection. Appl Therm Eng 123:901–916

    Article  Google Scholar 

  35. Sefidan AM, Taghilou M, Mohammadpour M, Sojoudi A (2017b) Effects of different parameters on the discharging of double-layer PCM through the porous channel. Appl Therm Eng 123:592–602

    Article  Google Scholar 

  36. Shaikh S, Lafdi K (2006) Effect of multiple phase change materials (PCMs) slab configurations on thermal energy storage. Energy Convers Manag 47(15):2103–2117

    Article  Google Scholar 

  37. Shamsi H, Boroushaki M, Geraei H (2017) Performance evaluation and optimization of encapsulated cascade PCM thermal storage. J Energy Storage 11:64–75

    Article  Google Scholar 

  38. Taghilou M, Talati F (2016) Numerical investigation on the natural convection effects in the melting process of PCM in a finned container using lattice Boltzmann method. Int J Refrig 70:157–170

    Article  Google Scholar 

  39. Taghilou M, Sefidan AM, Sojoudi A, Saha SC (2017) Solid–liquid phase change investigation through a double pipe heat exchanger dealing with time-dependent boundary conditions. Appl Therm Eng 128:725–736

    Article  Google Scholar 

  40. Talati F, Taghilou M (2015) Lattice Boltzmann application on the PCM solidification within a rectangular finned container. Appl Therm Eng 83:108–120

    Article  Google Scholar 

  41. Teamah HM, Lightstone MF, Cotton JS (2018) Potential of cascaded phase change materials in enhancing the performance of solar domestic hot water systems. Sol Energy 159:519–530

    Article  Google Scholar 

  42. Tehrani SSM, Shoraka Y, Nithyanandam K, Taylor RA (2018) Cyclic performance of cascaded and multi-layered solid-PCM shell-and-tube thermal energy storage systems: a case study of the 19.9 MW e Gemasolar CSP plant. Appl Energy 228:240–253

    Article  Google Scholar 

  43. Tessier MJ, Floros MC, Bouzidi L, Narine SS (2016) Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials. Energy 106:528–534

    Article  Google Scholar 

  44. Tian Y, Zhao CY (2013) A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy 104:538–553

    Article  Google Scholar 

  45. Wang J, Chen G, Zheng F (1999) Study on phase change temperature distributions of composite PCMs in thermal energy storage systems. Int J Energy Res 23(4):277–285

    Article  Google Scholar 

  46. Wang P, Yao H, Lan Z, Peng Z, Huang Y, Ding Y (2016) Numerical investigation of PCM melting process in sleeve tube with internal fins. Energy Convers Manag 110:428–435

    Article  Google Scholar 

  47. Wu M, Chao X, He Y (2016) Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules. Appl Therm Eng 93:1061–1073

    Article  Google Scholar 

  48. Xu HJ, Zhao CY (2015) Thermodynamic analysis and optimization of cascaded latent heat storage system for energy efficient utilization. Energy 90:1662–1673

    Article  Google Scholar 

  49. Xu HJ, Zhao CY (2016) Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model. Renew Energy 86:228–237

    Article  Google Scholar 

  50. Xu HJ, Zhao CY (2017a) Thermal performance of cascaded thermal storage with phase-change materials (PCMs). Part I: steady cases. Int J Heat Mass Transf 106:932–944

    Article  Google Scholar 

  51. Xu HJ, Zhao CY (2017b) Thermal performance of cascaded thermal storage with phase-change materials (PCMs). Part II: unsteady cases. Int J Heat Mass Transf 106:945–957

    Article  Google Scholar 

  52. Xu HJ, Zhao CY (2019) Analytical considerations on optimization of cascaded heat transfer process for thermal storage system with principles of thermodynamics. Renew Energy 132:826–845

    Article  Google Scholar 

  53. Yang L, Zhang X, Xu G (2014) Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points. Energy Build 68:639–646

    Article  Google Scholar 

  54. Yuan F, Li M-J, Ma Z, Jin B, Liu Z (2018) Experimental study on thermal performance of high-temperature molten salt cascaded latent heat thermal energy storage system. Int J Heat Mass Transf 118:997–1011

    Article  Google Scholar 

  55. Zhao B-c, Cheng M-s, Liu C, Dai Z-m (2016) Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants. Appl Energy 178:784–799

    Article  Google Scholar 

  56. Zhao Y, You Y, Liu HB, Zhao CY, Xu ZG (2018) Experimental study on the thermodynamic performance of cascaded latent heat storage in the heat charging process. Energy 157:690–706

    Article  Google Scholar 

  57. Zhou D, Zhao CY, Tian Y (2012) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy 92:593–605

    Article  Google Scholar 

  58. Zivkovic B, Fujii I (2001) An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers. Sol Energy 70(1):51–61

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Atta Sojoudi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sojoudi, A., Mohammadpour, M., Sefidan, A.M. et al. Solidification of Cascaded PCM Storages Embedded Within a Channel Under Various Forced Air Flow Strategies. Iran J Sci Technol Trans Mech Eng (2020). https://doi.org/10.1007/s40997-020-00371-8

Download citation

Keywords

  • Latent heat thermal storage (LHTS) systems
  • Cascaded PCMs
  • Solidification
  • Various forced air flow strategies