A Jamming Approach to Stretchable Haptic Interfaces with Stiffness Variation Capability


Haptic interfaces provide haptic feedback, which can be exerted with different approaches known as stiffening mechanisms. In this paper, five concepts for stretchable stiffening mechanisms based on jamming techniques are introduced. Then, two of them, namely multilayered stiffening (MLS) and shredded paper jamming (SPJ) mechanisms, are selected concerning effective criteria to be experimentally evaluated. While the MLS mechanism can retain its stiffening capability in different interface sizes, the stiffness of the SPJ mechanism is highly dependent on its material density. Several experiments are conducted on both mechanisms. The main focus is on the stiffening capability of the proposed mechanisms in different interface sizes, which makes them an appropriate stiffening mechanism for stretchable haptic interfaces. The results show that the MLS mechanism has superior performance as compared to the SPJ mechanism. Albeit, the SPJ mechanism is a promising approach concerning its simplicity and unique properties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21


  1. Amend JR, Brown E, Rodenberg N, Jaeger HM, Lipson H (2012) A positive pressure universal gripper based on the jamming of granular material. IEEE Trans Robot 28(2):341–350

    Article  Google Scholar 

  2. Bamotra A, Walia P, Prituja AV, Ren H (2019) Layer-jamming suction grippers with variable stiffness. J Mech Robot 11(3):035003

    Article  Google Scholar 

  3. Brown E et al (2010) Universal robotic gripper based on the jamming of granular material. Proc Natl Acad Sci 107(44):18809–18814

    Article  Google Scholar 

  4. Bureau M, Keller T, Perry J, Velik R, Veneman JF (2011) Variable stiffness structure for limb attachment. In: 2011 IEEE international conference on rehabilitation robotics, pp 1–4

  5. Campanaro L, Goldstone NJ, Shepherd CC (1966) Rigidized evacuated structure. U.S. Patent 3258883

  6. Cates ME, Wittmer JP, Bouchaud J-P, Claudin P (1998) Jamming, force chains, and fragile matter. Phys Rev Lett 81(9):1841–1844

    Article  Google Scholar 

  7. Cheng NG et al (2012) Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media. In: 2012 IEEE international conference on robotics and automation, pp 4328–4333

  8. Choi I, Corson N, Peiros L, Hawkes EW, Keller S, Follmer S (2018) A soft, controllable, high force density linear brake utilizing layer jamming. IEEE Robot Autom Lett 3(1):450–457

    Article  Google Scholar 

  9. Choi WH, Kim S, Lee D, Shin D (2019) Soft, multi-DoF, variable stiffness mechanism using layer jamming for wearable robots. IEEE Robot Autom Lett 4(3):2539–2546

    Article  Google Scholar 

  10. Cianchetti M, Ranzani T, Gerboni G, De Falco I, Laschi C, Menciassi A (2013) STIFF-FLOP surgical manipulator: Mechanical design and experimental characterization of the single module. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 3576–3581

  11. Follmer S, Leithinger D, Olwal A, Cheng N, Ishii H (2012) Jamming user interfaces. In: Proceedings of the 25th annual ACM symposium on user interface software and technology—UIST’12, p 519

  12. Fujita M et al (2018) Jamming layered membrane gripper mechanism for grasping differently shaped-objects without excessive pushing force for search and rescue missions. Adv Robot 32(11):590–604

    Article  Google Scholar 

  13. Hauser S, Robertson M, Ijspeert A, Paik J (2017) JammJoint: a variable stiffness device based on granular jamming for wearable joint support. IEEE Robot Autom Lett 2(2):849–855

    Article  Google Scholar 

  14. Huijben F, van Herwijnen F (2007) VACUUMATICS; shaping space by ‘Freezing’ the geometry of structures. In: Tectonics, making meaning

  15. Jiang A et al (2014) Robotic granular jamming: does the membrane matter? Soft Robot 1(3):192–201

    Article  Google Scholar 

  16. Jiang Y, Chen D, Liu C, Li J (2018) Chain-like granular jamming: a novel stiffness-programmable mechanism for soft robotics. Soft Robot 00(1):1–15

    Google Scholar 

  17. Khalghollah M, Nayyeri P, Najafi F (2020) A novel method to generate the geometry of a surface actuator. Int J Interact Des Manuf no. 0123456789

  18. Kim Y-J, Cheng S, Kim S, Iagnemma K (2012) Design of a tubular snake-like manipulator with stiffening capability by layer jamming. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, pp 4251–4256

  19. Kim Y-J, Cheng S, Kim S, Iagnemma K (2013) A novel layer jamming mechanism with tunable stiffness capability for minimally invasive surgery. IEEE Trans Robot 29(4):1031–1042

    Article  Google Scholar 

  20. Liu AJ, Nagel SR (1998) Jamming is not just cool any more. Nature 396(6706):21–22

    Article  Google Scholar 

  21. Loeve AJ, van de Ven OS, Vogel JG, Breedveld P, Dankelman J (2010a) Vacuum packed particles as flexible endoscope guides with controllable rigidity. Granul Matter 12(6):543–554

    Article  Google Scholar 

  22. Loeve A, Breedveld P, Dankelman J (2010b) Scopes too flexible…and too stiff. IEEE Pulse 1(3):26–41

    Article  Google Scholar 

  23. Manti M, Cacucciolo V, Cianchetti M (2016) Stiffening in soft robotics: a review of the state of the art. IEEE Robot Autom Mag 23(3):93–106

    Article  Google Scholar 

  24. Narang YS, Vlassak JJ, Howe RD (2018) Mechanically versatile soft machines through laminar jamming. Adv Funct Mater 28(17):1707136

    Article  Google Scholar 

  25. Ou J, Yao L, Tauber D, Steimle J, Niiyama R, Ishii H (2014) JamSheets: thin interfaces with tunable stiffness enabled by layer jamming. In: TEI 2014—8th international conference on tangible, embedded and embodied interaction, proceedings, pp 65–72

  26. Ranzani T, Gerboni G, Cianchetti M, Menciassi A (2015) A bioinspired soft manipulator for minimally invasive surgery. Bioinspir Biomim 10(3):035008

    Article  Google Scholar 

  27. Ranzani T, Cianchetti M, Gerboni G, De Falco I, Menciassi A (2016) A soft modular manipulator for minimally invasive surgery: design and characterization of a single module. IEEE Trans Robot 32(1):187–200

    Article  Google Scholar 

  28. Rose FL (1973) “Vacuum Formed Support Structures and Immobilizer Devices,” U.S. Patent 3745998A

  29. Santiago JLC, Godage IS, Gonthina P, Walker ID (2016) Soft robots and Kangaroo tails: modulating compliance in continuum structures through mechanical layer jamming. Soft Robot 3(2):54–63

    Article  Google Scholar 

  30. Sato T, Pardomuan J, Matoba Y, Koike H (2014) ClaytricSurface: an interactive deformable display with dynamic stiffness control. IEEE Comput Graph Appl 34(3):59–67

    Article  Google Scholar 

  31. Stanley AA, Okamura AM (2015) Controllable surface haptics via particle jamming and pneumatics. IEEE Trans Haptics 8(1):20–30

    Article  Google Scholar 

  32. Stanley AA, Okamura AM (2017) Deformable model-based methods for shape control of a haptic jamming surface. IEEE Trans Vis Comput Graph 23(2):1029–1041

    Article  Google Scholar 

  33. Stanley AA, Gwilliam JC, Okamura AM (2013) Haptic jamming: a deformable geometry, variable stiffness tactile display using pneumatics and particle jamming. In: 2013 world haptics conference, WHC 2013, pp 25–30

  34. Steltz E, Mozeika A, Rodenberg N, Brown E, Jaeger HM (2009) JSEL: jamming skin enabled locomotion. In: 2009 IEEE/RSJ international conference on intelligent robots and systems, pp 5672–5677

  35. Wall V, Deimel R, Brock O (2015) Selective stiffening of soft actuators based on jamming. In: 2015 IEEE international conference on robotics and automation (ICRA), 2015, vol. 2015-June, no. June, pp 252–257

  36. Zhu M, Mori Y, Xie M, Wada A, Kawamura S (2018) A 3D printed two DoF soft robotic finger with variable stiffness. In: 2018 12th France–Japan and 10th Europe-Asia congress on mechatronics, pp 387–391

Download references

Author information



Corresponding author

Correspondence to Farshid Najafi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nayyeri, P., Khalghollah, M. & Najafi, F. A Jamming Approach to Stretchable Haptic Interfaces with Stiffness Variation Capability. Iran J Sci Technol Trans Mech Eng (2020). https://doi.org/10.1007/s40997-020-00367-4

Download citation


  • Haptic interface
  • Hyperelastic material
  • Layer jamming
  • Particle jamming
  • Stiffness variation
  • Variable stiffness