Skip to main content
Log in

A Forward, Inverse Kinematics and Workspace Analysis of 3RPS and 3RPS-R Parallel Manipulators

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Parallel mechanisms are finding wide applications in manufacturing. The design methodology of parallel mechanisms is generally considered as a complex procedure. Many times they are custom designed to suit a specific task. In this work, a generalized analytical approach to forward, inverse kinematics and workspace analysis of three-degrees-of-freedom 3RPS (revolute–prismatic–spherical) and 3RPS-R (revolute–prismatic–spherical–revolute) parallel manipulator is presented. Methodology for obtaining various position and orientation of the moving platform for the provided actuation by varying the distance between the base platform and the moving platform has been discussed in detail. The actuation is given to the prismatic joint of the manipulator, which results in a variation of limb lengths, thereby altering the position and orientation of the moving platform. Sylvester dialytic elimination method is used to solve the nonlinear polynomial expressions originally obtained from the loop–closure equations. Various numerical solutions have been obtained for a different combination of limb lengths and by changing the height of the manipulator. The workspace obtained is not evenly distributed, and hence, an additional degree of freedom (DOF) of base rotation has been suggested. With the addition of one DOF, the volume of workspace obtained is enhanced without any discontinuities which would enable the manipulator to generate circular trajectories. The methodology presented in this work is general and will be suitable for similar geometries by altering the loop closure equations suitably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://new.abb.com/products/robotics/industrial–robots/irb–360; 3/24/2015.

References

  • Babu SR et al (2013) Design for optimal performance of 3-RPS parallel manipulator using evolutionary algorithms. Trans Can Soc Mech Eng 37(2):135–160

    Article  Google Scholar 

  • Epsteen S (1903) Analog of Sylvester’s dialytic method of elimination. Am Math Mon 10(3):63–64

    Article  MathSciNet  Google Scholar 

  • Fang Y, Huang Z (1997) Kinematics of a three-degree-of-freedom in-parallel actuated manipulator mechanism. Mech Mach Theory 32(7):789–796

    Article  Google Scholar 

  • Fang H, Fang Y, Zhang K (2013) Kinematics and workspace analysis of a novel 3-DOF parallel manipulator with virtual symmetric plane. Proc Inst Mech Eng C J Mech Eng Sci 227(3):620–629

    Article  MathSciNet  Google Scholar 

  • Gallardo J, Orozco H, Rico JM (2008) Kinematics of 3-RPS parallel manipulators by means of screw theory. Int J Adv Manuf Technol 365:598–605

    Article  Google Scholar 

  • Gallardo-Alvarado J (2013) Mobility analysis and kinematics of the semi-general 2 (3-RPS) series-parallel manipulator. Robot Comput Integr Manuf 29(6):463–472

    Article  Google Scholar 

  • Gallardo-Alvarado J, García-Murillo MA (2013) A parallel manipulator inspired by the original Stewart platform. Proc Inst Mech Eng C J Mech Eng Sci 227(4):831–844

    Article  Google Scholar 

  • Geng M, Zhao T, Wang C, Chen Y, Li E (2014) Forward kinematics analysis of parallel mechanisms with restricted workspace. Proc Inst Mech Eng C J Mech Eng Sci 229(14):1–12

    Google Scholar 

  • Ghosal A (2006) Robotics: fundamental concepts and analysis. Oxford University Press, New Delhi

    Google Scholar 

  • Hao Z, Qiyi W, Qunming L, Bo Z (1996) December. The kinematics and workspace analyses of a parallel manipulator for manufacturing. In: Proceedings of The IEEE international conference on industrial technology, pp 647–650

  • Hunt KH (1983) Structural kinematics of in-parallel-actuated robot-arms. ASME J Mech Transm Autom Des 105(4):705–712

    Article  Google Scholar 

  • Ibrahim O, Khalil W (2007) Kinematic and dynamic modeling of the 3-RPS parallel manipulator. In: 12th IFToMM world congress, Besançon

  • Kosinska A, Galicki M, Kedzior K (2003) Design of parameters of parallel manipulators for a specified workspace. Robotica 21(05):575–579

    Article  Google Scholar 

  • Kumar V (1992) Characterization of workspaces of parallel manipulators. Trans ASME J Mech Des 114:368

    Article  Google Scholar 

  • Lee KM, Shah DK (1988) Kinematic analysis of a three-degrees-of-freedom in-parallel actuated manipulator. IEEE J Robot Autom 4(3):354–360

    Article  Google Scholar 

  • Li Y, Xu Q (2007) Kinematic analysis of a 3-PRS parallel manipulator. Robot Comput Integr Manuf 23(4):395–408

    Article  Google Scholar 

  • Li Q, Chen Z, Chen Q, Wu C, Hu X (2011) Parasitic motion comparison of 3-PRS parallel mechanism with different limb arrangements. Robot Comput Integr Manuf 27(2):389–396

    Article  Google Scholar 

  • Liu D, Che R, Li Z, Luo X (2003) Research on the theory and the virtual prototype of 3-DOF parallel-link coordinate-measuring machine. IEEE Trans Instrum Meas 52(1):119–125

    Article  Google Scholar 

  • Merlet JP (1994) Parallel manipulators: state of the art and perspectives. Adv Robot 8:589–596

    Article  Google Scholar 

  • Merlet JP (2006) Parallel robots. Springer, Berlin

    MATH  Google Scholar 

  • Özdemir M (2016) Singularity robust balancing of parallel manipulators following inconsistent trajectories. Robotica 34(9):1–12

    Article  Google Scholar 

  • Patel YD, George PM (2012) Parallel manipulators applications—a survey. Mod Mech Eng 2(1):57–64

    Article  Google Scholar 

  • Patel Y, George P (2014) Constraint and inverse kinematic analysis of 3-RPS parallel manipulator. In: 5th International & 26th all India manufacturing technology, design and research conference

  • Rao NM (2010) Synthesis of a spatial 3-RPS parallel manipulator based on physical constraints. Sadhana 35(6):739–746

    Article  Google Scholar 

  • Rao NM (2011) Synthesis of a spatial 3-RPS parallel manipulator based on physical constraints using hybrid GA simplex method. Int J Adv Manuf Technol 52(5–8):777–787

    Article  Google Scholar 

  • Rao NM, Rao KM (2009) Dimensional synthesis of a spatial 3-RPS parallel manipulator for a prescribed range of motion of spherical joints. Mech Mach Theory 44(2):477–486

    Article  Google Scholar 

  • Rao PS, Rao NM (2013) Position analysis of spatial 3-RPS parallel manipulator. Int J Mech Eng Robit Res 2(2):79–90

    Google Scholar 

  • Rogers DF, Adams JA (1989) Mathematical elements for computer graphics. McGraw-Hill, New York

    Google Scholar 

  • Schadlbauer J, Walter DR, Husty ML (2014) The 3-RPS parallel manipulator from an algebraic viewpoint. Mech Mach Theory 75:161–176

    Article  Google Scholar 

  • Tsai LW (1999) Robot analysis: the mechanics of serial and parallel manipulators. Wiley, New York

    Google Scholar 

  • Wang QY, Zou H, Zhao MY, Li QM, Zheng HW (1997) Design and kinematics of a parallel manipulator for manufacturing. CIRP Ann Manuf Technol 46(1):297–300

    Article  Google Scholar 

  • Yuan WH, Tsai MS (2014) A novel approach for forward dynamic analysis of 3-PRS parallel manipulator with consideration of friction effect. Robot Comput Integr Manuf 30(3):315–325

    Article  Google Scholar 

  • Zhang J, Yu H, Gao F, Zhao X (2011) Key issues in studying parallel manipulators. In: IEEE international conference on advanced mechatronic systems (ICAMechS), pp 234–244

  • Zhao JS, Feng ZJ, Wang LP, Dong JX (2006) The free mobility of a parallel manipulator. Robotica 24(05):635–641

    Article  Google Scholar 

  • Zhao JS, Lu W, Chu F, Feng ZJ (2009) The kinematics and statics of manipulators. Proc Inst Mech Eng C J Mech Eng Sci 223(9):2155–2166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Desai.

Appendix

Appendix

$$ \begin{aligned} A_{2} & = - 3a^{2} + 3b^{2} + 3bl_{2} - 3bl_{3} \cos \theta_{3} + l_{2}^{2} - l_{2} l_{3} \cos \theta_{3} + l_{3}^{2} \\ B_{2} & = - 4l_{2} l_{3} \sin \theta_{3} \\ C_{2} & = - 3a^{2} + 3b^{2} - 3bl_{2} - 3bl_{3} \cos \theta_{3} + l_{2}^{2} + l_{2} l_{3} \cos \theta_{3} + l_{3}^{2} \\ \end{aligned} $$
$$ \begin{aligned} A_{4} & = 2l_{1}^{2} (18a^{4} l_{2}^{2} + 45a^{4} l_{3}^{2} + 18b^{2} l_{2}^{4} + 72b^{3} l_{2}^{3} + 72b^{4} l_{2}^{2} + 18b^{2} l_{3}^{4} + 72b^{4} l_{3}^{2} + 2l_{1}^{4} l_{2}^{2} + 5l_{1}^{4} l_{3}^{2} + 2l_{2}^{2} l_{3}^{4} + 5l_{2}^{4} l_{3}^{2} \\ & \quad - 27a^{4} l_{3}^{2} \cos (2\theta_{3} ) - 3l_{1}^{4} l_{3}^{2} \cos (2\theta_{3} ) - 3l_{2}^{4} l_{3}^{2} \cos (2\theta_{3} ) + 36a^{2} bl_{2}^{3} - 12bl_{1}^{2} l_{2}^{3} + 12bl_{2}^{3} l_{3}^{2} + 72a^{2} b^{2} l_{2}^{2} \\ & \quad - 36a^{2} b^{2} l_{3}^{2} - 12a^{2} l_{1}^{2} l_{2}^{2} - 30a^{2} l_{1}^{2} l_{3}^{2} - 42a^{2} l_{2}^{2} l_{3}^{2} - 24b^{2} l_{1}^{2} l_{2}^{2} - 24b^{2} l_{1}^{2} l_{3}^{2} - 12b^{2} l_{2}^{2} l_{3}^{2} + 10l_{1}^{2} l_{2}^{2} l_{3}^{2} \\ & \quad - 72b^{3} l_{3}^{3} \cos \theta_{3} + 4l_{2}^{3} l_{3}^{3} \cos (\theta_{3} ) + 12bl_{2} l_{3}^{4} - 36a^{2} bl_{3}^{3} \cos (\theta_{3} ) - 12a^{2} l_{2} l_{3}^{3} \cos \theta_{3} - 12a^{2} l_{2}^{3} l_{3} \cos \theta_{3} \\ & \quad + 12bl_{1}^{2} l_{3}^{3} \cos \theta_{3} + 12bl_{2}^{2} l_{3}^{3} \cos \theta_{3} - 24b^{2} l_{2} l_{3}^{3} \cos \theta_{3} - 24b^{2} l_{2}^{3} l_{3} \cos \theta_{3} + 72b^{3} l_{2}^{2} l_{3} \cos \theta_{3} + 4l_{1}^{2} l_{2} l_{3}^{3} \cos \theta_{3} \\ & \quad + 4l_{1}^{2} l_{2}^{3} l_{3} \cos \theta_{3} - 24bl_{2}^{3} l_{3}^{2} \cos (2\theta_{3} ) - 72b^{3} l_{2} l_{3}^{2} \cos (2\theta_{3} ) - 108a^{2} bl_{2} l_{3}^{2} + 12bl_{1}^{2} l_{2} l_{3}^{2} + 36a^{4} l_{2} l_{3} \cos \theta_{3} \\ & \quad - 12bl_{2}^{4} l_{3} \cos (\theta_{3} ) + 144b^{4} l_{2} l_{3} \cos (\theta_{3} ) + 4l_{1}^{4} l_{2} l_{3} \cos (\theta_{3} ) + 108a^{2} b^{2} l_{3}^{2} \cos (2\theta_{3} ) + 18a^{2} l_{1}^{2} l_{3}^{2} \cos (2\theta_{3} ) \\ & \quad + 18a^{2} l_{2}^{2} l_{3}^{2} \cos (2\theta_{3} ) - 72b^{2} l_{2}^{2} l_{3}^{2} \cos (2\theta_{3} ) - 2l_{1}^{2} l_{2}^{2} l_{3}^{2} \cos (2\theta_{3} ) + 36a^{2} bl_{2}^{2} l_{3} \cos \theta_{3} + 144a^{2} b^{2} l_{2} l_{3} \cos \theta_{3} \\ & \quad - 24a^{2} l_{1}^{2} l_{2} l_{3} \cos \theta_{3} - 12bl_{1}^{2} l_{2}^{2} l_{3} \cos \theta_{3} - 48b^{2} l_{1}^{2} l_{2} l_{3} \cos \theta_{3} + 72a^{2} bl_{2} l_{3}^{2} \cos (2\theta_{3} )) \\ \end{aligned} $$
$$ \begin{aligned} B_{4} & = - 32l_{1}^{2} l_{2} l_{3} (18a^{4} \sin \theta_{3} - 36a^{2} b^{2} \sin \theta_{3} - 18a^{2} bl_{2} \sin \theta_{3} + 9a^{2} bl_{3} \sin (2\theta_{3} ) - 12a^{2} l_{1}^{2} \sin \theta_{3} \\ & \quad - 6a^{2} l_{2}^{2} \sin \theta_{3} - 6a^{2} l_{3}^{2} \sin \theta_{3} + 18b^{4} \sin \theta_{3} + 18b^{3} l_{2} \sin \theta_{3} - 9b^{3} l_{3} \sin (2\theta_{3} ) - 6b^{2} l_{1}^{2} \sin \theta_{3} \\ & \quad + 6b^{2} l_{2}^{2} \sin \theta_{3} - 9b^{2} l_{2} l_{3} \sin (2\theta_{3} ) + 6b^{2} l_{3}^{2} \sin \theta_{3} - 3bl_{2}^{2} l_{3} \sin (2\theta_{3} ) + 6bl_{2} l_{3}^{2} \sin \theta_{3} + 2l_{1}^{4} \sin \theta_{3} \\ & \quad + 2l_{1}^{2} l_{2}^{2} \sin \theta_{3} + l_{1}^{2} l_{2} l_{3} \sin (2\theta_{3} ) + 2l_{1}^{2} l_{3}^{2} \sin \theta_{3} + 2l_{2}^{2} l_{3}^{2} \sin \theta_{3} ) \\ \end{aligned} $$
$$ \begin{aligned} C_{4} & = 8l_{1}^{2} (63a^{4} l_{2}^{2} + 36a^{4} l_{3}^{2} + 9b^{2} l_{2}^{4} + 36b^{4} l_{2}^{2} + 9b^{2} l_{3}^{4} + 36b^{4} l_{3}^{2} + 7l_{1}^{4} l_{2}^{2} + 4l_{1}^{4} l_{3}^{2} + 7l_{2}^{2} l_{3}^{4} + 4l_{2}^{4} l_{3}^{2} \\ & \quad - 27a^{4} l_{3}^{2} \cos^{2} \theta_{3} - 3l_{1}^{4} l_{3}^{2} \cos^{2} \theta_{3} - 3l_{2}^{4} l_{3}^{2} \cos^{2} \theta_{3} - 180a^{2} b^{2} l_{2}^{2} - 72a^{2} b^{2} l_{3}^{2} - 42a^{2} l_{1}^{2} l_{2}^{2} \\ & \quad - 24a^{2} l_{1}^{2} l_{3}^{2} - 66a^{2} l_{2}^{2} l_{3}^{2} - 12b^{2} l_{1}^{2} l_{2}^{2} - 12b^{2} l_{1}^{2} l_{3}^{2} + \,30b^{2} l_{2}^{2} l_{3}^{2} + 26l_{1}^{2} l_{2}^{2} l_{3}^{2} - 36b^{3} l_{3}^{3} \cos \theta_{3} \\ & \quad - 18a^{2} bl_{3}^{3} \cos \theta_{3} + 6bl_{1}^{2} l_{3}^{3} \cos \theta_{3} - 42bl_{2}^{2} l_{3}^{3} \cos \theta_{3} - 108b^{3} l_{2}^{2} l_{3} \cos \theta_{3} - 6bl_{2}^{4} l_{3} \cos \theta_{3} \\ & \quad + 108a^{2} b^{2} l_{3}^{2} \cos^{2} \theta_{3} + 18a^{2} l_{1}^{2} l_{3}^{2} \cos^{2} \theta_{3} + 18a^{2} l_{2}^{2} l_{3}^{2} \cos^{2} \theta_{3} + 72b^{2} l_{2}^{2} l_{3}^{2} \cos^{2} \theta_{3} - 18l_{1}^{2} l_{2}^{2} l_{3}^{2} \cos^{2} \theta_{3} \\ & \quad + 162a^{2} bl_{2}^{2} l_{3} \cos \theta_{3} - 6bl_{1}^{2} l_{2}^{2} l_{3} \cos \theta_{3} ) \\ \end{aligned} $$
$$ \begin{aligned} D_{4} & = - 32l_{1}^{2} l_{2} l_{3} (18a^{4} \sin \theta_{3} - 36a^{2} b^{2} \sin \theta_{3} + 18a^{2} bl_{2} \sin \theta_{3} + 9a^{2} bl_{3} \sin (2\theta_{3} ) - 12a^{2} l_{1}^{2} \sin \theta_{3} \\ & \quad - 6a^{2} l_{2}^{2} \sin \theta_{3} - 6a^{2} l_{3}^{2} \sin \theta_{3} + 18b^{4} \sin \theta_{3} - 18b^{3} l_{2} \sin \theta_{3} - 9b^{3} l_{3} \sin (2\theta_{3} ) - 6b^{2} l_{1}^{2} \sin \theta_{3} \\ & \quad + 6b^{2} l_{2}^{2} \sin \theta_{3} + 9b^{2} l_{2} l_{3} \sin (2\theta_{3} ) + 6b^{2} l_{3}^{2} \sin \theta_{3} - 3bl_{2}^{2} l_{3} \sin (2\theta_{3} ) - 6bl_{2} l_{3}^{2} \sin \theta_{3} + 2l_{1}^{4} \sin \theta_{3} \\ & \quad + 2l_{1}^{2} l_{2}^{2} \sin \theta_{3} - l_{1}^{2} l_{2} l_{3} \sin (2\theta_{3} ) + 2l_{1}^{2} l_{3}^{2} \sin \theta_{3} + 2l_{2}^{2} l_{3}^{2} \sin \theta_{3} ) \\ \end{aligned} $$
$$ \begin{aligned} E_{4} & = 2l_{1}^{2} (18a^{4} l_{2}^{2} + 45a^{4} l_{3}^{2} + 18b^{2} l_{2}^{4} - 72b^{3} l_{2}^{3} + 72b^{4} l_{2}^{2} + 18b^{2} l_{3}^{4} + 72b^{4} l_{3}^{2} + 2l_{1}^{4} l_{2}^{2} + 5l_{1}^{4} l_{3}^{2} + 2l_{2}^{2} l_{3}^{4} \\ & \quad + 5l_{2}^{4} l_{3}^{2} - 27a^{4} l_{3}^{2} \cos (2\theta_{3} ) - 3l_{1}^{4} l_{3}^{2} \cos (2\theta_{3} ) - 3l_{2}^{4} l_{3}^{2} \cos (2\theta_{3} ) - 36a^{2} bl_{2}^{3} + 12bl_{1}^{2} l_{2}^{3} - 12bl_{2}^{3} l_{3}^{2} \\ & \quad + 72a^{2} b^{2} l_{2}^{2} - 36a^{2} b^{2} l_{3}^{2} - 12a^{2} l_{1}^{2} l_{2}^{2} - 30a^{2} l_{1}^{2} l_{3}^{2} - 42a^{2} l_{2}^{2} l_{3}^{2} - 24b^{2} l_{1}^{2} l_{2}^{2} - 24b^{2} l_{1}^{2} l_{3}^{2} - 12b^{2} l_{2}^{2} l_{3}^{2} \\ & \quad + 10l_{1}^{2} l_{2}^{2} l_{3}^{2} - 72b^{3} l_{3}^{3} \cos \theta_{3} - 4l_{2}^{3} l_{3}^{3} \cos \theta_{3} - 12bl_{2} l_{3}^{4} - 36a^{2} bl_{3}^{3} \cos \theta_{3} + 12a^{2} l_{2} l_{3}^{3} \cos \theta_{3} + 12a^{2} l_{2}^{3} l_{3} \cos \theta_{3} \\ & \quad + 12bl_{1}^{2} l_{3}^{3} \cos \theta_{3} + 12bl_{2}^{2} l_{3}^{3} \cos \theta_{3} + 24b^{2} l_{2} l_{3}^{3} \cos \theta_{3} + 24b^{2} l_{2}^{3} l_{3} \cos \theta_{3} + 72b^{3} l_{2}^{2} l_{3} \cos \theta_{3} - 4l_{1}^{2} l_{2} l_{3}^{3} \cos \theta_{3} \\ & \quad - 4l_{1}^{2} l_{2}^{3} l_{3} \cos \theta_{3} + 24bl_{2}^{3} l_{3}^{2} \cos (2\theta_{3} ) + 72b^{3} l_{2} l_{3}^{2} \cos (2\theta_{3} ) + 108a^{2} bl_{2} l_{3}^{2} - 12bl_{1}^{2} l_{2} l_{3}^{2} - 36a^{4} l_{2} l_{3} \cos \theta_{3} \\ & \quad - 12bl_{2}^{4} l_{3} \cos \theta_{3} - 144b^{4} l_{2} l_{3} \cos \theta_{3} - 4l_{1}^{4} l_{2} l_{3} \cos \theta_{3} + 108a^{2} b^{2} l_{3}^{2} \cos (2\theta_{3} ) + 18a^{2} l_{1}^{2} l_{3}^{2} \cos (2\theta_{3} ) \\ & \quad + 18a^{2} l_{2}^{2} l_{3}^{2} \cos (2\theta_{3} ) - 72b^{2} l_{2}^{2} l_{3}^{2} \cos (2\theta_{3} ) - 2l_{1}^{2} l_{2}^{2} l_{3}^{2} \cos (2\theta_{3} ) + 36a^{2} b*l_{2}^{2} l_{3} \cos \theta_{3} - 144a^{2} b^{2} l_{2} l_{3} \cos \theta_{3} \\ & \quad + 24a^{2} l_{1}^{2} l_{2} l_{3} \cos \theta_{3} - 12bl_{1}^{2} l_{2}^{2} l_{3} \cos \theta_{3} + 48b^{2} l_{1}^{2} l_{2} l_{3} \cos \theta_{3} - 72a^{2} bl_{2} l_{3}^{2} \cos (2\theta_{3} )) \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, R., Muthuswamy, S. A Forward, Inverse Kinematics and Workspace Analysis of 3RPS and 3RPS-R Parallel Manipulators. Iran J Sci Technol Trans Mech Eng 45, 115–131 (2021). https://doi.org/10.1007/s40997-020-00346-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-020-00346-9

Keywords

Navigation